

Supported by

Macroscopic Stability Progress and Plans

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL I odestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPI PSI Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

V2.0

S. A. Sabbagh (Columbia University)

J.-K. Park (PPPL), J. W. Berkery (Columbia U.), R. Betti (PPPL)

for the NSTX Research Team

NSTX PAC-29 PPPL B318 January 27th, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA.** Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

NSTX Macrostability research is addressing needs for maintaining long-pulse, high performance STs

□ Goals (aligned with 3 of 4 OFES vision research themes - highlighted)

- □ Maintain high β_N stability and validate predictive capability to allow confident extrapolation to ST applications (e.g. FNSF/CTF, ST-Pilot)
- Research/develop plasma dynamics and control for steady-state, and understand optimal use/scaling of 3D magnetic fields/effects
- Evolve research toward lower I_i and collisionality (closer to levels of future ST applications); varied, low V_b (ITER)

Outline

- Macrostability research addressing milestones
- ITER/ITPA MHD stability group participation
- Results supporting FY10 milestone and PAC-27 recommendations
- 2011-2013 research plans

PAC 27-##

ITPA ###

2

Results/plans supporting PAC-27 recommendations, ITPA MHD stability group tasks, NSTX Milestones (I)R(##-#), are labeled throughout

NSTX PAC meeting 2011: Macroscopic Stability Progress and Plans (S.A. Sabbagh) Ja

January 27th, 2011 3

Macrostability research continues to follow an established plan guided by NSTX-U, future ST, and ITER physics needs (ITPA)

- Research plan contributes to a wide range of milestones
 - Assess sustainable beta and disruptivity near and above the ideal no-wall limit: Milestone R(10-1) (2010)
 - Assess ST stability dependence on A and shaping R(11-2)
 - Examine H-mode pedestal stability response to 3D fields R(11-4) PAC 27-19
 - Assess dependence of MHD mode stabilization on v^*
 - Investigate 3D magnetic braking physics, V_{ϕ} control at low v^*

Active ITPA participation

NSTX

- Contributed to 8 ITPA MHD joint experiments, 4 working groups
 - Sabbagh appointed ITPA MHD MDC-2 leader; WG7 co-leader (RWM physics)
 - ITER AS-IV stability requires α particles
- NSTX / DIII-D joint NTM study (La Haye)
- Expanded ITPA disruption database, halo current study (Gerhardt) ITPA MDC-15
- ITER IPEC error field task agreement completed (Menard, J-K Park)

R(12-3)

IR(12-1)

PAC 27-19

J.W. Berkery, et al., Phys. Plasmas 17, 082504 (2010)

R10-1 Milestone: Improvements in stability control techniques significantly reduce unstable RWMs at low I_i and high β_N

unstable RWMs

at lower β_N , β_N/I_i

R10-1 Milestone: Improvements in stability control techniques significantly reduce unstable RWMs at low I_i and high β_N

(III) NSTX

NSTX PAC meeting 2011: Macroscopic Stability Progress and Plans (S.A. Sabbagh)

New RWM state space controller implemented in 2010 sustains high β_N , low l_i plasma

□ <u>RWM PID control system also enhanced</u>: combined upper/lower $B_r + B_p$ sensors used in feedback yield best reduction of n = 1 field amplitude, improved stability

- Detail in backup slides; improved real-time RWM sensor TF pickup, AC compensation
- **NSTX**

Accurate 3-D conducting structure and 3-D mode detail can improve RWM state space controller match to sensors

Black: experiment Red: offline RWM state space controller

(see backup slides for controller detail)

WNSTX

Reduced stability in low I_i target plasma as ω_{ϕ} reduced, RWM instability is approached; stability also reduced at higher A

□ **<u>Plans 2011</u>** – Milestone R(11-2)

- Determine maximum sustainable high β_N in plasmas closer to NSTX-U, next-step ST devices (A ~ 1.7, κ ~ 3, low l_i), test present stabilization physics models / control systems
- Extend initial experiments at higher A to higher κ , $<\beta_N>_{pulse}$, lower I_i, use improved n = 1 PID/state space control. Compare to ideal (DCON), RWM stability limits (MISK, VALEN).

