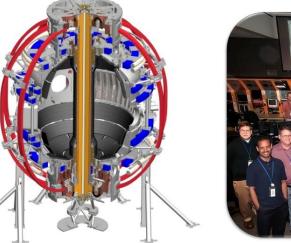


Supported by


NSTX Upgrade Cryo-pumping Design Progress, Particle Control Plans

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

John Canik

S.P. Gerhardt, M.A. Jaworski, R. Maingi, E. Meier, J.E. Menard, M. Ono, V.A Soukhanovskii, D. Stotler and the NSTX Research Team

> **NSTX-U PAC 31 B318, PPPL** April 17th, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Motivation

- Particle control is needed to meet NSTX-U programmatic goals
 - Avoid density limit, radiative collapse during long-pulse (5s) discharge
 - Reduce collisionality to access new core physics
 - Control n/n_G for non-inductive scenarios
- Several PAC recommendations concern particle control
 - Perform cryo-pump design study as complement to Li efforts

PAC 29-4 PAC 29-5b

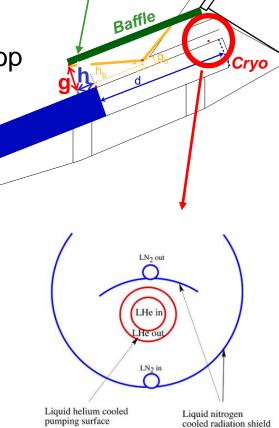
PAC 29-10

- Consider alternatives to Li ELM-free scenario: Type-I or small-ELM

PAC 29-40 PAC 29-42

- Milestone R(12-2): Project deuterium pumping capabilities for NSTX-U using lithium coatings and cryo-pumping
 - Use existing discharges to assess persistence of pumping by Li coatings, project to NSTX-U pulse lengths
 - Develop cryo-pump design, analyze which scenarios and densities can be pumped with stationary deuterium inventory

Outline


- Progress in cryo-pump design
 - Pumping model developed for use in plenum geometry design
 - Performance and flexibility of optimized system
- Analysis of use of lithium coatings for long-pulse
 - Time-dependent recycling characteristics in Li ELM-free plasmas
 - Long-pulse, ELMy plasmas with partially passivated lithium
- Future plans
 - Near term analysis
 - Experimental plans for NSTX-U

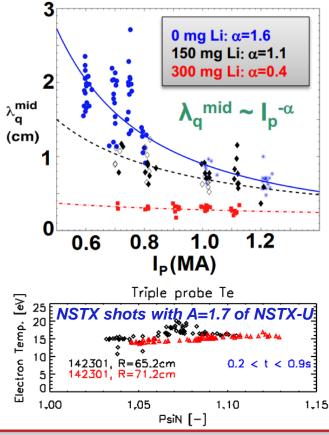
General design similar to DIII-D lower outer cryo-pump system is taken as starting point for design analysis

- Plenum location studied: under new baffling structure near secondary passive plates, possibly replacing some outer divertor plates and tiles
- Pumping capacity of a toroidal liquid He cooled loop (Menon, NSTX Ideas Forum 2002)
 - S=24,000 l/s @ R=1.2m
 - Need plenum pressure of 0.83 mtorr to pump beam input (10MW~20 torr-l/s)
- Pumping rate:

$$I_{pump} = P_{pl}S = \frac{I_0}{S+C}S$$

- $P_{pl} = plenum pressure$
- I₀ = neutral flux into plenum
- C = throat conductance
- To optimize, need C(g,h), I₀(g,h)

g = throat height h = throat length

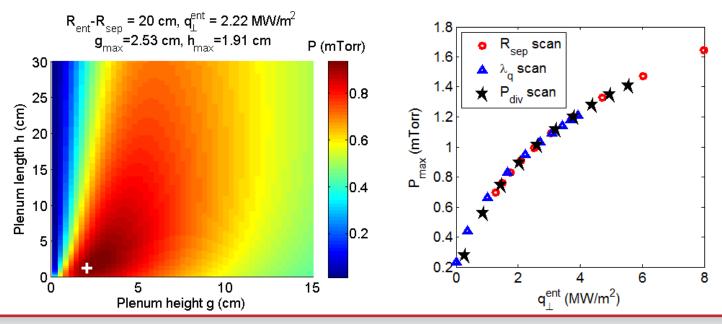

Cross-section of the pump (10 cm outer dia.)

