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Near-term NSTX programmatic schedule

• Update research milestones (completed Dec. 2010)
• Now:  solicit and receive PAC-29 advice on:

– FY11-12 research milestones/priorities
• This is last run period before Upgrade outage
• Note: PAC meeting held before Research Forum this year
• Most / all of FY11-12 run will be finished before next PAC

– Preparation for Upgrade
– Consistency of Program with OFES vision

• Research Forum for FY11-12 run – Mar. 15-18, 2011
• Begin 2nd/final phase of FY11 run – summer 2011
• Finish FY12 run end of Feb. 2012 – Upgrade outage
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Outline

• NSTX Mission
• OFES Vision for Fusion for Next Decade
• FY11-12 Milestone Overview and Research Plans

– Transport & Turbulence
– Macroscopic Stability, Advanced Scenarios and Control
– Boundary Physics and Lithium Research
– Advanced Scenarios and Control
– Non-inductive Plasma Start-up (Coaxial Helicity Injection)
– Wave-Particle Interactions

• Initial Planning for FY13
• Overview of Research in Support of Upgrade
• Summary
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NSTX Mission Elements

NSTX NSTX-U

Fusion Nuclear 
Science Facility 

(FNSF)

Plasma Material 
Interface 

Facility (PMIF)
Pilot 
Plant

ITER

•Understand/exploit unique ST parameters
– High heat flux for novel divertor and PMI studies
– Low A, li and high β, κ, vfast/vA for stability, transport
– Role of NSTX Upgrade:

• Prototype methods to mitigate very high heat/particle flux
• Study high beta plasmas at reduced collisionality
• Access full non-inductive operation for FNSF applications

•Extend understanding of tokamak / ITER
– Develop predictive capability for ITER/FNSF/Demo

•Establish attractive ST operation
– Utilize ST to close key gaps to Demo
– Advance ST as fusion power source
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A vision for U.S. fusion research in the coming decade 
has emerged from OFES emphasizing 4 research themes:

• Plasma dynamics and control 
– Perform detailed measurement of underlying processes, connect to theory, 

develop integrated understanding, demonstrate advanced scenarios in tokamaks

• Materials in fusion environment, harness fusion power
– Understand and control processes beyond the last closed flux surface, including 

open field line physics, plasma-surface interactions, coupling between SOL & PSI
– Determine the fusion nuclear science facility (FNSF) geometry
– Determine the materials the FNSF will be made from and should test

• Validated predictive capability
– Increase emphasis on validation of physics models incorporated in simulation 
– Increase confidence in extrapolating tokamak/ST in support of ITER, next-steps 

• 3-D magnetic fields
– Determine the optimum level of 3D field in toroidal magnetic configuration 

accounting for both physics and engineering complexity in the optimization
• Enhance the theory of 3-D equilibria, stability, and transport research
• Increase emphasis in 3-D fields near-term on domestic facilities

5
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FY2011-12 NSTX research milestones
(base and  incremental )

6

Expt. Run Weeks:

1) Transport & Turbulence

2) Macroscopic Stability

3) Boundary/Lithium Physics

4) Wave-Particle Interaction

5) Solenoid-free start-up, ramp-up

6) Advanced Scenarios & Control 

7) ITER urgent needs, cross-cutting

Joint Research Targets (3 US facilities):

FY2011FY2010 FY2012
15 w/ ARRA 4 10

Measure fluctuations responsible for 
turbulent electron, ion, impurity transport

Assess H-mode characteristics
as a function of collisionality and 
lithium conditioning

Characterize H-mode 
pedestal structure

Understanding of divertor   
heat flux, transport in scrape-off layer

Assess relationship between lithium-
conditioned surface composition and 
plasma behavior

Assess ST stability dependence on 
aspect ratio and  boundary shaping 
(with ASC TSG)

Characterize HHFW heating, CD, and 
ramp-up in deuterium H-mode

Assess sustainable beta and 
disruptivity near and above the ideal no-
wall limit 

Understand core transport
and enhance predictive capability

Assess confinement, heating, and 
ramp-up of CHI start-up plasmas
(with WPI/HHFW TSG)

Assess very high flux expansion 
divertor operation (with ASC TSG)

Assess access to reduced density 
and ν* in high-performance scenarios 
(with MS, BP TSGs)

BES, High-k

MAPP, BES, High-k, Lithium

2nd SPA, RWM state-space control

MPTS, MSE-LIF

Snowflake, MPTS, Lithium

CHI, NBI, HHFW

SGI, Lithium, HHFW
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BES, High-k

H-mode pedestal transport, turbulence, 
and stability response to 3D fields
(cross-cutting with T&T, BP, MS)

BES, High-k, 2nd SPA

Investigate magnetic braking physics 
and toroidal rotation control at low ν* 
(with ASC TSG)

