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Steady-State STs Will Rely on Strong Shaping & High-β

[1]: Peng, et al, PPCF 2005, Phase #3, 2 MW/m2 NWL
[2]: ARIES-ST

Common Features of Present & Future STs
• High-κ and strong shaping.
• βN values at or above the no-wall limit.
• Bootstrap fractions ≥50%.
• Confinement ≥ H-mode scaling.
• Comprehensive shape, profile and
stability control.

Configuration Specific Features
• Range of normalized currents.
• Wide range of NBCD fractions.
• Wide range of normalized

densities.

Scenario and control needs of these future devices, coupled to
NSTX capability, are used in forming ASC research plans.
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Goals for the Advanced Scenarios and Control TSG

• Achieve long-pulse density control for increased NBCD using improved
fueling and lithium conditioning.
• Develop high non-inductive current fraction plasmas with high-β and high
bootstrap fraction.
• Develop scenarios utilizing High-Harmonic Fast Waves for core electron
heating, impurity reduction, and current drive.
• Develop and implement improved plasma control techniques to achieve
advanced operating scenarios.

Research Milestone R(11-2):
Assess the dependence of integrated plasma performance on collisionality.

• Use LLD to reduce the density.
• Use HHFW to heat the electrons.
• Assess non-inductive current fraction, confinement, core and pedestal
stability, pulse-duration, impurity content.
• Compare with time-dependent simulation codes (TRANSP & TSC).
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Outline: FY-09 Results and Future Plans

• High-κ neutral beam heated scenario development
– Incorporation of LLD into ASC research

• Shape and divertor control research

• Density and impurity control research

• Incorporation of HHFW heating in advanced scenarios

• Non-inductive current ramp-up

• Rotation Control Development

• Summary
Plans Are Indicated in

Grey Boxes
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Studied a Range of High-κ Discharge Scenarios in 2009

High-High-ββPP, q, q9595≈≈1515::
 Maximize non-inductive fraction

Limited by I2t on TF coil

Long pulse, qLong pulse, q9595≈≈1111::
Fully equilibrated profiles

Match TF I2t and solenoid current limit

High-High-ββTT, q, q9955≈≈88::
Toward reactor IN, βT and q*

Limited by solenoid current or MHD.

All configurations:
High-κ and δ (κ~2.7 & δ~0.8)

Near double-null ( |drsep|<3mm )
(Shaping and improved power handling)

Lithium Conditioning
Dynamic Error Field Correction+RWM Control

PAC25-30
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Large Non-Inductive Fraction and Good Confinement
Achieved Over a Range of q at High-κ

• βN≥4.5 for all scenarios.
– Matches ST-CTF design point.

• fBS approaching 55-60%.
– Matches ST-CTF design point.

• Early fNB>25%, decreases as density rises.
– Loss in fNBCD partially made up for with fBS.

• H98~1 in all cases.
– Further confinement improvements are

desirable.

βT≈30%
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Present Configurations Are Limited to fNI<70%

Loss of NB heating efficiency prevents
operating at lower plasma current.

Near-term options for increasing fNear-term options for increasing fNINI in in
high-power NBI scenarios:high-power NBI scenarios:

• Reduce density for increased NBCD.
–Pumping with LLD.

• Increase the temperature for higher
NBCD and bootstrap current.

–Confinement improvements with LLD
and/or HHFW heating.
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LLD Expected to Have Major Impact on
Non-Inductive Currents

Te ne

Neutral 
Beam
Current

Bootstrap
Current

Ohmic
Current

q profile

Reference

• Utilize profiles from high-κ, high-βP shot.
– Fix plasma boundary and Zeff=2.

• Scales profiles to examine effect of fNI.
– Reference

• fNBCD=15% , fNI=75%, H98=1.1
– Density ↓ 25%, Temperature ↑ 18%

• fNBCD=26% , fNI=80%
– Density ↓ 25%, Temperature ↑ 33%

• fNBCD=27% , fNI=90%
• Increasing reference case Te and Ti by

25% at fixed density yields fully non-
inductive operation.

PAC25-32
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LLD Expected to Have Major Impact on
Non-Inductive Currents
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• Utilize profiles from high-κ, high-βP shot.
– Fix plasma boundary and Zeff=2.

• Scales profiles to examine effect of fNI.
– Reference

• fNBCD=15% , fNI=75%, H98=1.1
– Density ↓ 25%, Temperature ↑ 18%

• fNBCD=26% , fNI=80%, H98=1.1
– Density ↓ 25%, Temperature ↑ 33%

• fNBCD=27% , fNI=90%, H98=1.3
• Increasing reference case Te and Ti by

25% at fixed density yields fully non-
inductive operation.

PAC25-32
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• Utilize profiles from high-κ, high-βP shot.
– Fix plasma boundary and Zeff=2.