Projected divertor parameters combined with semi-analytic pumping model are used to calculate pumping rates

- Analytic model developed for DIII-D pumping studies (Maingi, NF '99)
 - Predicts plenum pressure, validated with DIII-D data
 - Requires divertor n, T, Γ profiles
 - Uses first-flight neutral model (insufficient for detached divertor)
- Heat flux, angle of B wrt PFC surface (α), and plasma temperature are sufficient to calculate n,

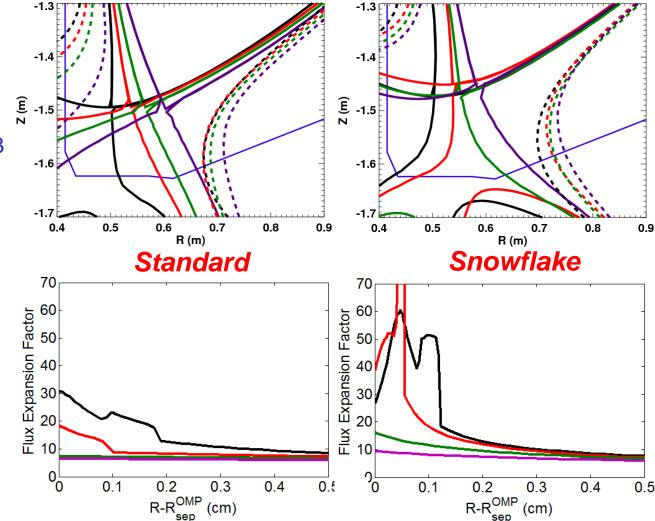
:
$$\Gamma_{\perp} = q_{\perp}/7T$$

 $n = \Gamma_{\perp}/(\sin \alpha \sqrt{2T/m})$

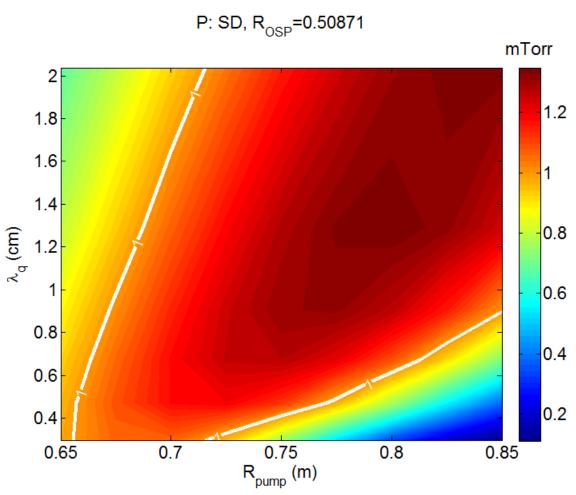

- Recent experiments yield scaling of SOL heat flux width
 - No-lithium scaling used here, but all trend towards $\lambda_q{\sim}3mm$ at I_p=2MA
 - P_{div} = 5 MW assumed (1/2 of 10 MW input)
- Langmuir probes show $T_e \sim 15-20 \text{ eV}$ in far SOL
 - $T_e \sim independent of I_p$
 - $T_e \sim 15 \text{ eV}$ assumed (NSTX-U-like discharges)

Г

Pressure projections are used to optimize plenum geometry parameters


- Exponentially decaying heat flux footprint imposed, with $T_e=15 \text{ eV}$
- Plenum entrance height, length are varied to maximize pressure
- Pressure in optimized plenum depends primarily on heat flux at pump entrance
 - Varied through R_{OSP} , flux expansion or $P_{tot} \Rightarrow$ profile effects not important
 - Reaching P~0.8 mTorr (to pump 10 MW NBI) requires q_{\perp}^{ent} ~2 MW/m²
- Optimal plenum entrance for P=0.8mTorr: height g~2.5 cm, length h~2 cm