Real-time rotation, 2nd SPA, 
RWM state-space control, HHFW

Assess predictive capability of mode-
induced fast-ion transport

Tangential FIDA,  BES, reflectometer

R11-1

R11-2

R11-3

R11-4

R12-1

R12-2

R12-3

IR12-1

IR12-2

PAC27-7

4 of 9 FY11-12 milestones 
involve boundary physics:
R11-3, R11-4, R12-1, FY11 JRT

FY11 JRT FY12 JRT
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NSTX Topical Science Groups (TSGs) for FY11-12

• TSG responsibilities:
– Assist program in formulation 

of milestones and priorities
– Present research plans to PAC
– Organize Research Forum by 

soliciting and prioritizing 
experimental proposals

– Coordinate & review 
experimental proposals from 
TSG during run

7

• New TSG for FY11-12
* indicates collaborator
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New ITER/CC TSG will address urgent and 
cross-cutting research needs for ITER and for NSTX
• For ITER:  Understand transport, turbulence, stability response 

to 3D fields – informs decision on in-vessel coils in ITER
– NSTX has new capabilities to address this:  BES, ME-SXR, 2nd SPA
– Research cross-cuts transport, boundary, macro-stability TSGs
– ITER/CC TSG will coordinate research supporting ITER milestone R11-4

• For NSTX:
– Assess methods and coordinate experiments for particle and impurity 

control for NSTX and Upgrade 
• FY11-12 goal: assess combinations of impurity control techniques

– Support and coordinate cryo-pumping calculations for Upgrade
• Note:  this is scoping activity - cryo-pumps are not part of Upgrade project

– Coordinate ELM research (have coherent program, avoid overlap) R. Maingi

• Unifying theme of this TSG is particle and impurity control
– See R. Maingi presentation for more detail

8

PAC27-5

PAC27-21

PAC27-2

PAC27-2
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Outline
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• FY11-12 Milestone Overview and Research Plans

– Transport & Turbulence
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– Boundary Physics and Lithium Research
– Advanced Scenarios and Control
– Non-inductive Plasma Start-up (Coaxial Helicity Injection)
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NSTX is addressing multi-scale transport issues 
critical to future devices – ITER and next step STs

High-k Tangential Scattering
• High radial resolution for electron-

gyro-radius scale turbulence (f≤ 3MHz)
• Low-k fluctuations decrease after transition to H-Mode
• Fluctuations increase after H L back-transition

•D. Smith, U. Wisconsin
10

Low-k BES
(Beam Emission Spectroscopy)

μ-TEARING

1 10 100
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⊥
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ETGITG/TEM

• BES also contributing to energetic particle research

R=142cm
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NSTX is beginning to unravel the mystery of the 
collisionality dependence of ST energy confinement

Previous NSTX (and MAST) 
experiments exhibit nearly 
inverse dependence of BτE on 
collisionality

ITER-like 
scaling

ST-CTF

?

constant 
q, β, ρ∗

NSTX Upgrade

NSTX

νe* ∝ ne / Te
2

New high-k scattering measurements show 
fluctuation levels apparently increase at lower ν*

Is μ-tearing playing major role in ST e-transport?

Non-linear GYRO simulations of lower-k
μ-tearing predict χe proportional to ν*

r/a ~ 0.6
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Transport Milestone R(11-1): Measure fluctuations 
responsible for turbulent electron, ion, and impurity transport

• High-k scattering measurements have identified ETG 
• Low-k fluctuations (micro-tearing, ITG/TEM) and fast-ion-

driven modes, e.g. GAE, may also contribute to e-transport.

• Low-k fluctuations may also contribute significantly to 
momentum, ion thermal, and particle/impurity transport
– Turbulence and *AE radial eigenfunctions will be measured with BES 
– Turbulence will also be measured w/ reflectometer, interferometer, GPI

• The k spectrum of the turbulence will be measured and 
correlated with energy diffusivities inferred from power balance

• Particle/impurity transport expts will use gas puffs, density 
measurements, low-to-high-k δn measurements, edge SXR

12
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Improvements in stability control techniques have 
significantly reduced RWM instability at high βN and low li

• High normalized beta βN = 6–7 and high βN / li = 10-14 routinely accessed
• Improvements:  sensor AC compensation + combined BP+BR + state-space controller
• Disruption probability for βN / li > 11 plasmas reduced from ~50% to ~14% 

13

IAEA: S. Sabbagh, Columbia U

PAC27-6
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NSTX has begun to explore stability impact of higher aspect 
ratio and elongation in preparation for Upgrade, next-steps

• Successfully operated at βN > 4 for 
several τCR at Upgrade A and κ

• Found li ≤ 0.6 required to avoid VDE 
at higher A with present n=0 control

14

A=1.45, κ = 2.4 A=1.65, κ = 2.8

NSTX-U
limiter 
boundary

PAC27-6
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Stability/Control Milestone R(11-2): Assess ST stability
dependence on aspect ratio and  boundary shaping 