• Scales profiles to examine effect of fNI.
– Reference

• fNBCD=15% , fNI=75%, H98=1.1
– Density ↓ 25%, Temperature ↑ 18%

• fNBCD=26% , fNI=80%, H98=1.1
– Density ↓ 25%, Temperature ↑ 33%

• fNBCD=27% , fNI=90%, H98=1.3
• Increasing Te and Ti by 25% in Zeff=2

reference case yields fully non-inductive
operation.

– Zeff=3 requires 40% increases in the
temperatures.

PAC25-32
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LLD Expected to Have Major Impact on
Non-Inductive Currents

PAC25-32

Plans for increased fNI operation
• Study the effect of LLD on NBI high-κ scenarios.
– Reduced density for increased NBCD.
– Confinement improvements at fixed density?

• Develop scenarios with HHFW+NBI for core electron heating.
• Assist with HHFW-only experiments at reduced-Ip.

• Simulations demonstrate the importance
of the thermal transport response to LLD.
– New post-doc for transport modeling

starting in March.
• Recently revisiting TSC models for NSTX:

– Realistic vessel model for time
dependent simulations (R. Sayer,
ORNL)

– Calibrated against flux loop data for
single coil vacuum shots.

• Beginning to model discharge evolution
with TSC+NUBEAM.
– Make discharge evolution modeling

more routine.

• Utilize profiles from high-κ, high-βP shot.
– Fix plasma boundary and Zeff=2.

• Scales profiles to examine effect of fNI.
– Reference

• fNBCD=15% , fNI=75%, H98=1.1
– Density ↓ 25%, Temperature ↑ 18%

• fNBCD=26% , fNI=80%, H98=1.1
– Density ↓ 25%, Temperature ↑ 33%

• fNBCD=27% , fNI=90%, H98=1.3
• Increasing Te and Ti by 25% in Zeff=2

reference case yields fully non-inductive
operation.

– Zeff=3 requires 40% increases in the
temperatures.
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Divertor Control Improvements in FY-09 Supported
Multiple NSTX Programmatic Needs

• High-κ, −β, low-li discharges test limits of control.
• Developed outboard strike-point (OSP) radius control

on the outboard divertor at moderate δ.

– Open-loop system-ID experiment as first XP of
2009 run.

– Closed loop testing and validation.
– Direct support of LLD operational scenarios.

• Used that experience to develop additional control
schemes:
– OSP radius control on the horizontal inner divertor.
– Inner strike point control on the vertical inboard

divertor.
• This capability used for snowflake divertor experiments

(Soukhanovskii, et al.)
– Adjust the outer squareness, OSP radius, and ISP

height to achieve desired dual X-point
configuration.

1/2 mm flux
lines
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Control Development Will Extend the Range of Achievable
Plasma Shapes by Using all PF Coils in Feedback Control

• Address ST specific issues.
– Without inboard coils, control of the inner

gap requires sacrifice of some other shape
parameter.

• Need to develop control of high flux-
expansion divertors.
– Contributes to NSTX-Upgrade development.

• Control develop is the primary responsibility
of our new post-doc Egemen Kolemen.

Boundary shapes possible when PF4 &
PF-5 provide vertical field

Boundary Control Plans in 2010
• Implement routine upper and lower outer strike-point
control.
• Develop OSP radius and X-point height control.
• First test of squareness control.
• Develop realtime detection of multiple X-points for future
snowflake divertor control (LLNL, GA, PPPL collaboration).

PF-4U

PF-4L

PF-5L

PF-5U

PF-3L

PF-3L
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Impurity Control and Fuelling Methods Important For Future
Scenario Development with Lithium

John Canik, Rajesh Maingi, Aaron Sontag, ORNL

V. Soukhanovskii, LLNL

Impurity & Fuelling Related Plans in ASC in 2010
• Synergy between vertical jogs & 3-D fields for ELM
pacing with minimal performance impact.

– Support for ITER needs.
• Improved early discharge evolution with error field
correction & reduced impurity content.
• Glean operational knowledge on LLD pumping and
fuelling from BP and Li TSG XPs.

• Substantial radiated power reduction with
low-frequency 3-D field ELM triggering.

• Little time-average braking.
• Little confinement degradation.

• Deuterium inventory control with
Supersonic Gas Injection

• Lithium conditioned discharge.
• No high field side gas injection.
• Deuterium density reduced through

the shot.
• Increased electron density from

carbon source.
• Combined rapid pacing + SGI:

• Maintain flat ne-bar for ~350 msec.
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Exciting Plans to Incorporate HHFW
into Advanced Scenarios

• H-mode electron heating shown in 2008
& 2009.
– See HHFW talk by G. Taylor for

more details.
• Antenna upgrades in 2009 resulted in

limited HHFW availability for ASC
experiments.

