PAC-27 Questions to NSTX

1. PAC remains concerned about ability to fully exploit NSTX-U without more complete understanding of what heat-flux handling and pumping requirements, and capabilities are needed.

Example - What divertor temperature rise do you expect for the various operational scenarios, and what are your mitigation strategies? Please provide more detail on NSTX near-term research plan (2010-12)

- Answered by Maingi, Menard
- 2. What diagnostics are impacted by NSTX-U, and how does this impact the NSTX-U research program, and what are your plans to cope with the impact?
 - Answered by Menard
- 3. There is no discussion of v_{θ} measurements or implications, please provide a viewgraph or 2 on results and implications.
 - Answered by Kaye

Question 1 Thermal calculations and FY10-12 plans to prep for NSTX-U divertor

Heat flux and pulse length limits of the ATJ graphite tiles

1 MA, fully non-inductive scenario should not restrict pulse length for existing tiles

- 100% non-inductive scenario with 1 MA, n/n_{GW}=0.5, P=10 MW
 - f_{exp}=30
 - f_{div}=0.5
 - λ_q^{mid}=9 mm
- Going to double-null (60/40 down/up split) provides extra safety margin

2 MA, high PNBI scenario requires extra flux expansion for full pulse length for existing tiles

- High current scenario 2 MA, n/n_{GW}=0.5, P=15 MW would restrict pulse length
 - f_{exp}=30
 - f_{div}=0.5
 - $\lambda_q^{mid}=3 \text{ mm}$
- Actual scenarios can use n/n_{GW}=0.7-1, which will widen the SOL width by an amount TBD
- Using DN and increased flux expansion would just manage for 5 sec

Heat flux profiles in divertor

- Max. LLD heat flux for 5 sec. pulse is 2.8 MW/m² (Nygren, SNLA)
- Graphite tiles will restrict qmax to ~ 10 MW/m² for a 5 sec. pulse
- Intersection between green line and heat flux profiles shows how close LLD could be placed to intended strike point location

FY10-12 NSTX research plans for LLD + high flux expansion for NSTX-U (1)

- Present plan: assess high flux expansion + LLD as baseline
 -FY10-12 results will provide data on viability for NSTX, Upgrade
 Also refer to FY10 divertor upgrade analysis plan from Maingi talk
- FY10 Assess LLD pumping, initial impact on pedestal, core –Pre-wet LLD before plasma ops
 - -Develop plasma fiducials w/ and w/o LLD warm, w/ and w/o LITER
 - -Characterize pumping of LLD vs LLD temperature, strike-pt location, etc.
 - -Perform 2+ day MHD/confinement survey XP to assess impact of LLD
 - Milestone: Assess H-mode characteristics vs. collisionality and Li conditioning – important for NSTX Li program, and FY11 joint milestone
 - -Further develop strike and x-point control for sustained snowflake
 - -Assess C/Li impurity sources/transport (PhD thesis starting in 2010)
 - -Assess radiative divertor with impurity seeding
 - -Measure thermal response of LLD and bare Mo LLD to high heat flux

 Based on LLD pumping data, and end-of-run results of FY2010 (LLD+high heat flux), decide on installation of inboard Mo tiles
 Assuming tiles are ready for installation

FY11-12: If decision to install Mo tiles is "yes", then assess:
If outboard LLD successful, could enable test of inboard (high-δ) LLD
Reduce C impurity influx from divertor
Begins to informs choice of C or metallic divertor for NSTX Upgrade
Expected to improve CHI via reduction in C, O impurity content

- -Most probable implementation is via replacement of C tiles with Mo tiles
 - Replace lower horizontal + part of lower vertical (high- δ shapes) + bull-nose
 - May be possible to heat to ~250-300°C using existing bake-out capability

FY10-12 NSTX research plans for LLD + high flux expansion for NSTX-U (3)