• Next-step ST designs commonly assume increased 
elongation (κ = 3-3.5)  and aspect ratio A=1.6-1.7
– Typical NSTX values: κ=2.4-2.8, A=1.4-1.5
– Increased A and higher κ are projected to increase the growth rates of 

the n=0 vertical instability and n=1 RWM

• NSTX scenarios will be extended to plasma geometries much 
closer to those of the Upgrade and next-steps

• The maximum elongation, li, and sustainable βN will be 
determined and optimized versus aspect ratio and elongation

• Comparisons to theory (MISK and VALEN for RWM) will be 
made, and the viability of present and new control techniques 
will be tested, and possible improvements identified 

15

PAC27-6
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• Divertor heat flux width, magnetically 
mapped to the midplane, shows a 
strong decrease as IP is increased

– Potentially major implications for ITER 
– NSTX:  λq

mid further decreases with Li

Obtained complete data-set for divertor heat flux width 
scaling to aid projections to ITER (FY2010 JRT*) and Upgrade

*Joint Research Target (3 U.S. Facilities)

NSTX Upgrade with conventional divertor
(LSN, flux expansion of 10-15) projects to 
very high peak heat flux up to 30-45MW/m2

16

• Divertor heat flux inversely proportional 
to flux expansion over a factor of five

• Snowflake high flux expansion 40–60, 
larger divertor volume and radiation 

U/D balanced snowflake divertor projects to 
acceptable heat flux < 10MW/m2 in Upgrade 
at highest expected IP = 2MA, PAUX=15MW

IAEA: V. Soukhanovskii, LLNL

0 mg Li: α=1.6
150 mg Li: α=1.1
300 mg Li: α=0.4

λq
mid ~ Ip-α

IAEA: T.K. Gray, J-W Ahn, ORNL 
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Boundary Physics Milestone R(11-3):  
Assess very high flux expansion divertor operation

• The exploration of high flux expansion divertors for mitigation 
of high power exhaust is important for 
– NSTX Upgrade, ST/AT fusion nuclear science facilities, Pilot, Demo

• High flux expansion “snowflake” divertor will be assessed:
– Magnetic controllability – especially up/down-balanced snowflake 
– Divertor heat flux handling and power accountability
– Pumping with lithium coatings
– Impurity production
– Trends versus global parameters

• Potential benefits of combining high flux expansion with gas-
seeded radiation will also be explored

17

PAC27-2
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NSTX provides a unique environment to better understand
the H-mode pedestal response to 3D fields for ELM control

• ELMs stabilized by Li coatings
– Edge density, pressure gradients reduced

• Maingi et al, PRL 103, 075001 (2009)

• ELMs triggered by 3D fields, not suppressed
– Small density change during n=3 3D fields
– Te and pedestal pressure increase ELM

• Canik et al, PRL 104, 045001 (2010)

• Optimal q95 ~ 11 for ELM triggering 
– Vacuum Chirikov > 1 width ~ 0.3 for all cases
– What is underlying physics of this dependence?
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ITER/cross-cutting Milestone R(11-4): H-mode pedestal 
transport, turbulence, and stability response to 3D fields

• The use of three-dimensional (3D) magnetic fields is proposed 
to control the H-mode pedestal to suppress ELMs in ITER
– However, the mechanisms for particle and thermal transport 

modification by 3D fields are not understood

• Study possible mechanisms for modifying transport: 
– zonal flow damping
– stochastic-field-induced ExB convective transport
– island shielding reduction as ωe-⊥ = ωe* + ωExB 0 (XGC0)
– banana diffusion or ripple loss

• Measure pedestal turbulence trends vs. applied 3D field
– BES, high-k scattering, gas-puff imaging
– Independent control of n=1,2,3 applied 3D fields - 2nd SPA (ARRA)

• Measure pedestal profile response, edge particle transport
– Improved Thomson scattering, impurity injection, edge SXR 

19
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NSTX is a world leader in investigating pumping capability & 
plasma effects of Li - including Liquid Lithium Divertor (LLD)

• 4 LLD plates formed ~20cm wide 
annulus in lower outboard divertor
– Heatable surface of porous 

molybdenum (Mo)
– Loaded with Li by LiTER 

evaporation from above

• No evidence of Mo in plasma except from large ELMs, disruptions
• Chemistry of Li on C and LLD critical, complex, and under-diagnosed 

• LLD did not increase D pumping  
beyond that achieved with LiTER
– Assessing if LLD provides more 

sustained pumping than LiTER
– Data indicates C present on LLD, 

which may have impacted 
pumping performance

• Operating w/ strike-point on LLD 
may decrease core C content
– Strongest effect observed when 

plasma heats LLD surface above 
Li melting temperature 

– Interpretation complicated by 
ELMs in lower-δ shape

LLD Impact on Plasma Performance:
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Operation with outer strike-point on Mo LLD (coated with Li) 
compatible with achievement of high-performance plasmas

