

Supported by

Advanced Scenarios and Control Research in NSTX: Progress in FY-09 and Future Plans

Stefan Gerhardt

Michael Bell Egemen Kolemen and the NSTX Research Team

> NSTX PAC-27 B318, PPPL Feb. 4, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Steady-State STs Will Rely on Strong Shaping & High-β

Common Features of Present & Future STs

- High-κ and strong shaping.
- β_N values at or above the no-wall limit.
- Bootstrap fractions ≥50%.
- Confinement ≥ H-mode scaling.
- Comprehensive shape, profile and stability control.

Configuration Specific Features

- Range of normalized currents.
- Wide range of NBCD fractions.
- Wide range of normalized densities.

[1]: Peng, et al, PPCF 2005, Phase #3, 2 MW/m² NWL [2]: ARIES-ST

	NSTX	NSTX-U	NHTX	ST-CTF ¹	ST-Demo ²
К	2.6	2.7	3	3.1	3.5
β _N	5.7	5.7	5	4-6	7.5
l _i (1)	0.55	0.65	0.6	0.35	0.25
I _N	2.5	2.1	3	4.5	6.7
f _{GW}	0.8	0.7	0.45	0.28	0.8
f _{BS}	0.54	0.7	0.7	0.5	0.96
f _{NBCD}	15	30	0.3	0.5	0
Н ₉₈	1.	1.2	1.3	1.5	1.3

Scenario and control needs of these future devices, coupled to NSTX capability, are used in forming ASC research plans.

Goals for the Advanced Scenarios and Control TSG

• Achieve long-pulse density control for increased NBCD using improved fueling and lithium conditioning.

• Develop high non-inductive current fraction plasmas with high- β and high bootstrap fraction.

• Develop scenarios utilizing High-Harmonic Fast Waves for core electron heating, impurity reduction, and current drive.

• Develop and implement improved plasma control techniques to achieve advanced operating scenarios.

Research Milestone R(11-2):

Assess the dependence of integrated plasma performance on collisionality.

- Use LLD to reduce the density.
- Use HHFW to heat the electrons.
- Assess non-inductive current fraction, confinement, core and pedestal stability, pulse-duration, impurity content.
- Compare with time-dependent simulation codes (TRANSP & TSC).

Goals for the Advanced Scenarios and Control TSG

• Achieve long-pulse density control for increased NBCD using improved fueling and lithium conditioning.

• Develop high non-inductive current fraction plasmas with high- β and high bootstrap fraction.

• Develop scenarios utilizing High-Harmonic Fast Waves for core electron heating, impurity reduction, and current drive.

• Develop and implement improved plasma control techniques to achieve advanced operating scenarios.

Research Milestone R(11-2):

Assess the dependence of integrated plasma performance on collisionality.

- Use LLD to reduce the density.
- Use HHFW to heat the electrons.
- Assess non-inductive current fraction, confinement, core and pedestal stability, pulse-duration, impurity content.
- Compare with time-dependent simulation codes (TRANSP & TSC).

Outline: FY-09 Results and Future Plans

- High- κ neutral beam heated scenario development
 - Incorporation of LLD into ASC research
- Shape and divertor control research
- Density and impurity control research
- Incorporation of HHFW heating in advanced scenarios
- Non-inductive current ramp-up
- Rotation Control Development
- Summary

Plans Are Indicated in Grey Boxes

Studied a Range of High-κ Discharge Scenarios in 2009

High-β_P, q₉₅≈15: Maximize non-inductive fraction Limited by I²t on TF coil

Long pulse, q₉₅≈11: Fully equilibrated profiles Match TF I²t and solenoid current limit

High-\beta_T, q_{95} \approx 8: Toward reactor I_N , β_T and q^* Limited by solenoid current or MHD.