tools

² Addition of 2nd SPA for independent RWM coil currents (enhanced RWM statespace controller, more flexible ω_{ϕ} control via NTV)

NSTX

Macrostability TSG to support ITER milestone R11-4 by examining/modeling plasma response to 3D fields

R(11-4)

□ **<u>Plans 2011</u>**: Milestone R(11-4)

- Use IPEC to determine equilibrium variations due to 3D fields, variation of Chirikov criterion with plasma response, validate rotation damping / correlate to particle transport
- Explore higher-n ideal stability calculations with improved 2D tools; utilize new tools (M3D-C¹) for stability, determine key physics differences of stable/unstable plasmas

ELM stabilization: 3D field + positive current ramp

- Did not stabilize with negative current ramp
- Plasma without 3D fields did not stabilize with I_p ramps
 - Modification to equilibrium, change in q profile, resonance effect ?

Physics of reduced collisionality is critical to extrapolating steady, high β_N operation to NSTX-U, future STs **R(12-3)**

□ **Plans 2011-2012** – Milestone R(12-3)

- **PAC 27-19**
- $\hfill\square$ Develop low n_e start-up scenarios free of locked modes, leading to reduced ν
 - Continue initial success (2010) with lower, varied startup gas
 - Optimize early error field correction, revise vacuum response/IPEC plasma response
 - Attempt n = 1 PID and state-space feedback
 - Test multi-machine error field threshold scaling at reduced density
- Test MISK, multi-mode VALEN stability models in prep. for NSTX-U, future STs
- $\hfill\square$ Determine saturation of 1/v dependence of NTV braking torque at low v

Model of kinetic modifications to ideal stability can unify RWM stability results between devices

0 NSTX

□ NSTX

□ <u>Less EP stability</u>: RWM can cross marginal point as ω_{ϕ} is varied Sabbagh, et al., IAEA FEC 2010 (EXS/5-5)

DIII-D

□ More EP stability (~ 2x NSTX): RWM stable at all ω_{ϕ}

RWM destabilized by events that

January 27th, 2011

Measure of the marginal island width gives information on small island stabilizing physics

- Balance of terms in modified Rutherford equation shows that curvature term dominates over Δ ' for NSTX plasmas; curvature term negligible for DIII-D plasmas
- Studies of error field threshold scaling for mode locking in H-modes (Buttery; J-K Park)
- Other plans 2011-12: Extend present mode locking density, and NTV offset rotation studies to low torque (RF) plasmas PAC 27-19

3D nature and toroidal rotation of halo currents (HC)

PAC 27-20 measured using new toroidal array of shunt tiles

- vessel forces due to n = 1 currents can be excessive
- forces from currents can be reduced if growth rate reduced Strauss, et al. APS DPP 2010
- Raw data / Fourier analysis both show rotation of current
 - n = 1 pattern rotates ~1 kHz in counter-I_p direction
 - Applied n = 1 DC fields: HC continues to rotate in first XP -
- Plans 2011-12: Study/attempt to influence n = 1 halo current
 - Expand initial work with n = 1 fields, try n = 3 field
 - Test use of divertor gas
 - Test rotation vs. stored energy

Macrostability research in 2010 – 2013 addresses stability physics understanding for NSTX-U, steady-state high performance STs, ITER

2010: Improved stability control/physics understanding to maintain high β_N

- Improved n = 1 RWM, β_N control to sustain high β_N at varied V_{ϕ} levels, reduced I_i; first use of RWM state-space control; RWM stabilization physics compared NSTX/DIII-D
- □ NSTX/DIII-D NTM marginal island width for restabilization $3x \epsilon^{0.5} \rho_{\theta_i}$ for both devices, significance of curvature term very different between devices (A effect)