Equilibria with variety of R_{OSP}, flux expansion are used to map heat flux profiles, assess candidate pump entrance locations


- Standard and snowflake divertors considered
 - Four R_{OSP} each
 - ψ_N =1.0,1.03 shown
 - Movement of ψ_N =1.03 strike line is much less than that of R_{OSP}
- Flux expansion, flux surface geometry used to convert midplane heat flux profile (from scaling) to divertor heat flux

As R_{OSP} is increased, flux expansion is decreased

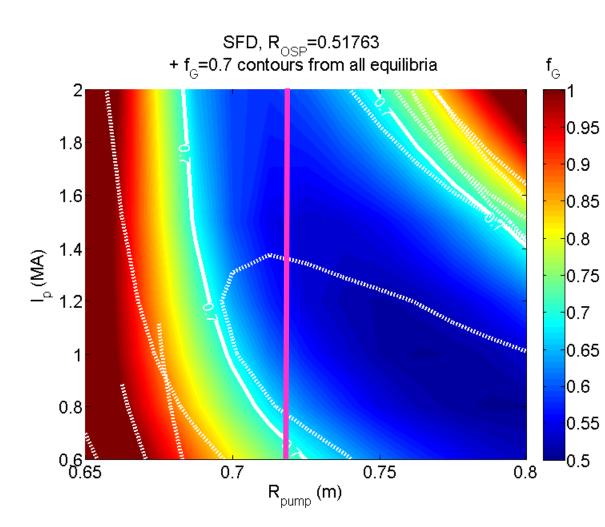
Realistic equilibria, heat flux scaling, and empirical T_e^{SOL} are used to project plenum pressure for candidate R_{pump}

- Analytic model for plenum pressure with optimized entrance parameters
- Pressure is nonmonotonic with R_{pump} due to field geometry
 - At low R_{pump}, α is lower, so n/Γ⊥ is increased
 ⇒more neutrals ionized before reaching pump

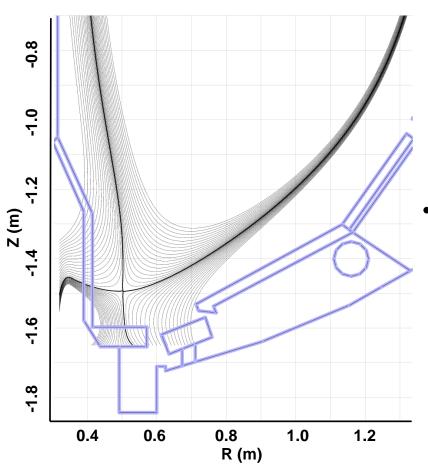
Realistic equilibria, heat flux scaling, and empirical T_e^{SOL} are used to project plenum pressure for candidate R_{pump}

- Analytic model for plenum pressure with optimized entrance parameters
- Pressure is nonmonotonic with R_{pump} due to field geometry
 - At low R_{pump}, α is lower, so n/Γ⊥ is increased
 ⇒more neutrals ionized before reaching pump
- Optimizing position for narrowest SOL gives R_{pump}~0.7
 - Narrow SOL gives least flexibility in moving R_{OSP} to improve pumping
 - R_{pump}=0.72 gives high P for wide range of SOL width

P: SD, R_{OSP}=0.50871 + 1 mTorr contours from all equilibria mTorr 2 1.2 1.8 1.6 1 1.4 չ,_q (cm) 0.8 1.2 0.6 0.8 0.4 0.6 0.2 0.4 0.65 0.7 0.75 0.8 0.85 R_{pump} (m)