<u>All configurations:</u> High-κ and δ (κ~2.7 & δ~0.8) Near double-null (ldr_{sep}l<3mm) (Shaping and improved power handling) Lithium Conditioning Dynamic Error Field Correction+RWM Control

PAC25-30

NSTX

Large Non-Inductive Fraction and Good Confinement Achieved Over a Range of q at High-κ

8 $\beta_{N} \ge 4.5$ for all scenarios. 133994 135445 134837 β_N (%mT/MA) 6 Matches ST-CTF design point. f_{BS} approaching 55-60%. 0 - Matches ST-CTF design point. **high-\beta_{P} Long Pulse high-\beta_{T}** 3 Early f_{NB} >25%, decreases as density rises. • <u>م</u> 1 - Loss in f_{NBCD} partially made up for with f_{BS} . H_{98} ~1 in all cases. 0.8 0.6 l_{BS}+f_{P.-S.+Dia} - Further confinement improvements are 0.4 desirable. 0.2 0.0 1.5 0.50 133994 135445 134837 ..² 0.25 **high-**β_P Long Pulse high-β_T 0.0 0.00 24 1.5 time (sec) $\tau_{E,th}/\tau_{98PB(y,2)}$ I_{oH} (kA) 8 1.0 -8 0.5 high- $\beta_{\rm P}$ Long Pulse high- $\beta_{\rm T}$ -24 0.0 0.000 0.214 0.429 0.643 0.857 1.071 1.286 1.50 0.0 0.2 0.4 0.8 0.6 time (sec.)

1.4

β**⊤≈30%**

Present Configurations Are Limited to f_{NI}<70%

Loss of NB heating efficiency prevents operating at lower plasma current.

Near-term options for increasing f_{NI} in high-power NBI scenarios:

- Reduce density for increased NBCD.
 –Pumping with LLD.
- Increase the temperature for higher NBCD and bootstrap current.

-Confinement improvements with LLD and/or HHFW heating.

- Utilize profiles from high- κ , high- β_P shot.
 - Fix plasma boundary and $Z_{eff}=2$.
- Scales profiles to examine effect of f_{NI}.
 - Reference
 - f_{NBCD}=15% , f_{NI}=75%, H₉₈=1.1

PAC25-32

NSTX

- Utilize profiles from high- κ , high- β_P shot.
 - Fix plasma boundary and Z_{eff}=2.
- Scales profiles to examine effect of f_{NI}.
 - Reference
 - f_{NBCD}=15% , f_{NI}=75%, H₉₈=1.1
 - Density ↓ 25%, Temperature ↑ 18%
 - f_{NBCD} =26%, f_{NI} =80%, H_{98} =1.1

PAC25-32

NSTX

- Utilize profiles from high- κ , high- β_P shot.
 - Fix plasma boundary and Z_{eff}=2.
- Scales profiles to examine effect of f_{NI}.
 - Reference
 - f_{NBCD}=15% , f_{NI}=75% , H₉₈=1.1
 - Density ↓ 25%, Temperature ↑ 18%
 - f_{NBCD}=26% , f_{NI}=80%, H₉₈=1.1
 - Density \downarrow 25%, Temperature \uparrow 33%
 - $f_{NBCD}=27\%$, $f_{NI}=90\%$, $H_{98}=1.3$
- Increasing T_e and T_i by 25% in Z_{eff}=2 reference case yields fully non-inductive operation.
 - Z_{eff}=3 requires 40% increases in the temperatures.

PAC25-32

- Utilize profiles from high- κ , high- β_P shot.
 - Fix plasma boundary and Z_{eff} =2.
- Scales profiles to examine effect of f_{NI}.
 - Reference
 - f_{NBCD}=15% , f_{NI}=75%, H₉₈=1.1
 - Density ↓ 25%, Temperature ↑ 18%
 - f_{NBCD}=26% , f_{NI}=80%, H₉₈=1.1
 - Density ↓ 25%, Temperature ↑ 33%
 - f_{NBCD}=27% , f_{NI}=90%, H₉₈=1.3
- Increasing T_e and T_i by 25% in Z_{eff}=2 reference case yields fully non-inductive operation.
 - Z_{eff}=3 requires 40% increases in the temperatures.

- Simulations demonstrate the importance of the thermal transport response to LLD.
 - New post-doc for transport modeling starting in March.
- Recently revisiting TSC models for NSTX:
 - Realistic vessel model for time dependent simulations (R. Sayer, ORNL)
 - Calibrated against flux loop data for single coil vacuum shots.
- Beginning to model discharge evolution with TSC+NUBEAM.
 - Make discharge evolution modeling more routine.

