PAC-29 Day 1 questions

- Q1 The PAC remains concerned about the readiness of integrated divertor solutions (high heat flux mitigation, main-ion density control, impurity control) in preparation for supporting NSTX Upgrade scenarios
 - What is your plan to address this for the near and longer-term post-Upgrade period - for example the beginning and end of your next 5 year plan period?
- Q2 For the next run, what is the relative priority among the following 3 milestones/high priority research areas:
 - Li research
 - Particle and impurity control
 - Heat flux handling

Approach to addressing these questions:

- Describe key decision points, questions for program
 - Budgets, schedules, plans, elements highly subject to change

Show a few results that inform decisions

- Actual plan will be formulated based on:
 - PAC input
 - Research forum/near-term team discussion
 - FY11-12 results and analysis in FY12-13
 - 5 year plan proposal of NSTX team

Heat flux mitigation

- Major goal of high current, high-power scenarios is to access higher T to reduce v^* to study transport, pedestal & global stability
 - These studies only require 1-3s pulse length to get good initial data
 - Longer pulses enable further profile equilibration, support advanced PMI R&D

PFC decisions – Mo vs. C

YES

Is Moly

advantageous? Does it project

> favorably to Upgrade?

> > NO

NSTX FY10-12

Mo LLD (Lower OBD)

> Mo tiles (Lower IBD)

<u> Assess:</u>

- •Li on Mo
- Melting

NSTX Upgrade

All Mo IBD, CS

All Mo PFCs

Solid Mo in divertor/CS Mo coated C on passive plates

Graphite

(Upgrade baseline PFC)

- Carbon is lower Z, more forgiving (no melting), cheaper
- Lower sputtering yield of Mo could reduce core C Z_{eff}
- Mo is better substrate for liquid Li
- High-Z PFC (Mo) more relevant than C for FNSF/next-steps

Pumping decisions – cryo/Li staging

Choice of pumping scheme linked to choice of PFC:

- Carbon PFCs favor cryos (assuming cryos project to Upgrade scenarios)
- Already have solid Li delivery systems (evaporators, droppers)

NSTX FY10-12

Li evaporation onto C, LLD

Fueling: LFS, HFS, SGI, shoulder

Li onto Mo tiles (Lower IBD)

NSTX Upgrade

Li evaporation, droppers

Pellets, CT injection, plasma jets?

Cryos

Cryos and/or

Next-gen LLD

Preliminary cryo-calcs show promise for full range of operating scenarios in Upgrade

- Pressures shown are with no pumping
 - With pumping, pressure will be reduced by C/(C+S) ~ 50%
- <n_e> estimated as twice separatrix density

Minimum f_G for pumping (NBI fueling only)

	SOL std	SOL snow	PFR horiz	PFR vert
Long pulse	0.21	0.43	0.14	0.09
High NI	0.34	0.86	0.29	0.11
Max I _p	0.15	0.42	0.14	0.05

- Only snowflake at low I_P (800kA) is marginal
- But this scenario does not require snowflake
- And only single cryo was modeled, so could likely use top and bottom cryos to test snowflake in full NI scenario

Possible NSTX facility plan during Upgrade outage supporting long-pulse pumping/PMI

- Significant time ~ 1 -2 years available for design, fabrication, installation
 of boundary physics facility upgrade:
 - Upgrade Project has the resource priority during the upgrade outage
 - Cost of design / installation ~ cost of fabrication of moly tile/ cryo-pump
 - However, researchers and some of the engineering technical staff will be available for facility enhancement / improvements for high priority tasks
 - Fabrication procurement possibly paid out of the facility enhancement fund

NSTX Upgrade Outage Period Budget Summary (\$M)

	FY2012		FY 2013		FY2014	
Budget cases	Base	Incr.	Base	Incr.	Base	Incr.
Run Weeks	10		0	0	0	0
Facility Operations	15.9		7.1		6.6	
Fac. Enhancements	1.1		1.8	0	1.5	0
CS & 2 nd NBI	14.6	4.5	25.3	5.0	27.50	5.0
Facility Total	31.6	4.5	34.2	5.0	35.6	5.0
PPPL Research	11.7	0	12	0.0	12	0.0
Collab Diag Interf.	0.4	0	0.4	0.0	0.4	0.0
Collaborations	6.1	0.	6.3	0.0	6.3	0.0
Science Total	18.2	0	18.7	0.0	18.7	0.0
NSTX Total	49.8	4.5	52.9	5.0	54.3	5.0