□ 2011-12: Understand 3-D field effects, reduce v, study impact on stability

- Study plasmas closer to NSTX-U, next-step ST devices (A ~ 1.7, κ ~ 3, low l_i, ν), test present stabilization physics models / control, unify with tokamaks
- Incremental milestone: show V_{ϕ} control, use to test stability, real-time NTV see backup

□ 2013+ (outage period): Analysis supporting NSTX-U, next-step STs, ITER

- **Analysis/design**: includes stability/control analysis of NSTX-U plasma (higher A, κ, low l_i)
- Finalize expanded 3D coil set design (ELM, RWM, V_{ϕ} control + physics) see backup
- Code development/testing: includes non-ideal IPEC shielding models, with inner layer physics (GPEC), expanded MISK model, compare to M3D-C¹ with RWM physics
- □ Joint experiments: DIII-D/MAST/KSTAR: RFA, RWM physics/control, NTV physics
- □ <u>NSTX-U prep</u>: Update control systems/physics models for NSTX-U analysis/operations

Working with data from NSTX + other experiments (e.g. DIII-D, JT-60U), and ITPA to understand MHD physics for NSTX-U and future ST development, ITER

NSTX

Backup slides

Further step to extrapolating steady, high β_N : Observed sensitivity of RWM stability on plasma rotation motivates planned V_b control

- Macrostability FY12 Milestone IR(12-4) (incremental)
 - Investigate magnetic braking physics and develop toroidal rotation control at low collisionality (joint with ASC group)

- 2^{nd} SPA for independent RWM coil currents (more flexible V_{ϕ} control)
- Real-time V_{ϕ} measurement (up to 4 radial positions) and real-time control
- Approach/Plans:
 - Use real-time V_o measurements as sensors to actuate NBI and 3D magnetic fields (tailored braking torque by NTV) for V_o feedback control
 - Bring together key scalings of resonant and non-resonant (NTV) damping physics to support real-time model of V_{ϕ} control at varied v
 - Explore influence of NTM stability by changing V_{ϕ} and V_{ϕ} shear near the q = 2 surface
 - Explore avoidance of decreased RWM stability with planned V_{ϕ} control at various levels of collisionality

Will provide required understanding of rotation control for greater plasma stability needed to reduce disruption probability in NSTX-U and future STs

Proposed Nonaxisymmetric Control Coil (NCC) Will Expand Control Capabilities, Understanding of 3D Effects

- Non-axisymmetric control coil (NCC) at least <u>four</u> applications:
 - RWM stabilization (*n*>1, up to 99% of n=1 withwall β_N)
 - DEFC with greater poloidal spectrum capability
 - □ ELM control via RMP (dominant $n \le 6$)
 - □ n > 1 propagation, increased V_o control).
 - Similar to proposed ITER coil design.
- □ Addition of 2nd SPA power supply unit:
 - Feedback on n > 1 RWMs
 - Independent upper/lower n=1 feedback, for non-rigid modes.
- Design activities continue:
 - GA collaboration (T. Evans) computed favorable coil combinations/variations for RMP ELM suppression of NSTX plasmas
 - Columbia U. group assessing design for RWM stabilization capabilities compatible with ELM control