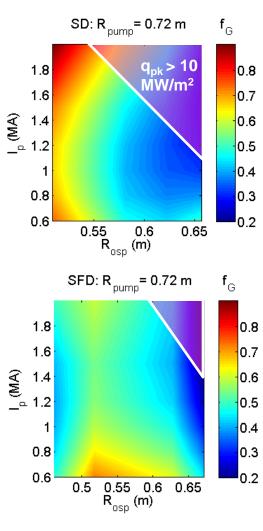

R_{pump} =0.72 gives n_e control for range of I_p , equilibria

 Modified 2-pt model used to estimate n_e^{sep}


/7

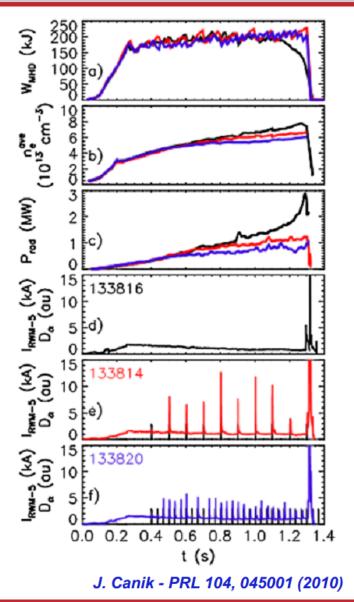
$$T_{OMP} = \left(T_{DIV}^{7/2} + \frac{7}{4\kappa_{0e}}q_{\parallel}^{sep}L\right)^{2}$$
$$n_{OMP} = f_{cal}\frac{2n_{DIV}T_{DIV}}{T_{OMP}}\frac{B_{OMP}}{B_{DIV}}$$

- q_{\parallel}^{sep} from I_p scaling, T_e^{div} varied
- Final n_e^{sep}: pumping=NBI input
- n_e/n_e^{sep} ~ 3 used to estimate f_G=n/n_G
 - Consistent with NSTX data



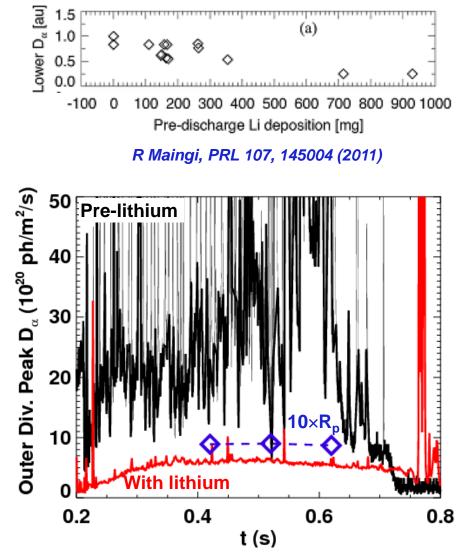
Optimized plenum geometry capable of pumping to low density for a range of R_{OSP}, I_p

SOLPS geometry to be used in future calculations


- Equilibrium f_G down to < 0.5
 - Moving R_{OSP}
 closer to pump
 allows lower n_e,
 but limited by
 power handling
 - High flux expansion in SFD gives *better* pumping with SOLside configuration
 - More plasma in far SOL near pump
 - More room to increase R_{OSP} at high I_p

Outline

- Progress in cryo-pump design
 - Pumping model developed for use in plenum geometry design
 - Performance and flexibility of optimized system
- Analysis of use of lithium coatings for long-pulse
 - Time-dependent recycling characteristics in ELM-free plasmas
 - Long-pulse, ELMy plasmas with partially passivated lithium
- Future plans
 - Near term analysis
 - Experimental plans for NSTX-U

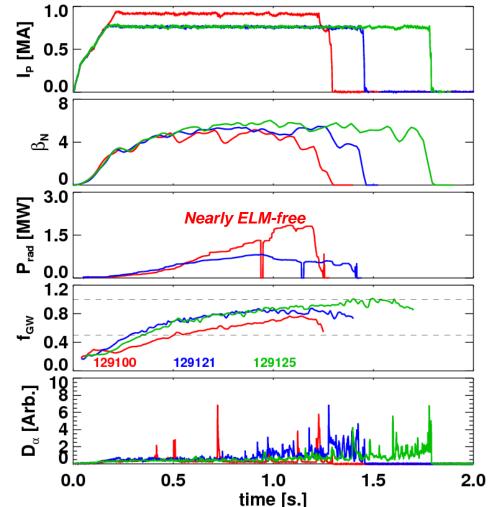

Scenarios with Li coatings and ELMs trend towards stationary D and C inventory—but how do they extrapolate?

