

Supported by

Overview of NSTX FY2010-12 Program Letter for Laboratory Collaborations

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

J. Menard, S. Kaye, M. Ono

For the NSTX Research Team

NSTX PAC-26 Teleconference PPPL - DCR July 20, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

NSTX FY2009 Facility Operations Update ARRA Funding Significantly Enhancing Research Capability

- Planning 16 week run this year 11 Base + 5 ARRA
 - 11 run weeks with 1,705 plasma shots achieved for Base, 1.2 for ARRA
 - Scheduled to complete this run by Aug 14th
- Completed facility modifications/upgrades:
 - HHFW upgrade installation completed and began operation
 - Dual lithium shaker installed and began operation
 - CHI absorber coils commissioned with SPA sources
 - Leaking NBI calorimeter bellows replaced during maint. weeks
- LLD and BES preparations ongoing for summer outage
 - LLD plates to be delivered to PPPL from PPI this week
- Good progress on ARRA-funded upgrade planning
 - +10 TS chans, complete MSE-LIF, enhance LLD, 2 post-docs, 2nd SPA
 - But no HHFW hybrid ELM resilience system due to funding reduction
- Good progress on NSTX Upgrade Project (new CS + 2nd NBI)
 - Planning for PPPL/PU CDR in Oct., Lehman (SC) Review in Dec.

HHFW upgrade successfully completed during FY09 run

• Internal views of HHFW antenna, external resonant loops:

- DOE Joint milestone: "Conduct experiments on major fusion facilities to develop understanding of particle control and hydrogenic fuel retention in tokamaks"
 - Gas balance measurements show high (~90%) prompt retention values during ohmic and NBI-heated discharges, higher with Li
 - Sample probe enabled post-shot analysis of surface chemistry during normal and Li operation (in collaboration with Purdue)
- R(09-1) Understand RWM stabilization and control vs. rotation
 - Data-set varying fast-ion density and source-mix obtained and under analysis
- R(09-2) Study how j(r) is modified by super-Alfvénic ion driven modes
 - Variations in NBI power modified BAAE/EPM burst frequency, enable timeresolved measurement of MSE \rightarrow J(r,t) (in progress)
- R(09-3) Perform high-elongation wall-stabilized plasma operation
 - Record low flux consumption, sustained $\beta_T = 15-20\%$ extended to 20-30%

NSTX FY2009-11 Research Milestones

(base and incremental)

FY2009	FY2010	FY2011
Expt. Run Weeks: 16 w/ ARRA	17 (20)	14 (20)
1) <u>Transport & Turbulence</u>		Study turbulence regimes responsible for ion and electron energy transport (formerly FY2010)
2) <u>Macroscopic Stability</u> Understand physics of RWM stabilization & control vs. rotation	Assess sustainable beta and disruptivity near and above the ideal no-wall limit	Assess sustained operation above the no-wall limit at reduced collisionality
3) <u>Boundary Physics</u>	Assess H-mode characteristics as a function of collisionality and lithium conditioning	Relationship between lithiated surface conditions and edge and core plasma conditions
4) Wave-Particle Interaction		
Study how j(r) is modified by super-Alfvénic ion-driven modes	Characterize HHFW heating, CD, and ramp-up in deuterium H-mode Joint milestone w/ solenoid-free TSG	Assess predictive capability of mode-induced fast-ion transport
5) <u>Solenoid-free start-up, ramp-up</u>		
6) Advanced Scenarios & Control		
Perform high-elongation wall- stabilized operation at lower n _e		Dependence of integrated plasma performance on collisionality (FY2010 incremental accelerates this by 1yr if LLD and/or HHFW achieve FY2010 goals)
Joint Research Targets (3 US facilities):		
Particle control and hydrogenic fuel retention	Understanding of divertor heat flux, transport in scrape-off layer	Characterize H-mode pedestal structure
NSTX NSTX PAC	-26 Teleconference – FY10-12 Program Letter Overview	July 20, 2009 5

NSTX FY09-11 Upgrades Support High Priority Research

🔘 NSTX

NSTX PAC-26 Teleconference – FY10-12 Program Letter Overview

High Priority Research Areas Identified in Program Letter:

- Operation of the Liquid Lithium Divertor
- Understanding H-mode pedestal structure
- Scrape-off-layer transport, divertor power exhaust
- Upgraded HHFW system for heating and I_P ramp-up
- NSTX research in preparation for NSTX Upgrade
 - Long-pulse pumping, power-handling
 - Enhanced control capabilities

Subsequent pages show the "Key Collaboration Opportunity" text from the program letter with

most important elements highlighted in red

Key Collaboration Opportunities in I. Macroscopic Plasma Physics

- Exploit improvements in fast-wave heating of high-beta predominantly NBI-heated H-mode plasmas to improve understanding of RWM and NTM stability as a function of varied fast particle content, toroidal rotation, and core electron/ion collisionality.
- Aid in the development of real-time diagnosis and control of rotation using magnetic braking to enable controlled variations of the plasma rotation for RWM and NTM stability and confinement research
- Aid in the diagnosis, analysis, and simulation of disruption precursor onset and disruption evolution – especially the thermal quench and halo-current dynamics.
- Assess and develop novel techniques for disruption mitigation via very rapid density build-up from efficient edge and/or core fueling.