◄Strike-point (SP) on inner divertor
• Carbon Zeff = 3-4 typical of LiTER ELM-free H-mode

◄SP on LLD – TLLD < TLi-melt
◄SP on LLD – TLLD > TLi-melt (+ other differences)

21

• Shots have different fueling, LiTER
conditions, ELM characteristics:

• No ELMs, no small, small larger

• LSN with SP on LLD reduces δ, κ, q
• Reduces ELM and global stability

• Yet, can achieve high βN, low Zeff, Prad
• Would like to revisit operation on LLD in FY11
• Supports consideration of inboard Mo tiles

PAC27-2

βN > 4 sustained
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Lithium Milestone R(12-1):  Investigate relationship between 
lithium-conditioned surface composition & plasma behavior

• With very chemically active elements such as lithium, prompt 
surface analysis is required to characterize the lithiated surface 
conditions during a plasma discharge 

• In support of prompt surface analysis, an in-situ materials 
analysis particle probe (MAPP) will be installed on NSTX

– MAPP probe will enable the exposure of various samples to the SOL 
plasma followed by ex-vessel but in-vacuo surface analysis within
minutes of plasma exposure using state of the art tools 

• Li experiments will utilize MAPP to study:
• Reactions between evaporated Li and plasma 

facing materials, residual gases 
• Correlations between the surface composition 

and plasma behavior, comparisons to lab 
experiments and modeling

• Characterizations of fueling efficiency, recycling
22
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Scenarios/MHD Milestone R(12-3): Assess access to reduced 
density and collisionality in high-performance scenarios

• The high performance scenarios targeted in NSTX Upgrade and 
next-step STs are based on operating at lower Greenwald 
density and lower ν* than routinely accessed in NSTX.  

• Strong D pumping via Li has been observed, but additional gas 
fueling is typically required to avoid plasma disruption during the 
current ramp and/or in the early flat-top and high-β phase 

• Goal: characterize and avoid the underlying causes responsible 
for disruption at reduced density, including:

• Loss of access to H-mode, locked-modes, β limits, double tearing, …

• Possible methods for stability improvement include:
• Changes in current ramp-rate (li and q(r) evolution), H-mode timing
• Shape evolution, heating/beta evolution and control
• Improved fueling control, and varied pumping
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Coaxial Helicity Injection (CHI) has produced substantial 
current, and demonstrated significant ohmic flux savings

• Impurity Control Success
– Elimination of arcs in absorber 

region at top of vacuum vessel
– Conditioning of lower divertor

• Inboard Mo tiles could aid CHI

• CHI synergy with OH 
extended in 2010 run:
– Generated 1MA using 40% less 

flux than induction-only case
– Low internal inductance (li ≈ 0.35), 

and high elongation
– Suitable for advanced scenarios

Time after CHI starts

IAEA: R. Raman, B.A. Nelson U Washington
Time (sec)

CHI + OH OH only

Difference

24

• Also obtained new record 370 kA peak current by CHI alone



NSTX NSTX PAC-29 – Program Overview (Menard) January 26, 2011

Progress in sustaining HHFW heating and current drive at low IP ~ 300kA
(Use low IP ohmic target to prototype heating solenoid-free start-up plasma)

25

• High Te(0) ~ 3keV with only 1.4MW
• Previous best at low IP ~250kA 

was ~1.5keV at twice the power

• PRF and high Te sustained longer
• But, max power was limited in 

FY2010 by arcing attributed to Li 
dust formation near/on antenna

• Non-inductive fraction 60-70% 
sustained (25-30% RF, 35-40% BS)

• FY11: Will re-try for ~100% non-
inductive at PRF = 3-4MW

• Pressure profiles are similar in 
both cases - profile stiffness?

3keV
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Plasma Start-up Milestone R(12-2):  Assess confinement, 
heating, and ramp-up of CHI start-up plasmas

• CHI initiated plasmas have been successfully coupled to 
induction and NBI-heated H-mode. 

– While these results are favorable, the confinement properties of 
CHI start-up plasmas have not been characterized. 