- Li coatings + triggered ELMs come closest to achieving externally controllable stationary D inventory, Z_{eff}
 - Use of triggered ELMs for particle control will be assessed in upgrade
- How do these parameters project to NSTX-U parameters?
 - Up to 5x longer pulse
 - Up to 2x higher NBI fueling
- How persistent is D pumping by Li?
 - Part of Milestone R(12-2)
 - Project deuterium pumping capabilities for NSTX-U using lithium coatings and cryopumping

Low-recycling conditions with lithium coatings last throughout NSTX discharges

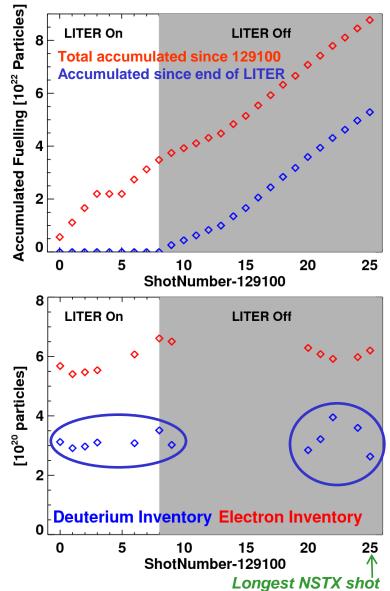
- Heavily lithium coated, lowrecycling, ELM-free discharges studied
 - Most thoroughly analyzed 2008 pre- to post-lithium discharges
- Peak D_α emission at outer divertor does not increase toward the end of the discharge
 - And in fact often decreases
 - Without lithium, recycling increases throughout shot
 - Inferred PFC particle recycling coefficient $R_p \sim constant$

SOLPS modeling indicates recycling coefficient remains low throughout low-δ discharge


Measurements show little change during shot t=420 ms; R=0.89 Points/dashed lines 520; R=0.90 620; R=0.87 n_e (10¹⁹ m⁻³) 2 are measurements (MVV/m^2) - SOL n_e, T_e, Peak heat flux, D_{α} all ~constant Constraints in modeling*: Fitted n, T profiles 0.8 -0.05 0.9 0.05 0 $R-R_{OSP}(m)$ Peak q_{div} (T_e^{sep}) Ψ_N - Peak D_{α} (R_{p}) 500 10 Inferred R_p remains low 400 $D_{\alpha}^{}~(10^{20}~{
m ph/m^{2}/s})$ - 0.89, 0.90, 0.87 300 - Without Li: $R_p = 0.98$ \Rightarrow Li pumping appears to 100 persist over these 8.8 -0.05 0.9 0.05 pulse lengths (~ 1s) 0 $R-R_{OSP}(m)$ Ψ_N

*J Canik, JNM 415, S409 (2011)

() NSTX-U


Long-pulse discharges following the shut-off of LITER maintained high performance while approaching stationary n_e

- 129100: 900 kA shot just before LITER ran out.
- 129121, 129125: long pulse optimization sequence
 - 129125: longest NSTX shot
- Density time trace (at high f_G) ~stationary after 1 s
 - No large n=1 MHD modes
 - Equivalent to beginning of an NSTX-U shot
- Without LITER, ELMs returned
 - Mostly small
 - Radiated power reduced

Experiments following LITER shut-off show D inventory control for many shots

- LITER operated for ~90 discharges prior to lithium running out
- ~20 shots taken without LITER
 - Integrated discharge time ~25 s
 - Accumulated fueling ~5x10²² particles
 - ~5 NSTX-U discharges (10 MW, 5s)
 - Plasma not held constant
 - He GDC performed between shots
- Fairly constant D inventory
 maintained throughout sequence
- ⇒ May be possible to tailor lithium deposition to provide long-pulse pumping while maintaining ELMs for impurity control

Outline

- Progress in cryo-pump design
 - Pumping model developed for use in plenum geometry design
 - Performance and flexibility of optimized system
- Analysis of use of lithium coatings for long-pulse
 - Time-dependent recycling characteristics in ELM-free plasmas
 - Long-pulse, ELMy plasmas with partially passivated lithium
- Future plans
 - Near term analysis
 - Experimental plans for NSTX-U