J. Bialek (Columbia U.)

Macroscopic Stability TSG 2010 XPs – Year-end Status

<u>Author</u>	Proposal Title	<u>N</u>	<u>ISTX Forum /</u>	Allocations /	Priority	<u></u>	<u>XP / Status</u>
J. Park	Error field threshold study at	high-beta - reduced to	rque	1.0	1	0.50	XP1018
Menard	Effects of non-res. fields on low/moderate beta locking threshold		1.0	1	0.50		
Buttery	Error field threshold scaling in H mode - next step devices		1.0	1	0.50	XP1032	
Gerhardt	Optimization of beta-control - disruptivity		1.0	1	0.50	XP1019	
Berkery	Determination of, navigation through weak RWM stability Vphi(psi)		1.0	1	1.00	XP1020	
Reimerdes	Measuring resonance frequencies relevant for RWM stabilization			1.0	1	-	
McLean/Gerhardt	Halo current study w/ extended diagnostic capability + LLD		1.0	1	1.00	XP1021	
Y-S. Park	RWM state-space control in	NSTX		1.0	1	1.00	XP1022
Sabbagh	Optimized RWM feedback for	or high <betan>pulse a</betan>	at low nu and li	1.0	1	1.00	XP1023
Gerhardt	Comparison of RFA suppres	sion using different se	nsors	1.0	2	1.00	XP1060
Buttery	2/1 NTM stability (and EF se	nsitivity) vs q profile		1.0	2	0.50	XP1061
Sabbagh	NTV physics: low collisionality and maximum variation of OmegaE			1.0	2	0.50	XP1062
Berkery	RWM stabilization by energetic particles			1.0	3	1.00	
J. Park	Resonant Field Amplification of n=2 and n=3 applied fields			1.0	3	1.00	
La Haye	Effect of rotation on amplitude of 3/2 NTMs			1.0	3	1.00	
Y. Park	Passive/active stability of kink, RWM, Vf control: KSTAR Joint			1.0	3	1.00	
Sabbagh	Global MHD / ELM stability vs edge current, n*qped, edge nu			1.5	ITER	0.50	XP1031
Sontag	Peeling-ballooning stability and access to QH-mode in NSTX			1.5	ITER	0.50	XP1063
Gerhardt	Optimization of beta-control XMP			0.5	CCE	0.50	XMP65
Menard	Influence of LLD-induced collisionality, profile on ST stability			1.5	CCE	1.50	XP1055 (team)
Goldston	RF Amplification of EHOs in Lithium-pumped ELM-Free Plasmas				CCE		XP1068
Group revie	w Team review	XP signoff	Started	Near Complete		completed	

0 NSTX

NSTX PAC meeting 2011: Macroscopic Stability Progress and Plans (S.A. Sabbagh)

January 27th, 2011 18

ITPA Joint Experiments / Joint Analysis

- MDC-2 Joint experiments on resistive wall mode physics
- MDC-4 Neoclassical tearing mode physics aspect ratio comparison
- MDC-5 Comparison of NTM avoidance by sawtooth control
- MDC-12 Non-resonant magnetic braking
- **DISCIP** MDC-13 Vertical stability physics/performance limits in high κ plasmas
- □ MDC-14 Rotation effects on neoclassical tearing modes
- MDC-15 Disruption database development
- MDC-17 Physics-based disruption avoidance

ITPA MHD Group – Working Groups

- MHD WG1 Waveforms of current in error field correction coils
- MHD WG4 Diagnostic requirements for MHD stability control
- MHD WG6 Sideway forces on vacuum vessel and magnets by disruptions
- MHD WG7 RWM feedback control (new)

Operation has aimed to produce sustained low I_i and high pulse-averaged β_N

0 NSTX

Global stability examined for experiments aimed to produce sustained low I_i and high β_N at high plasma current

I High I_p ≥ 1.0MA, high non-inductive fraction ~ 50%

Initial experiments

- □ Yielded low I_i
- **Access high** β_N/l_i
- High disruption probability
- Instabilities leading to disruption
 - Unstable RWM
 - 48% of cases run
 - Locked tearing modes

Use of combined $B_r + B_p RWM$ sensor n= 1 feedback yields best reduction of n = 1 field amplitude / improved stability

- Combination of DC error field correction, n = 1 feedback
 - Dedicated scans to optimize B_r, B_p sensor feedback phase and gain
 - n = 3 DC error field correction alone subject to RWM instability
 - n = 1 B_p sensor fast RWM feedback sustains plasma
 - Addition of n = 1
 B_R sensors in feedback reduce the combined B_p +
 B_r n = 1 field to low level (1–2 G)

RWM B_r sensor n = 1 feedback phase variation shows clear settings for improved feedback when combined with B_p sensors

- Recent corrections to B_r sensors improve measurement of plasma response
 - Removed significant direct pickup of time-dependent TF intrinsic error field
 - Positive/negative feedback produced at theoretically expected phase values