– CHI-initiated plasma equilibrium, confinement, and stability 
information is needed for projecting to Upgrade, next-steps

• HHFW and recently NBI heating of low-current ohmic targets 
was demonstrated in 2008 and 2010

• HHFW and early NBI heating will be applied to CHI OH 
discharges to assess confinement/heating vs. non-CHI

• NBI and HHFW heating and CD will be applied progressively 
earlier in target plasma to assess non-inductive sustainment
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TAE-Avalanche induced neutron rate drop modeled 
successfully using NOVA and ORBIT codes 

IAEA: E. Fredrickson IAEA: M. Podestà  UCI

• Toroidal Alfvén Eigenmode (TAE) avalanches in NBI-heated plasmas 
associated with transient reductions in DD neutron rate - “sea” of TAEs 
expected in ITER and future STs

• Change in beam-ion profile measured with Fast-ion D-alpha (FIDA)
• Modeled using NOVA and ORBIT codes

– Mode structure obtained by comparing NOVA calculations with reflectometer data
– Fast ion dynamics in the presence of TAEs calculated by guiding-center code ORBIT

Fast Ion Profile 
(Eλ = 30-60keV)

IAEA:G-Y. Fu

27
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Waves and Energetic Particle Research for FY2011-2012

• Understand, develop high-harmonic fast-wave for heating, CD
– Utilize antenna upgrade as tool for start-up, ramp-up, sustainment of 

advanced scenarios - e.g. HHFW heating of CHI+OH and CHI plasmas
– Overcome/avoid problem of Li-compounds/dust on antenna
– Improve resilience to edge transients (ELMs), understand edge power 

losses (surface waves, PDI) and NBI fast-ion interactions

• Develop predictive capability for fast-ion transport by *AE
– Extend *AE avalanche results obtained in L-mode to H-mode 

scenarios/profiles (BES + improved reflectometry + tangential FIDA)
– Compare measured to predicted fast-ion transport – M3D-K validation 

in support of ITER, NSTX Upgrade, next-steps
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Initial planning for FY13 analysis and research:

• Complete analysis, publication of FY11-12 data in FY2013
• Activities supporting post-Upgrade operations – examples:

– Design new high-k scattering system
– Update equilibrium magnetics, reconstructions, plasma control system
– Begin modifications to Multi-pulse Thomson Scattering (MPTS)
– Design new particle pumping systems – new LLD and/or cryo-pump(s)
– Scope/design new divertor/PMI/LLD diagnostics
– Scoping studies for real-time-MSE for eventual NBI J-profile control

• NSTX 5 year plan for 2014-18 will be written in 2013
• FY2013 is best period of opportunity for NSTX researchers to 

collaborate at other facilities:
– Contribute to other research programs, bring back knowledge to NSTX

• Beginning to identify leading collaboration opportunities
– Culham/MAST (CTF design, transport, *AE, divertor, RMP), EAST, DIII-D, …

29

See TSG presentations for more complete list
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Outline
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– Transport & Turbulence
– Macroscopic Stability, Advanced Scenarios and Control
– Boundary Physics and Lithium Research
– Advanced Scenarios and Control
– Non-inductive Plasma Start-up (Coaxial Helicity Injection)
– Wave-Particle Interactions

• Initial Planning for FY13
• Overview of Research in Support of Upgrade
• Summary
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Magnet operation at ~1T (vs. 0.55T)      
within a factor of 2 of next-step STs 

2nd NBI with 5 MW, 5s at larger RTAN 

Present CS

New center stack for 1T, 2MA, 5s 

New CS
R0 /a = 1.25-1.3   1.5-1.6

0.2

0.4

0.6

0.8

1.0

BT 
[Tesla]

τPulse (sec)

1 MA

0.75 MA

IP ≤ 2 MA

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Present NBI
RTAN =

50,60,70cm

2nd NBI
RTAN =

110,120,130cm  

2nd NBIPresent NBI

NBI current drive profiles [MA/m2]

Normalized minor radius

Up to 2 times higher NBI current drive 
efficiency, and current profile control 

NSTX Upgrade will bridge the device 
and performance gap toward next-step STs
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NSTX Upgrade reference operating scenarios highlight
major research capabilities and needs of Upgrade

• Dual NBI capability (P/Δt):  15MW/1.5s, 10MW/5s, 5MW/10s
• TF flat-top capability: 1T for 6s, 0.75T for 10s, total OH flux = 2.1Wb
• Divertor peak heat flux limit = 10MW/m2 for 5s (Tcarbon-tile ≤ 1200°C)
• Plasma carbon Zeff ≤ 2.5 (goal) 

32

2MA operation may require ne / nGreenwald = 0.7 
to aid achievement of sufficiently high Te to 
reduce loop voltage to 0.25V for 5s flat-top

1.5-2MA operation for 5s will require heat-flux 
mitigation utilizing:  U/L power sharing, 
detachment, and/or snowflake (possibly all three)
This is major goal of Upgrade research program

PAC27-2

PAC27-6

βN ≤ 5.5, τE = ITER‐98y2 H‐mode scaling, SOL width scaling ∝ IP
‐1.6

Reference 
Scenario

BT 

[T]
IP 

[MA]

Δtflat 
[s]

NICD 
[%]

ne / 

nGreenwald

PNBI 
[MW]

PRF 
[MW]

PTOT 
[MW]

Unmitigated 
divertor peak 
heat flux 

[MW/m2]   

(fexp = 20)

Unmitigated 
divertor peak 
heat flux 

[MW/m2]   

(fexp = 60)