Next steps for particle control analysis during Upgrade outage

- Cryo-pumping design
 - Confirm plenum optimization using SOLPS (B2-EIRENE)
 - More comprehensive treatment of neutral transport (beyond first-flight)
 - Can treat radiative/detached divertor
 - Investigate design details of chosen plenum geometry
 - Is clearing area currently occupied by divertor tiles feasible?
 - Prepare for engineering design
- Lithium persistence for long-pulse (with ELMs)
 - Further modeling with 2D fluid codes (UEDGE/SOLPS/OEDGE)
 - Recycling analysis for high- δ , longer pulse ELM-free discharges
 - Analysis of long, ELMy discharge
 - Extrapolation to NSTX-U
 - Longer pulse, higher NBI particle input
- Begin studying compatibility/interaction of cryo and lithium pumping
 - Could lithium coat the pumping surface?
 - What plenum pressure can be achieved with SOL modified by lithium coatings (e.g., λ_q , P_{div}/P_{tot} , n_e)

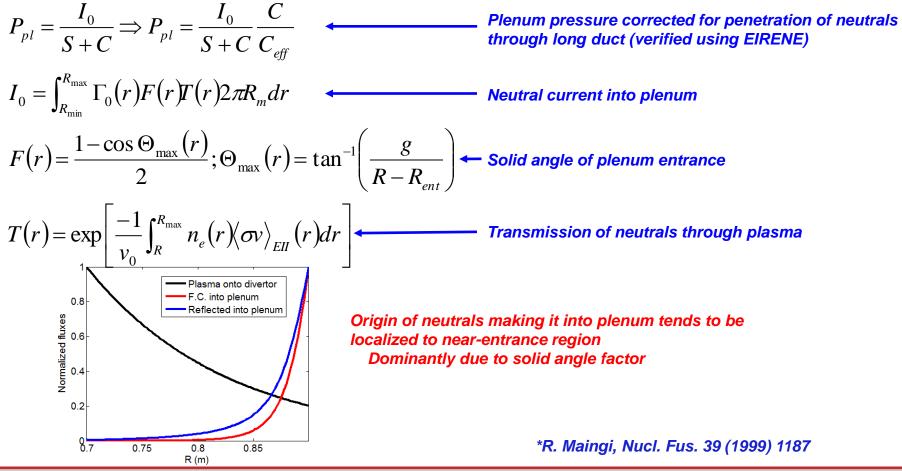
Plans for years 1 and 2 of NSTX-U operation

- Validate physics design of cryo-pump
 - Measure plasma parameters at likely pump entrance location
 - Document Γ , T_e as I_p, P, flux expansion, etc are varied
 - Perform engineering design (begin during outage with incremental funding)
- Particle control with lithium coatings
 - Develop ELMy scenarios with lithium coatings
 - Assess ELM triggering with thick lithium coatings
 - Perform experiments with controlled scans lithium deposition amounts (including none), document recycling and ELM characteristics
 - Test passivation of lithium with D₂ glow for control of pumping properties
 - Optimize lithium deposition (ELMs vs. pumping), combine with impurity control techniques (snowflake, gas puff, etc.) towards long-pulse
 - Test persistence of lithium coatings
 - Measure recycling characteristics as power, ion flux, pulse length are varied
 - Use rapid SGI gas pulses to measure SOL pump-out vs time within shot
 - Later stages: measure impurity behavior with Li on Mo tiles

Long term plans (NSTX-U years 3-5)

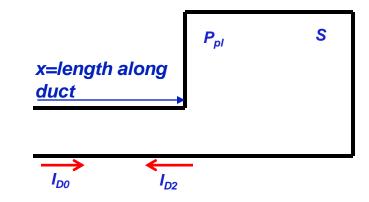
- Install cryo-pump as part of long-pulse divertor
 - Present plan: cryo in upper divertor, liquid lithium on lower divertor
 - Contingent on available resources
- Explore performance of pumping system
 - Document pumping rates as P, I_p , R_{OSP} are varied
 - Test pumping of high flux expansion divertor
 - Assess n/n_G achievable with pumping in various conditions, and develop low-density, high-performance scenario
 - Develop long-pulse, density controlled plasmas for range of n/n_G
 - Compare to lithium-based pumping