Plans for increased f_{NI} operation

- Study the effect of LLD on NBI high- κ scenarios.
 - Reduced density for increased NBCD.
 - Confinement improvements at fixed density?
- Develop scenarios with HHFW+NBI for core electron heating.
- Assist with HHFW-only experiments at reduced-Ip.

PAC25-32

Divertor Control Improvements in FY-09 Supported Multiple NSTX Programmatic Needs

- High- κ , $-\beta$, low-l_i discharges test limits of control.
- Developed outboard strike-point (OSP) radius control on the outboard divertor at moderate δ .
 - Open-loop system-ID experiment as first XP of 2009 run.
 - Closed loop testing and validation.
 - Direct support of LLD operational scenarios.
- Used that experience to develop additional control schemes:
 - OSP radius control on the horizontal inner divertor.
 - Inner strike point control on the vertical inboard divertor.
- This capability used for snowflake divertor experiments (Soukhanovskii, et al.)
 - Adjust the outer squareness, OSP radius, and ISP height to achieve desired dual X-point configuration.

Control Development Will Extend the Range of Achievable Plasma Shapes by Using all PF Coils in Feedback Control

- Address ST specific issues.
 - Without inboard coils, control of the inner gap requires sacrifice of some other shape parameter.
- Need to develop control of high fluxexpansion divertors.
 - Contributes to NSTX-Upgrade development.
- Control develop is the primary responsibility of our new post-doc Egemen Kolemen.

Boundary Control Plans in 2010

- Implement routine upper and lower outer strike-point control.
- Develop OSP radius and X-point height control.
- First test of squareness control.
- Develop realtime detection of multiple X-points for future snowflake divertor control (LLNL, GA, PPPL collaboration).

Impurity Control and Fuelling Methods Important For Future Scenario Development with Lithium

- Substantial radiated power reduction with low-frequency 3-D field ELM triggering.
 - Little time-average braking.
 - Little confinement degradation.
- Deuterium inventory control with Supersonic Gas Injection
 - Lithium conditioned discharge.
 - No high field side gas injection.
 - Deuterium density reduced through the shot.
 - Increased electron density from carbon source.
- Combined rapid pacing + SGI:
 - Maintain flat ne-bar for ~350 msec.

Impurity & Fuelling Related Plans in ASC in 2010

- Synergy between vertical jogs & 3-D fields for ELM pacing with minimal performance impact.
 - Support for ITER needs.
- Improved early discharge evolution with error field correction & reduced impurity content.
- Glean operational knowledge on LLD pumping and fuelling from BP and Li TSG XPs.

John Canik, Rajesh Maingi, Aaron Sontag, ORNL

Feb 4th, 2009 15

Exciting Plans to Incorporate HHFW into Advanced Scenarios

- H-mode electron heating shown in 2008 & 2009.
 - See HHFW talk by G. Taylor for more details.
- Antenna upgrades in 2009 resulted in limited HHFW availability for ASC experiments.

ASC Experiments with HHFW Planned in 2010

- HHFW heating during the I_P flat-top in H-mode.
 - Develop lower-collisionality targets for increased NBCD.
 - Additional goal to reduce impurity accumulation with core heating.
- Use of early HHFW for modifications to the current ramp.
 - Develop an efficient pre-heating method.
 - Develop an actuator for a q_{min} controller for NSTX-U (with rt-MSE).
- Development of reversed-shear H-mode.
 - Dramatic reduction in core electron transport in reversed-shear L-mode discharges...potential for major reduction in core transport.

Beginning a multi-year effort to incorporate HHFW in advanced plasma scenarios.

Non-Inductive Ramp-Up and 100% Bootstrapped Scenario Developed in Conjunction with WPI & SFSU TSGs

- Previous experiments demonstrated periods of f_{BS} up to 0.85 at low current.
- Experiments in 2010 lead by WPI & SFSU.
- Unique scenario and control needs:
 - rtEFIT convergence at low plasma current.
 - Outer-gap maintenance for HHFW coupling.
 - Rendered difficult by low I_P, rapid profile evolution around RF trips.
 - Determination of the optimal shape for sustainment experiments.