Key Collaboration Opportunities in II. Multi-Scale Plasma Physics

- Lead or assist in the development and implementation of high time and spatial resolution rotation diagnostics for the near-edge region to improve understanding of flow-damping from 3D magnetic fields, the relationship between the flow and flow-shear and turbulence in the Hmode pedestal region, and the physics of the H-mode transition.
- Develop, utilize, and optimize the upgraded high-harmonic fast-wave system for core electron heating for electron transport and turbulence studies in L-mode and H-mode, and as a means of producing low collisionality plasmas with reduced momentum and particle input for momentum and particle transport studies.
- Participate in diagnosis, experiments, and analysis exploring impurity transport from the edge to the core, and linkages to inward momentum pinch physics. Utilize existing and/or new main-ion and impurity edge particle sources for perturbative particle transport experiments.

Key Collaboration Opportunities in III. Plasma Boundary Interfaces (I)

- Particular emphasis will be placed on characterizing and understanding the particle pumping, thermal response, and power-handling of the liquid lithium divertor (LLD) module under both steady-state and transient conditions (such as ELMs and disruptions).
- Enhance spectroscopy and other diagnostics of the divertor and main chamber to improve understanding of divertor and wall pumping, retention, and impurity generation - including transport of lithium and other impurities from the plasma edge into the pedestal and core.
- Also, perform scoping studies and initial testing of high efficiency core and edge fueling techniques for LLD operation.
- Perform experiments and simulations to aid in the development of predictive capability for SOL and divertor thermal, particle, and heat-flux widths. Develop techniques for heat-flux mitigation compatible with the anticipated enhanced divertor particle pumping of the LLD.

Key Collaboration Opportunities in III. Plasma Boundary Interfaces (II)

- Participate in LLD operation, experiments, and data analysis contributing to the research, development, and laboratory tests of longpulse, high-heat-flux, and high particle pumping efficiency divertor concepts applicable to NSTX, the proposed NSTX Upgrade, and future fusion devices.
- Implement diagnostics, and perform experiments, data analysis, and simulations to develop a predictive capability for the H-mode pedestal structure and stability.
- Optimize the H-mode performance for high thermal confinement, small/no ELMs, density control, and acceptable impurity accumulation. Utilize evaporated and liquid lithium, externally applied 3D fields, boundary shaping, and other techniques to develop edge localized mode (ELM) suppression, triggering, and control.

Key Collaboration Opportunities in IV. Waves and Energetic Particles

- Measure HHFW wave-fields and RF-induced changes in the plasma core and edge to test fast wave heating and coupling simulation codes.
- Characterize the impact of HHFW power on the edge plasma and structures near the antenna, and develop means to maintain high heating efficiency during edge transients – in particular during edge-localizedmode (ELM) activity associated with H-mode operation.
- Perform experiments to measure fast-ion acceleration by the HHFW and develop means to modify and minimize the interaction between the HHFW and NBI fast-ions. Utilize several of the measured moments of the fast-ion distribution function to test linear and non-linear fast-ion instability simulations and develop a predictive capability for fast-ion transport by fast-ion-driven instabilities for CTF and ITER.
- Perform additional measurements and experiments to determine the correlation between edge density fluctuations and fluctuations in the B-X-O transmission efficiency.

Key Collaboration Opportunities in V. Start-up and Ramp-up

- Measure HHFW wave-fields in the plasma core and edge to assess HHFW coupling and heating efficiency during the plasma current ramp-up, measure the production/acceleration of fast ions by HHFW, and measure/infer the sources of non-inductive current drive during the RF-driven current ramp-up.
- Diagnose and simulate CHI plasmas to improve start-up plasma energy and particle content to provide higher temperature and beta target plasmas for non-inductive ramp-up techniques such as HHFW and NBI.
- Measure CHI plasma density, impurity content, and radiated power to characterize CHI start-up power balance with and without additional heating power (ECH and HHFW) in the presence of a metallic outboard divertor and lithium.

Key Collaboration Opportunities in VI. Physics Integration

- Aid in experiments to measure and modify non-inductive current drive sources at reduced density, measure possible beam current-drive redistribution from MHD activity and fast-ion instabilities, and measure the energy, momentum, and particle confinement properties and the full spectrum of plasma turbulence of discharges optimized for high non-inductive current drive fraction and long pulse duration.
- Test the compatibility and efficiency of HHFW core electron heating with NBI-driven H-mode operation, and the impact of RF heating on core impurity accumulation and control.
- Develop real-time diagnostics and analysis tools for the plasma beta, rotation, current profile, and proximity to stability limits to improve plasma control to sustain high plasma performance and to avoid and/or mitigate disruptions.

Summary

- NSTX operating very well in FY2009
- All research milestone data obtained, under analysis
- Exciting FY10-12 opportunities in program letter emphasizing:
 - Operation of the Liquid Lithium Divertor
 - Understanding H-mode pedestal structure
 - Scrape-off-layer transport, divertor power exhaust
 - Upgraded HHFW system for heating and I_P ramp-up
 - NSTX research in preparation for NSTX Upgrade

The NSTX program thanks the PAC for helpful suggestions to improve the program letter!