Summary


- A promising cryo-pump design point has been identified that is compatible with standard and snowflake divertors
 - Based on semi-analytic pumping model
 - Divertor profile projections based on NSTX data
- D inventory control using lithium coatings appears to extrapolate to 5s NSTX-U discharges
 - Estimated recycling coefficient remains low at R~0.9 for 1 s discharges
 - D inventory in ELMy plasmas controlled ~25 s following LITER shutoff
- Studying compatibility and interplay between cryo-pumping and lithium is an important research goal for NSTX-U

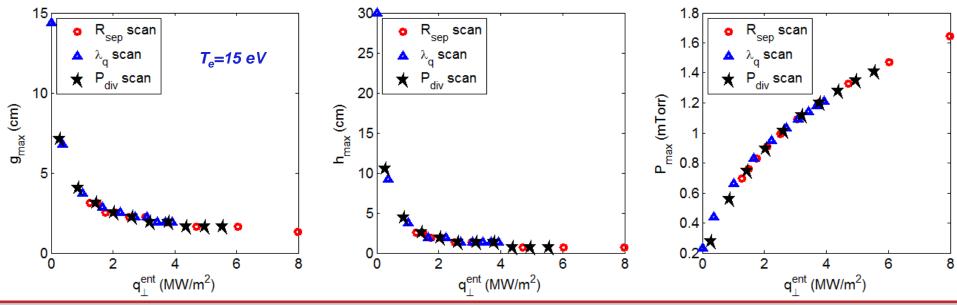
Analytic pumping model* used to optimize pumping chamber

- Uses first-flight model for neutral flux into pump plenum
- Requires knowledge of divertor plasma profiles
- Validated against DIII-D experiments


Penetration of neutrals through a long throat is accounted for to correct the conductance

I_{D0} = I_{D0}(x) = current of "fast" atomic deuterium entering from plasma
 If fast atoms are turned into thermal molecules on collision will the wall, then:
 I_{D0}(x) = I_{D0}(0)*F(x)/F(0), where F is the solid angle factor evaluated along x

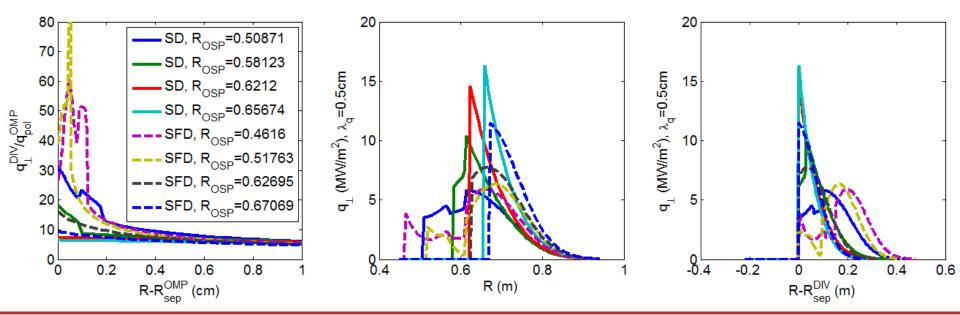
- I_{D2} = volume integral of sources (I_{D0}), sinks ($P_{pl}S$) $\Rightarrow I_{D2}(x) = I_{D0}(x) - P_{pl}S$
- Pressure is $\Delta P = \int_{a}^{b} I(x)\sigma(x)dx, \sigma = \frac{3}{4\overline{v}}\frac{H}{A^2}, \frac{1}{C} = \int_{a}^{b} \sigma(x)dx$
- So plenum pressure is


$$P_{pl} = \int_{o}^{h} I_{D2}(x)\sigma(x)dx = \int_{o}^{h} I_{D0}(x)\sigma(x)dx - \int_{o}^{h} P_{pl}S\sigma(x)dx$$
$$= I_{D0}(0)\int_{o}^{h} \frac{F(x)}{F(0)}\sigma(x)dx - \frac{P_{pl}S}{C} = \frac{I_{D0}(0)}{C_{eff}} - \frac{P_{pl}S}{C} = \frac{I_{D0}(0)}{S+C}\frac{C}{C_{eff}}$$