D pumping 
required     

(NBI fueling only) 

[1021 s‐1]

Long pulse 0.8 1 7 50‐70 ≤  1 6 0 6 5 2 0.7

High non‐inductive 1 0.8 5 80‐100 ≤  1 8 0 8 5 2 1.0

High IP  1 1.5 5 50‐70 ≤  1 8 0 8 13 4 1.0

Max IP  1 2 4‐5 40‐60 0.7‐1 10 0 10 25 8 1.2

Max IP & power 1 2 4‐5 40‐60 ≤  1 10 5 15 38 13 1.2
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ELMy H-mode combined with modest Li-wall conditioning 
can provide sufficient particle control for initial Upgrade ops

◄ NSTX long-pulse plasmas with 
ELMs approach density flat-top 
by t ~1s with ne / nGreenwald 1
• Modeling indicates ne / nGreenwald = 0.7-

0.9 likely required for 100% NICD

33

◄ Carbon Zeff = 2.5-3 acceptable, 
and will attempt to reduce 
further in FY11-12 research 

◄ Radiated power < 25% of NBI 
power, which is acceptable

βN = 5-6 sustained for ~1s – ready to assess 
stability at longer pulse-lengths in Upgrade  

Improved D pumping required to 
access ne / nGreenwald < 1 operating 
scenarios – will be part of longer-
term Upgrade research program

PAC27-2
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NSTX FY11-12 research plan addresses key
issues anticipated for NSTX Upgrade operation (1)

• Diagnostic impact
– Issue: High-k scattering system will be displaced by Upgrade 2nd NBI
– Plan: Gather complete high-k dataset for R11-1, FY12 JRT, and to 

support design of new high-k system during Upgrade outage period

• Achievability of stable, high-performance operating scenarios
– Issue: Plasma stability, control (n=0, 1) will be impacted by higher A, κ
– Plan:  Assess stability impact in R11-2, modify/improve controllers as 

needed during FY11-12 run and during Upgrade outage period

• Power exhaust and PFC thermal limits
– Issue: Highest IP & power Upgrade plasmas require heat flux mitigation
– Plan:  Assess performance and controllability of SN and DN snowflake 

divertors + synergy with other mitigation techniques in R11-3

34
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NSTX FY11-12 research plan addresses key
issues anticipated for NSTX Upgrade operation (2)

• Particle and impurity control, role of Lithium
– Issue:  Li evaporation will be only D pumping tool during initial post-

Upgrade operation (cryos and/or LLD not included in Upgrade Project),
• Present NSTX particle and impurity control may not extrapolate to longer 

pulses (2-5s) and/or reduced density for 100% non-inductive ops
– Plan: Assess evaporated Li and LLD performance in R12-1, impurity 

control methods and cryo-pumping scoping studies in ITER/CC TSG
– Plan: Develop stable scenarios w/ less fueling, more Li in R12-3

• Achievement of non-inductive start-up and ramp-up 
– Issue:  Confinement, stability of low-IP target plasmas not fully 

characterized for projecting to non-inductive ramp-up in Upgrade
– Plan:  Achieve ~100% non-inductive low-IP plasmas with HHFW & NBI, 

assess confinement and stability of start-up plasmas in R12-2.
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Summary:  NSTX and NSTX Upgrade strongly 
support OFES vision for fusion for coming decade

• Plasma dynamics and control 
– NSTX is performing detailed measurements of turbulence, transport, core/edge 

stability, and integrating this knowledge to develop advanced high-β ST scenarios
– NSTX Upgrade will extend these scenarios to full non-inductive operation with 

current profile control + advanced stability control

• Materials in fusion environment, harness fusion power
– NSTX is providing critical data on SOL-width scaling and SOL turbulence, novel 

divertors for heat-flux mitigation, and lithium-based plasma facing components
– NSTX + Upgrade providing critical data for assessing the ST as potential FNSF 

• Validated predictive capability
– Performing leading validation efforts for ST turbulent transport, tokamak/ST RWM 

stability and 3D MHD effects, edge turbulence, fast-ion transport from *AE
– Upgrade will substantially extend range of collisionality, rotation, fast-ion drive, …

• 3-D magnetic fields
– Research to understand transport/stability response to 3D fields for ITER, beyond
– A leader in 3D perturbed equilibrium analysis/R&D, 3D perturbed transport (NTV)
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Table of PAC-27 recommendations and 
comments, and NSTX and response (1)
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Table of PAC-27 recommendations and 
comments, and NSTX and response (2)

38



NSTX NSTX PAC-29 – Program Overview (Menard) January 26, 2011

Table of PAC-27 recommendations and 
comments, and NSTX and response (3)
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Table of PAC-27 recommendations and 
comments, and NSTX and response (4)

40



NSTX NSTX PAC-29 – Program Overview (Menard) January 26, 2011 41

NSTX Participation in ITPA Joint Experiments and Activities
Proposals under consideration awaiting NSTX Research Forum discussion and/or further definition from respective ITPA groups