Adjustment of B_p sensor feedback phase from past value further improved control performance

RWM feedback using upper/lower B_p and B_R sensors modeled and compared to experiment

NSTX

January 27th, 2011 24

New RWM state space controller implemented in 2010 to

- Controller can compensate for wall currents
 - Including mode-induced current
- Potential to allow more flexible control coil positioning
 - May allow control coils to be moved further from plasma, shielded
 - Examined for ITER
 Katsuro-Hopkins, et al., NF 47 (2007) 1157

WNSTX

ITPA MDC-17

NSTX RWM state space controller advances present PID controller

PID (our present, successful workhorse)

- n = 1 phase/amplitude of RWM sensors provides input to controller
- □ feedback logic operates to reduce n = 1 amplitude
- No a priori knowledge of mode structure, physics, controller stability

State space control

- States reproduce characteristics of full 3-D model: conducting structure, plasma response, and feedback control currents via matrix operations
- Observer (computes sensor estimates)
 - RWM sensor estimates provided by established methods (Kalman filter)
 Allows error specification on measurements and model full covariance matrix
 - Difference between sensor measurements and state space estimates are used to correct the model at each time point; useful as an analysis tool
- Controller (computes control currents)
 - Controller gain computed by established methods: gains for each coil and state
- State space method amenable to expansion

State Derivative Feedback Algorithm used for Current Control

State equations to advance

 $\dot{\vec{x}} = A\vec{x} + B\vec{u} \qquad \vec{u} = -K_c\vec{x} = \dot{I}_{cc}$ $\vec{y} = C\vec{x} + D\vec{u}$

Advance discrete state vector

$$\hat{\vec{x}}_{t} = A\vec{x}_{t-1} + B\vec{u}_{t-1}; \quad \hat{\vec{y}}_{t} = C\hat{\vec{x}}_{t}$$
$$\vec{x}_{t+1} = \hat{\vec{x}}_{t} + A^{-1}K_{o}(\vec{y}_{sensors(t)} - \hat{\vec{y}}_{t})$$

Control vector, u; controller gain, K_c

Observer est., *y*; observer gain, K_o ; D = 0

 K_c , K_o computed by standard methods (e.g. Kalman filter used for observer)

"time update"

"measurement update"

State derivative feedback: superior control approach

$$\dot{\vec{x}} = A\vec{x} + B\vec{u} \qquad \vec{u} = -\hat{K}_c \dot{\vec{x}} \longrightarrow \vec{I}_{cc} = -\hat{K}_c \vec{x}$$
$$\dot{\vec{x}} = ((\mathbf{I} + B\hat{K}_c)^{-1}A)\vec{x}$$

new Ricatti equations to solve to derive control matrices

 still "standard" solutions in control theory literature
 g. T.H.S. Abdelaziz, M. Valasek., Proc. of 16th IFAC World Congress, 2005

🔘 NSTX

Increased number of states in RWM state space controller improves match to sensors over entire mode evolution

Black: experiment Red: offline RWM state space controller

NSTX

NSTX PAC meeting 2011: Macroscopic Stability Progress and Plans (S.A. Sabbagh)

RWM state space controller sustains otherwise disrupted plasma caused by DC n = 1 applied field

n = 1 DC applied field

- Simple method to generate resonant field amplication
- Can lead to mode onset, disruption

RWM state space controller sustains discharge

- With control, plasma survives n = 1 pulse
- n = 1 DC field reduced
- Transients controlled and do not lead to disruption
- NOTE: initial run gains NOT optimized

Reduced stability in low I_i target plasma as ω_{ϕ} is reduced,RWM instability is approachedR(11)-2

- Determine maximum sustainable high β_N in plasmas closer to NSTX-U, next-step ST devices (A ~ 1.7, κ ~ 3, low l_i), test present stabilization physics models / control systems
- Extend initial experiments at higher A to higher κ , $<\beta_N>_{pulse}$, lower I_i, use improved n = 1 PID/state space control. Compare to ideal (DCON), RWM stability limits (MISK, VALEN).