HHFW Heating at Low I_P

Experiments in 2010 with HHFW at low T_e and I_P

- Form low-current Ohmic target, then add RF.
- HHFW Heating of low-I_P Plasmas

-Begin with a 500 kA discharge, at 3MW of RF.

–Reduce I_P in steps to achieve heating at low current.

Sustainment of HHFW-Driven 100% Non-Inductive H-Mode

- Fix I_P at ~400 kA, test ability of different RF power and antenna phasings to sustain I_P.

First step to integrating non-inductive ramp-up into advanced scenarios

PAC25-28

Development of Real-Time NB Control Enables β_N and Rotation Control

- β_N control demonstrated in 2009.
- Long-term plan to control the rotation profile.
 - RWM & EF physics as a function of β and rotation.
 - Transport dynamics vs. rotation shear.
 - Pedestal stability vs. edge rotation.
 - What is the optimal rotation profile for integrated plasma performance?
- Use a state-space controller based on a momentum balance model.
 - Neutral beams provide torque.
 - 3-D fields provide braking.
 - Different toroidal mode numbers provide different magnetic braking profiles.
 - Use 2nd Switching Power Amplifier (SPA) for simultaneous n=1,2 &3 fields.
- FY-12 milestone on the *physics*, *measurement*, and *control* aspects of rotation control.
 - Progress in off-line algorithm development.
 - Developing rt-V $_{\phi}$ diagnostic for FY-11.

Rowley, and N.J. Kasdin, Princeton University.

Feb 4th, 2009

Summary

- ASC research supports near term NSTX goals.
 - Strikepoint control development for LLD experiments.
 - ELM-triggering techniques for impurity reduction.
 - Scenario development with HHFW heating.
- ASC research supports NSTX-Upgrade development.
 - Advanced divertor control for handling high heat-flux.
 - Beginning profile control development.
- ASC research supports the needs of next-step STs.
 - Neutral beam current drive studies.
 - Stability and confinement at high- β_P and β_T .
 - Integrated performance at reduced collisionality and large non-inductive fraction.
 - Control techniques for the ST, and for tokamaks in general.

The Rest is Backup

High- κ , – β , **low-l**_i **Discharges Test Limits of Control**

- Shape control more difficult at high-κ and low-l_i:
 - Bottom-gap goes to zero when the OH leakage flux becomes too large.
 - Control of elongation through the outer-squareness is insufficient.
- Strike-point control will be important for optimizing pumping with LLD.
- High- β_T discharges require precise tuning of input power.
 - − Too much power \rightarrow RWM
 - Too little power \rightarrow core rotating MHD

Control Plans For High-κ Scenarios

- Incorporate X-point height and OSP radius control.
- Incorporate β_N control.

Fully Non-Inductive Operations Possible with Higher Temperature, Same Density

- TRANSP simulations with boundary and profile shapes from high- κ , high- β_P discharge 133964, Z_{eff}=3
- Scale T_e and T_i by the same factor, leaving densities unchanged.

• With Z_{eff}=2, required temperature increase is only 25%.

Research Described in This Talk Supports NSTX-Upgrade Needs

- Developing integrated shape control utilizing all available coils.
 - Upgrade is designed for a range of κ , δ , ζ ...develop control of these quantities.
- Advanced divertor may be part of the power handing strategy for the upgrade.
 - Snowflake divertor control will prepare for this contingency.
- Control of the current profile will be important in the upgrade.
 - State-space control of the rotation will be an important step for this profile control.

Scenario Development q profiles at 100% NICD fraction B_T =1T, P_{NB} =10MW, E_{NB} =110keV 4 n, / n_{Greenwald} 0.95 0.72 **q(**ρ) R_{TAN} [cm] 50. 60. 70. 130 60. 70.120.130 70.110.120.130 0.0 0.2 0.6 0.8 1.0 0.4

• Neutral beam current drive important in 100% NICD scenarios.