• Advanced Scenarios and Control (5)
– IOS-1.2 Study seeding effects on ITER baseline discharges
– IOS-4.1 Access conditions for advanced inductive scenario with ITER-relevant restrictions
– IOS-4.3 Collisionality scaling of confinement in advanced inductive plasmas
– IOS-5.2 Maintaining ICRH coupling in expected ITER regime
– IOS-6.2 li controller (Ip ramp) with primary voltage/additional heating

• Boundary Physics and Lithium Research (16)
– PEP-6 Pedestal structure and ELM stability in DN
– PEP-19 Basic mechanisms of edge transport with resonant magnetic perturbations in toroidal plasma confinement devices
– PEP-23 Quantification of the requirements for ELM suppression by magnetic perturbations from off-midplane coils
– PEP-24 Minimum pellet size for ELM pacing
– PEP-25 Inter-machine comparison of ELM control by magnetic field perturbations from midplane RMP coils
– PEP-26 Critical parameters for achieving L-H transitions
– PEP-27 Pedestal profile evolution following L-H/H-L transition
– PEP-28 Physics of H-mode access with different X-point height
– PEP-29 Vertical jolts/kicks for ELM triggering and control
– PEP-31 Pedestal structure and edge relaxation mechanisms in I-mode
– PEP-32 Access to and exit from H-mode with ELM mitigation at low input power above PLH
– PEP-33 Effects of current ramps on the L-H transition and on the stability and confinement of H-modes at low power above the threshold
– PEP-34 Non-resonant magnetic field driven QH-mode
– DSOL-20 Transient divertor reattachment
– DSOL-21 Introduction of pre-characterized dust for dust transport studies in divertor and SOL
– DSOL-24 Disruption heat loads

• Macroscopic Stability (7)
– MDC-1 Disruption mitigation by massive gas jets
– MDC-2 Joint experiments on resistive wall mode physics
– MDC-4 Neoclassical tearing mode physics – aspect ratio comparison
– MDC-12 Non-resonant magnetic braking
– MDC-14 Rotation effects on neoclassical tearing modes
– MDC-15 Disruption database development
– MDC-17 Active disruption avoidance

• Transport and Turbulence (11)
– TC-1 Confinement scaling in ELMy H-modes: beta degradation
– TC-2 Hysteresis and access to H-mode with H~1
– TC-4 H-mode transition and confinement dependence on ionic species
– TC-9 Scaling of intrinsic rotation with no external momentum input
– TC-10 Experimental identification of ITG, TEM and ETG turbulence and comparison with codes
– TC-11 He and impurity profiles and transport coefficients
– TC-12 H-mode transport and confinement at low aspect ratio
– TC-14 RF rotation drive
– TC-15 Dependence of momentum and particle pinch on collisionality
– TC-17 rho-star scaling of intrinsic torque
– TC-19 Characteristics of I-mode plasmas

• Wave-Particle Interactions (5)
– EP-1 Measurements of damping rate of intermediate toroidal mode number Alfven eigenmodes
– EP-2 Fast ion losses and redistribution from localized AEs
– EP-3 Fast ion transport by small scale turbulence
– EP-4 Effect of dynamical friction (drag) at resonance on nonlinear AE evolution
– EP-6 Fast ion losses and associated heat load from edge perturbations (ELMs and RMPs)

NSTX typically actively 
participates in ~25 Joint 
Experiments/Activities 
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Backup
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Addition of IBD Mo tiles would
enable important divertor studies

• Help quantify fraction of core C coming from lower divertor for high-δ shapes
• Potentially reduce C content of Li ELM-free scenarios
• Characterize Mo performance to inform choice of div/CS PFC in Upgrade
• Apply Li (LiTER) to IBD/OBD Mo for partial/full LLD
• If LLD present, LSN with both strike-points on Mo (how different than C?)

Standard divertor on C Snowflake on Mo
(also possible on C, 

not shown)

Standard divertor on Mo LSN strike-pts on Mo,
Mo + Li, or

C (IBD) + Mo (OBD)
(not shown)
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Success of Mo as PFC during LLD experiments supports 
usage of Mo inboard divertor tiles during FY2011-12 runs

• Motivation, potential benefits of inboard Mo tiles:
– Reduce C impurity influx from divertor

• Carbon dominates Zeff in NSTX long-pulse ELM-free Li-conditioned shots
– Informs choice of C or metallic divertor in NSTX Upgrade

• Baseline CS upgrade design has all C PFCs – Mo may be advantageous
– First test of inboard LLD – benefit from higher LiTER replenishment
– Expected to improve CHI via reduction in C, O impurity content

• Risks, issues:
– High-Z accumulation/radiation possibly worse, especially if ELM-free