tools

• Addition of 2nd SPA for independent RWM coil currents (enhanced RWM statespace controller, more flexible ω_{ϕ} control via NTV)

Multi-mode RWM computation shows 2^{nd} eigenmode component has dominant amplitude at high β_N in 3D stabilizing structure

D NSTX RWM not stabilized by ω_{ϕ}

- Computed growth time consistent with experiment
- 2nd eigenmode ("divertor") has larger amplitude than ballooning eigenmode

D NSTX RWM stabilized by ω_{ϕ}

- Ballooning eigenmode amplitude decreases relative to "divertor" mode
- Computed RWM rotation ~ 41 Hz, close to experiment ~ 30 Hz
- ITER scenario IV multi-mode spectrum
 - Significant spectrum for n = 1 and 2

PAC 27-20

Plans 2011-2012

 Physics study for RWM state-space controller - test if greater eigenmode content improves controller performance

IPEC computed total resonant field unifies linear dependence of mode locking threshold on density among devices

ITPA MDC-2

Continued effort to consolidate error field threshold scaling in tokamaks
 Error field threshold in HHFW plasmas will be tested (2011)

🔘 NSTX

ITER IPEC error field task agreement completed (J.E. Menard, J-K Park)

ITPA MDC-2

33

ITER EFC and RMP coil capabilities for error field corrections were studied using NSTX, DIII-D, and CMOD locking database

Key conclusions:

- EFCT and EFCB coils are inefficient for locking mitigation
- EFCT and EFCB coils can help NTV reduction, but RMP coils can do much better with higher efficiency
- Optimized configurations for both locking mitigation and NTV reduction
 - EFCM+RMPU+RMPL (71+23+23 kAt)
 - **EFCM+EFCT+EFCB (95+164+257kAt)**
 - EFCM only (132kAt)

Significant Reduction of the Calculated No-Wall β_N Limit in Large-Aspect Ratio Scenarios

- □ Use actual equilibria, reconstructed with MSE, Te-Isotherm, magnetics
- For each reconstructed equilibria
 - Scale pressure profile up and down many times, and compute fixed boundary equilibria (CHEASE)
 - **Compute** δW for each one, find β_N where δW =0 (DCON).
- **\Box** Repeat for many time slices, sort those with similar q_0
- \Box I_i tended to decrease with A, but no clear trend in pressure peaking (F_P)
- **Experiment did not actively push the** β_N limit...high-priority task in FY-11/12

() NSTX

R(11-2)

PAC 27-19

Low density plasmas with and without early EFC show early EFC increases rotation 10-20% for t=120-180ms

- Delay of early H-mode by reduced early fueling reduces density by 30-40% at t=0.2s (vs. reference)
 - Similar to what typically happens with increased LITER evaporation
- Additional EFC phase, amplitude scans (in 2011) might be able to further increase rotation at reduced density.

20

10

5

0

-5

-10

kНz

15 - t=200ms

t=180ms

t=160ms

t=140ms

t=120ms

0.8

1.0

β_N Controller Implemented Using NB Modulations and rtEFIT β_N

- Controller implemented in the General Atomics plasma control system (PCS), implemented at NSTX.
- **D** Measure β_N in realtime with rtEFIT.
- Use PID scheme to determine requested power:

$$e = \beta_{N,reqeust} - LPF\left(\beta_{N,RTEFIT}; \tau_{LPF}\right)$$

$$P_{inj} = P_{\beta_N} \overline{C}_{\beta_N} e + I_{\beta_N} \overline{C}_{\beta_N} \int edt + D_{\beta_N} \overline{C}_{\beta_N} \frac{de}{dt}$$

$$\overline{C}_{\beta_N} = \frac{I_P V B_T}{200 \, \mu_0 a \, \tau}$$

- Use Ziegler-Nichols method to determine P & I.
 - Based on magnitude, delay, and time-scale of the β_N response to beam steps.
- Convert "analog" requested power to NB modulations.
 - Minimum modulation time of 15 msec.