- FY11 Milestones: Relate LLD pumping to surface conditions, assess integrated plasma response to LLD/pumping
 - Use PMI probe for in-situ analysis of surface conditions
 - Cold/warm C/Mo samples near LLD, relation to pumping, plasma response
 - Utilize LLD (and HHFW) for density/collisionality modification
 - Assess impact on NBI and BS current drive, confinement, ELMs, impurities
 - Utilize high flux expansion routinely in advanced scenarios as available
- FY12 Milestone: Assess very high flux expansion divertor
 - If outboard/inboard LLD still in machine, assess interaction of snowflake with LLD as possible integrated heat/particle control solution for Upgrade
 - Assess divertor power handling, LLD pumping, impurity production, SOL turbulence, pedestal stability
 - If inboard metallic divertor installed, can also operate w/o Li, and could assess snowflake interaction with high-Z metallic divertor
 - If LLD/Mo not present, characterize snowflake with C divertor tiles

Question 2 – Diagnostics and NSTX-U

2nd NBI will displace (eliminate) several presently utilized diagnostics FY2010-12 goal is to fully exploit these diagnostics

- Tangential high-k microwave scattering
 - High-k fluctuation data very important for post-Upgrade transport research
 - Will initiate design of new high-k_{θ} system to replace high-k_r system
- 2D scanning Neutral Particle Analyzer (NPA)
 - Fast ion f(v,t) needed for fast-ion transport predictive capability
 - But have perpendicular FIDA, implementing tangential FIDA for FY11
 - Array of much smaller solid-state NPAs (SSNPA) under consideration
 - With sufficient channel count, provides spatial + energy + pitch-angle resolution

• Far IR Tangential Interferometer/Polarimeter (FIReTIP) (119µm, 6ch)

- Would lose density normalization for Thomson scattering system, also lose real-time density measurement for n_e feedback control (in prep for FY2010)
- Diagnostic bandwidth recently upgraded to measure TAE $\delta n/n$
 - But BES and upgraded reflectometer can measure TAE displacement profile
- Plan to implement dedicated interferometer(s) for density measurement

Additional diagnostics impacted/eliminated by 2nd NBI

- CHERS: $T_i(r)$ and $V_{\phi}(r)$ (51 ch)
 - 2nd NBI eliminates existing background view
 - Will likely require NBI notches for accurate profiles measurements
 - Requires all 3 2nd NBI sources to be off this should be acceptable if only 1 or maybe 2 2nd NBI sources are being used – need to analyze this further
 - Alternative solutions being sought (challenging so far)
- Other diagnostics that will be eliminated:
 - X-ray crystal spectrometer: $T_i(0)$, $T_e(0)$
 - Already/will rely on NBI/CHERS/MPTS for these measurements
 - Fast X-ray tangential camera
 - Previously used for imaging core MHD, but is presently not routinely utilized

Question 3 – Poloidal Rotation Measurements

Knowledge of the poloidal velocity is required for determining E_r

- E_r and ∇E_r linked to turbulence suppression
 - Potentially important for edge stability, L-H transition physics, residual stress (rotation source)
- E_r needed for MSE measurements to obtain accurate field pitch measurements for j(r)
- V_θ measurements on conventional aspect ratio devices differ from neoclassical estimates by an order of magnitude
- Vertical CHERS for v_{θ} measurement implemented on NSTX in 2009
 - Low B_T minimizes dominant atomic physics effect (velocity component associated with gyro-orbit)
 - Up/down symmetric viewing geometry minimizes reliance on atomic physics (obtain differential velocity)

$\boldsymbol{V}_{\boldsymbol{\theta}}$ close to neoclassical in NSTX

- Measured v_{θ} consistent with neoclassical v_{θ} for inner core
- Large neoclassical v_{θ} at edge not seen at earlier times
- Better agreement with theory at later times

GTC-Neo: finite banana orbit effects, impurity species

• I_p , B_T trends (including reversed TF, not shown) in measured v_{θ} consistent with neoclassical

v_{θ} makes only small contribution to E_r except possibly very close to plasma edge

 Joint experiment with DIII-D (K. Burrell) being developed to understand differences between low and high aspect ratio for v_θ vs v_{θ,neo}