• May need to use central RF heating, ELM pacing, PDD, snow-flake
– May need to eliminate all C PFCs to eliminate C from plasma (AUG)
– Tile alignment critical (plan to improve C tile alignment for FY11-12)

• Design: replace outer-most row of inboard C divertor tiles with Mo
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High current 2 MA, high PNBI scenario requires extra flux 
expansion for full pulse length with existing tiles

• High-current 2 MA LSN,
P =15 MW (10MW NBI + 5 MW RF) 

• Using DN and increasing 
flux expansion (e.g. SFD) 
would just manage for 5s

• Molybdenum tile for higher 
temperature being pursued 
for 2011-2012
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Access to reduced collisionality is needed to understand  
underlying causes of ST transport, scaling to next-steps

• ν* also impacts RWM stability, rotation 
damping, range of other physics

Normalized electron collisionality νe* ∝ ne / Te
2

ITER BτE (e-static g-Bohm) ∝ ρ*
-3 β0 ν*

-0.14 q-1.7
Petty et al., PoP, Vol. 11 (2004)

• Higher toroidal field & plasma current enable access to higher temperature

• Higher temperature reduces collisionality, but increases equilibration time

• Upgrade: Double field and current + 3-5ä increase in pulse duration to 
substantially narrow capability gap 3-6ä decrease in collisionality

ITER-like 
scaling

ST-CTF 

?

constant 
q, β, ρ∗

NSTX Upgrade

• Future ST’s are projected to operate at      
10-100ä lower normalized collisionality ν*

• Conventional tokamaks observe weak 
inverse dependence of confinement on ν*

• NSTX observes much stronger scaling vs. ν*
– Does favorable scaling extend to lower ν* ?
– What modes dominate e-transport in ST ?

• Electrostatic or electromagnetic?
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Increased auxiliary heating and current drive are needed to 
fully exploit increased field, current, and pulse duration 

•Higher heating power to access high temperature and β at low collisionality
– Need additional 4-10MW, depending on confinement scaling

•Increased external current drive to access and study 100% non-inductive
– Need 0.25-0.5MA compatible with conditions of ramp-up and sustained plasmas

•Upgrade: double neutral beam power + more tangential injection
– More tangential injection up to 2 times higher efficiency, current profile control 
– ITER-level high-heat-flux plasma boundary physics capabilities & challenges

• q(r) profile very important for 
global stability, electron transport, 
Alfvénic instability behavior
– Variation of mix of NBI tangency 

radii would enable core q control

Use 4 of 6 sources
ENBI=90keV, PINJ = 8MW
fGW=0.95

Normalized minor radius

RTAN [cm]
__________________ 

50,  60, 70, 130
60,  70,120,130
70,110,120,130

IP = 725kA, BT=0.55T,  βN = 6.2, βT = 14%
H98y2 = 1.2, fNICD = 100%, f∇p = 73%
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High Confinement H-Mode Regime Obtained with Lithium
~ High Performance ST Pilot Plant level Confinement of H98y2 < 1.7 

EPH

PNBI/10 [MW]

• Specially high H98y2 < 1.7 is a combination 
of lithium confinement improvement and 
higher pedestal temperatures / pressure

• ITER performance is highly pedestal pressure 
dependent, Q ~ P2

Separatrix

t1            t2 IAEA: R. Maingi, PRL 2010

~ 3 τE
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Kinetic high beta RWM stability model tested
Resolved some RWM (Resistive Wall Mode) stability puzzles

• MISK code predicts stabilization of 
RWM from 

– precession drift resonance (ωD) at low
rotation

– bounce resonance (ωb) at high rotation 

• Plasma is marginally unstable at 
intermediate rotation

• Observed that RWM can be unstable 
despite significant plasma rotation 
contrary to fluid-based theory

• Obtained detailed measurements of RWM 
stability dependence on toroidal rotation 
to validate kinetic stability MISK models*

•Theory enhancements may lead to a 
unified model explaining NSTX / DIII-D 
observations having important implications 
for ITER: RWM can be unstable at expected 
rotation (advanced scenario 4) 

J. Berkery, PRL (2010)
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• Measure dependence on the line-average density of resonant 2/1 amplitude at q = 2 
surface at which mode locks

• Ohmic L-mode plasmas at low density show familiar proportional dependence
• Linear scaling with density breaks down in high-density, high-β NBI-heated plasmas 

– mode locks at anomalously low error field
• Linear scaling is restored when plasma amplification of applied field included

– Plasma response is calculated by IPEC  

Inclusion of Plasma Response Important to 
Understanding Effects of Error Fields
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• IPEC: Ideal Perturbed Equilibrium Code
Computes tokamak ideal plasma response to 3D 
perturbed magnetic fields

• IPEC being utilized for
RMP coil design for ITER, DIII-D, JET
Error-field correction for ITER

•IAEA: J-K. Park, A. Boozer, J. Menard
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