 ρ_{pol}

- Experiments at reduced collisionality expands NBCD into upgrade-relevant regime.
- Improved predictions of transport will enable netter scenario modeling for the upgrade.
 - New post-doc providing support with transport simulations.
- Reversed shear H-modes with HHFW, if possible, may lead to improved scenarios for the upgrade.

Development of Real-Time Neutral Beam Control Allowed β_N

- β_N control demonstrated in 2009.
- Modulate NBs so that $\beta_{N,rtEFIT}$ follows a request waveform.
- Further optimization and capability exploitation is planned in 2010.
 - XMP to optimize gains.
 - Incorporation into long-pulse high- β scenarios (ASC)
 - Test of disruptivity reduction (MS)

Demonstration of β_N control at various levels of magnetic braking and plasma rotation

Brief Response to PAC-25 Comments

- **PAC25-18**: ...the PAC recommends that scenario development be initiated for the use of HHFW heating to provide access to high beta.
 - We agree, and have planned two experiments in ASC to attempt this. Additional experiments are schedule through the WEP group, though with somewhat different goals.
- **PAC25-25**:...a focus of these studies could be establishing the ability to couple HHFW power to ramping plasmas...
 - We agree, and have an experiment planned to develop this technique.
- **PAC25-28**:...develop scenarios with controlled density rise...
 - We agree that this is quite important. It will play a role in the ASC experiments, as well as the overall LLD program.
- **PAC25-29**:...work towards integration of of HHFW heating and potentially current drive into standard scenarios.
 - We agree. See response to PAC25-18.
- **PAC25-30**:...In addition to the impressive integrated SN scenario, the PAC recommends to apply similar techniques in DN.
 - Many of our high- κ scenarios this past year had very small values of dr_{sep}, and this will continue going forward.
- **PAC25-31**: Non-solenoidal I_P ramp-up techniques...should be integrated into standard scenarios.
 - Experiments in concert with the WEP and SFSU TSGs will begin this long-term effort.
- **PAC25-32**: The TSC modeling is seen as important for the development of integrated scenarios and optimizing the current ramp-up..... It is important to maintain staff/expertise in this area and to work aggressively towards the implementation of a realistic transport model in TSC.
 - NSTX has hired a new post-doc to work on transport modeling and simulations. However, we have been unable to fill an advertised position for devoted TSC modeling.

Stability of High- β_T Scenarios is Sensitive to Variations in the Input Power

- Higher power level leads to RWMs and rapid disruption.
- Lower input powers lead to rapid qevolution and onset of core MHD.
 - Higher temperature at increased power slows current penetration.
 - Higher pressure provides bootstrap current, which helps maintain elevated q_0 .
- Critical to maintain β at the highest values consistent with ideal stability.
- Utilize β_N control to maintain high- β state against transient increases in confinement and other β oscillations.

Variations in Input Power Lead to Different MHD at high- β_T

ELM pacing + optimized fueling allows quasi-stationary global parameters for ~ 0.35 sec

- Fueling from slow valve on center stack reduced, replaced with SGI on LFS
- Stored energy comparable
 until tearing mode
- Density rise arrested
- Radiated power controlled
- Reference discharge ELMfree
- ELMs triggered with 3D fields

Impurity Accumulation in Lithiated ELM-Free H-mode was Arrested Using Magnetic ELM Pacing

- Driven ELM frequencies up to 62.5 Hz achieved with 100% triggering efficiency.
 - ELM size reduced at higher frequency.
- Time-average magnetic braking is strong at high frequencies.
 - Deleterious to performance.
- Sweet spot: Strong reduction in radiated power with pacing frequency of ~10-20 Hz

Control of the Deuterium Density In High Performance Plasmas Was Demonstrated With Supersonic Gas Injection

- No center-stack gas fuelling.
- Moderate evaporation rate of 6-9 mg/min.
 - Sufficient to go ELM free.
- Deuterium ion density control.
 - Rise in electron density due to carbon accumulation.
- Provides valuable experience with SGI fuelling+Li pumping.

Controlled Deuterium Inventory with SGI Fuelling

PAC25-28

NSTX