PAC25-
18,25,29

ASC Experiments with HHFW Planned in 2010
• HHFW heating during the IP flat-top in H-mode.

– Develop lower-collisionality targets for increased NBCD.
– Additional goal to reduce impurity accumulation with core heating.

• Use of early HHFW for modifications to the current ramp.
– Develop an efficient pre-heating method.
– Develop an actuator for a qmin controller for NSTX-U (with rt-MSE).

• Development of reversed-shear H-mode.
– Dramatic reduction in core electron transport in reversed-shear L-mode

discharges…potential for major reduction in core transport.

Beginning a multi-year effort to incorporate HHFW in advanced plasma scenarios.
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Non-Inductive Ramp-Up and 100% Bootstrapped Scenario
Developed in Conjunction with WPI & SFSU TSGs

• Previous experiments demonstrated periods of
fBS up to 0.85 at low current.

• Experiments in 2010 lead by WPI & SFSU.
• Unique scenario and control needs:

– rtEFIT convergence at low plasma current.
– Outer-gap maintenance for HHFW coupling.

• Rendered difficult by low IP, rapid profile
evolution around RF trips.

– Determination of the optimal shape for
sustainment experiments.

Experiments in 2010 with HHFW at low Te and IP
• Form low-current Ohmic target, then add RF.
• HHFW Heating of low-IP Plasmas

–Begin with a 500 kA discharge, at 3MW of RF.
–Reduce IP in steps to achieve heating at low current.

• Sustainment of HHFW-Driven 100% Non-Inductive H-Mode
– Fix IP at ~400 kA, test ability of different RF power and antenna phasings to sustain IP.

HHFW Heating at Low IP

PAC25-28First step to integrating non-inductive ramp-up into advanced scenarios

117605
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Development of Real-Time NB Control Enables βN
and Rotation Control

Increasing
Control 
Power

Model
Torque
Profiles

Neutral 
Beams
(TRANSP)

3-D 
Fields

Achievable Profiles For
Various Values of

Control Power

• βN control demonstrated in 2009.
• Long-term plan to control the rotation profile.

– RWM & EF physics as a function of β and
rotation.

– Transport dynamics vs. rotation shear.
– Pedestal stability vs. edge rotation.
– What is the optimal rotation profile for

integrated plasma performance?
• Use a state-space controller based on a

momentum balance model.
– Neutral beams provide torque.
– 3-D fields provide braking.
– Different toroidal mode numbers provide

different magnetic braking profiles.
• Use 2nd Switching Power Amplifier (SPA) for

simultaneous n=1,2 &3 fields.
• FY-12 milestone on the physics, measurement,

and control aspects of rotation control.
– Progress in off-line algorithm development.
– Developing rt-Vφ diagnostic for FY-11.

K. Taira, E., Kolemen, C.W.
Rowley, and N.J. Kasdin,
Princeton University.
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Summary

• ASC research supports near term NSTX goals.
– Strikepoint control development for LLD experiments.
– ELM-triggering techniques for impurity reduction.
– Scenario development with HHFW heating.

• ASC research supports NSTX-Upgrade development.
– Advanced divertor control for handling high heat-flux.
– Beginning profile control development.

• ASC research supports the needs of next-step STs.
– Neutral beam current drive studies.
– Stability and confinement at high-βP and βT.
– Integrated performance at reduced collisionality and large non-inductive fraction.
– Control techniques for the ST, and for tokamaks in general.
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The Rest is Backup
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High-κ, −β, low-li Discharges Test Limits of Control

• Shape control more difficult at high-κ
and low-li:
– Bottom-gap goes to zero when the OH

leakage flux becomes too large.
– Control of elongation through the

outer-squareness is insufficient.
• Strike-point control will be important

for optimizing pumping with LLD.
• High-βT discharges require precise

tuning of input power.
– Too much power → RWM
– Too little power   → core rotating MHD

Control Plans For High-κ Scenarios
• Incorporate X-point height and OSP
radius control.
• Incorporate βN control.
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Fully Non-Inductive Operations Possible with Higher
Temperature, Same Density

• TRANSP simulations with boundary and profile shapes from high-κ,
high-βP discharge 133964, Zeff=3

• Scale Te and Ti by the same factor, leaving densities unchanged.

• With Zeff=2, required temperature increase is only 25%.

Solid: Scaled Profiles for fNI=1
Dashed: Reference Profiles

βN=6.5

H=1.5
(assuming 6 MW injected)
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Research Described in This Talk Supports
NSTX-Upgrade Needs

• Developing integrated shape control utilizing
all available coils.

– Upgrade is designed for a range of κ,δ,ζ
…develop control of these quantities.

• Advanced divertor may be part of the power
handing strategy for the upgrade.