- FY 2013 FY 2014 Budget allows some high priority non "NSTX Upgrade Project"
- If moly surface and cryo-pump are high priority tasks, we would try to fit them in since
 we have a long down time, a rear opportunity for in-vessel installation. Design and
 installation work maybe supported by the existing engineering and research staff.
- Highly preliminary estimates of fabrication ~ \$ 1- 2M each for full Mo coverage and single cryo-pump connected to NBI cryo-plant assuming no passive plate reconfig.

Lithium edge conditions require factor of 2-3x fueling increases to maintain density, avoid instability

High-field side fueling plenum pressure:

FY11-12 plans:

- Improve plasma stability at reduced fueling, density (R12-3)
- Quantify D pumping from Li to compare to cryo projections, assess extrapolation to Upgrade (LRTSG)

With lithium coating pumping, deuteron inventory is constant or even decreasing, C accumulates, Li saturates

NSTX can maintain constant deuterium inventory with Li evaporation for range of operating scenarios

- Range of optimization targets:
 - Long Pulse
 - Sustained high- β_T
 - Maximized W_{MHD}
- Strong LITER
 evaporation and few or
 no ELMs.
- Carbon is accumulated, but Deuterium inventory is constant.

Greenwald fractions evolve similarly for range of IP

Definitions:

Electron Greenwald fraction.

$$f_{GW,e} \propto \frac{\overline{n}_e}{I_p} a^2$$

- Inventories: N_C, N_D, N_E.
- Deuterium Greenwald Fraction (i.e. Zeff=1)

$$f_{GW,D2} \propto f_{GW,e} rac{N_D}{N_E}$$

 Equivalent Greenwald Fraction for a given requested Z_{eff}.

$$N_{E, Zeff} = \frac{5N_D}{6 - Z_{eff}}$$

$$f_{GW, Zeff} \propto f_{GW, e} \frac{N_{E, Zeff}}{N_E}$$

If C Z_{eff} could be controlled to 2.5, LiTER coatings are projected to provide pumping for Greenwald fraction = 0.4

- This Greenwald fraction and C Z_{eff} would be sufficient for all proposed Upgrade operating scenarios
- D pumping sustained for at least
 1.4s at 4MW
 - Consider long-pulse scenario: 7s at
 6MW could require up to 7x more Li
- Can evaporate 7x more Li between shots w/ 20min shot cycle to test
 - Would likely require improved LiTER
 - Need to develop scenarios compatible with this level of Li/pumping – R12-3
- Strong motivation for improving C impurity control with Li

Impurity control

NSTX FY10-12

Increase Li coverage on PFCs

Heat flux mitigation methods could also reduce sputtering, erosion

NSTX Upgrade

Continue higher Li coverage

In-vessel RMP coils could provide faster 3D ELM pacing, and/or ELM suppression with increased impurity transport

Integrate techniques in NSTX, Upgrade

ELM triggering with 3D fields, shaping, less Li, central RF heating...

Pellet pacing?

- How does increased Li coverage impact C and higher-Z impurities?
- Does Li on Mo reduce core C Z_{eff}, protect Mo PFCs?

PAC-29 question 2

- First, all 3 research areas are high priority
 - Particle/impurity control is emphasis of new ITER/CC TSG
 - Li research, high flux expansion have dedicated milestones

Prioritization:

- 1. Particle and impurity control
 - Especially C impurity control with Li ELM free provides foundation for using long-pulse D pumping with LiTER if new cryos/LLD unavailable
 - Goal: get D and C inventories to plateau at n/n_{gw} = 0.7-1, C $Z_{eff} \le 2.5$

2. Li research

- Needed for assessing solid (and liquid) Li for Upgrade operations in particular extrapolation of LiTER to longer pulse, higher power
- 3. Heat flux handling Snowflake
 - Very important, but initial lower I_p scenarios may not require this
 - Required for highest I_p /power/long-pulse = longer term research goal