– Snowflake divertor control will prepare for
this contingency.

• Control of the current profile will be important
in the upgrade.

– State-space control of the rotation will be
an important step for this profile control.

Plasma Control Scenario Development

• Neutral beam current drive important in 100%
NICD scenarios.

– Experiments at reduced collisionality
expands NBCD into upgrade-relevant
regime.

• Improved predictions of transport will enable
netter scenario modeling for the upgrade.

– New post-doc providing support with
transport simulations.

• Reversed shear H-modes with HHFW, if
possible, may lead to improved scenarios for
the upgrade.
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Development of Real-Time Neutral Beam Control Allowed βN

• βN control demonstrated in 2009.
• Modulate NBs so that βN,rtEFIT

follows a request waveform.
• Further optimization and

capability exploitation is planned
in 2010.
– XMP to optimize gains.
– Incorporation into long-pulse

high-β scenarios (ASC)
– Test of disruptivity reduction

(MS)

Demonstration of βN control at various levels of
magnetic braking and plasma rotation
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Brief Response to PAC-25 Comments

• PAC25-18: …the PAC recommends that scenario development be initiated for the use of HHFW heating
to provide access to high beta.

– We agree, and have planned two experiments in ASC to attempt this. Additional experiments are
schedule through the WEP group, though with somewhat different goals.

• PAC25-25:…a focus of these studies could be establishing the ability to couple HHFW power to ramping
plasmas…

– We agree, and have an experiment planned to develop this technique.
• PAC25-28:…develop scenarios with controlled density rise…

– We agree that this is quite important. It will play a role in the ASC experiments, as well as the
overall LLD program.

• PAC25-29:…work towards integration of of HHFW heating and potentially current drive into standard
scenarios.

– We agree. See response to PAC25-18.
• PAC25-30:…In addition to the impressive integrated SN scenario, the PAC recommends to apply similar

techniques in DN.
– Many of our high-κ scenarios this past year had very small values of drsep, and this will continue

going forward.
• PAC25-31: Non-solenoidal IP ramp-up techniques…should be integrated into standard scenarios.

– Experiments in concert with the WEP and SFSU TSGs will begin this long-term effort.
• PAC25-32:The TSC modeling is seen as important for the development of integrated scenarios and

optimizing the current ramp-up….. It is important to maintain staff/expertise in this area and to work
aggressively towards the implementation of a realistic transport model in TSC.

– NSTX has hired a new post-doc to work on transport modeling and simulations. However, we have
been unable to fill an advertised position for devoted TSC modeling.
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Stability of High-βT Scenarios is Sensitive to Variations in the
Input Power

• Higher power level leads to RWMs
and rapid disruption.

• Lower input powers lead to rapid q-
evolution and onset of core MHD.
– Higher temperature at increased

power slows current penetration.
– Higher pressure provides

bootstrap current, which helps
maintain elevated q0.

• Critical to maintain β at the highest
values consistent with ideal stability.

• Utilize βN control to maintain high-β
state against transient increases in
confinement and other β oscillations.

n=1 External Mode

Injected Power

βT

Core Rotation

Rotating n=1 Amplitude

Variations in Input Power Lead to
Different MHD at high-βT
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ELM pacing + optimized fueling allows quasi-stationary
global parameters for ~ 0.35 sec

• Fueling from slow valve on
center stack reduced,
replaced with SGI on LFS

• Stored energy comparable
until tearing mode

• Density rise arrested

• Radiated power controlled

• Reference discharge ELM-
free

• ELMs triggered with 3D
fields

27

Tearing mode
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Impurity Accumulation in Lithiated ELM-Free H-mode was
Arrested Using Magnetic ELM Pacing

• Driven ELM frequencies up to 62.5 Hz achieved with 100% triggering efficiency.
• ELM size reduced at higher frequency.

• Time-average magnetic braking is strong at high frequencies.
• Deleterious to performance.

• Sweet spot: Strong reduction in radiated power with pacing frequency of ~10-20 Hz

John Canik, Rajesh Maingi, Aaron Sontag, ORNL

• Possible to arrest average density and
Prad rise when combined with SGI.
• Drop in edge density and Prad, but

continued increase in the core.
• Demonstrated ELM pacing by vertical

position jogs.
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Control of the Deuterium Density In High Performance
Plasmas Was Demonstrated With Supersonic Gas Injection

• No center-stack gas fuelling.

• Moderate evaporation rate of 6-9
mg/min.
– Sufficient to go ELM free.

• Deuterium ion density control.
– Rise in electron density due

to carbon accumulation.

• Provides valuable experience
with SGI fuelling+Li pumping.

PAC25-28 V. Soukhanovskii, LLNL

Controlled Deuterium Inventory with SGI Fuelling