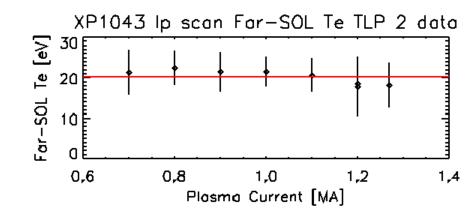
$$C_{eff} = \int_{o}^{h} \frac{F(x)}{F(0)} \sigma(x) dx$$

For given pump entrance position, heat flux at pump entrance orders the "optimal" geometry parameters

- Optimal throat height/length depend mainly on heat flux near entrance
 - Doesn't matter if it's varied by moving the OSP, changing flux expansion, or changing total power
 - T_e affects maximum pressure achievable, but only weakly affects g/h
- Optimizing for P=0.8mTorr at T_e=15.0 eV gives g~2.5 cm, h~2 cm at q~2MW/m²

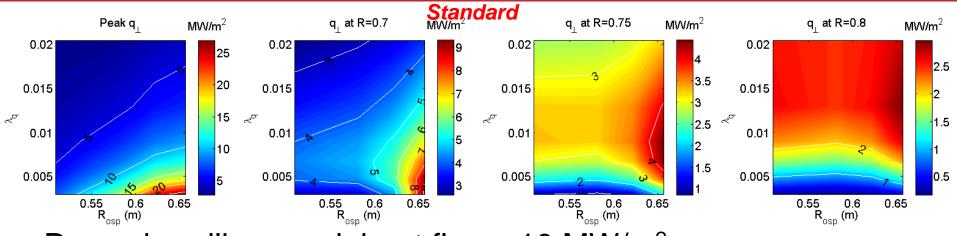


(III) NSTX-U

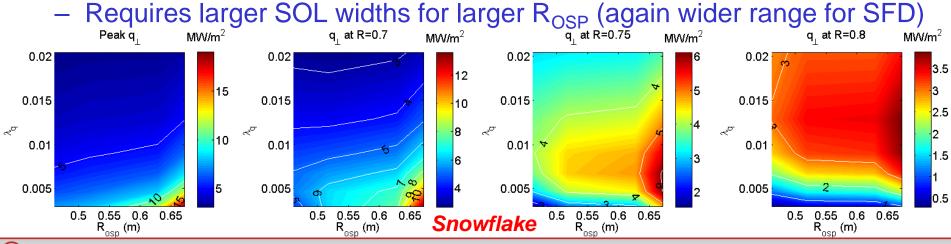

NSTX-U PAC-31 - Particle Control Plans, Canik (4/17/2012)

Projecting heat flux profiles

- Exponential poloidal heat flux profile imposed at midplane - P=5 MW (e.g., 1/2 of 10 MW goes to outer divertor) $- \lambda_a^{OMP} \sim 0.3-2.0 \text{ cm}$
- Mapped along field lines to divertor
 - Total geometric heat flux reduction factor shown on left
 - Example heat flux profiles showing for λ_q^{OMP} =5mm
 - Heat flux high at R=0.7, significantly lower at 0.8

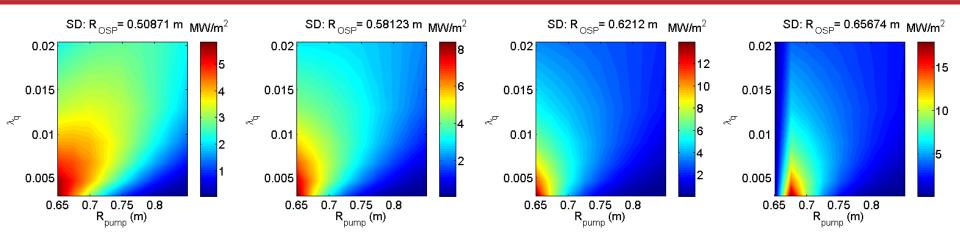


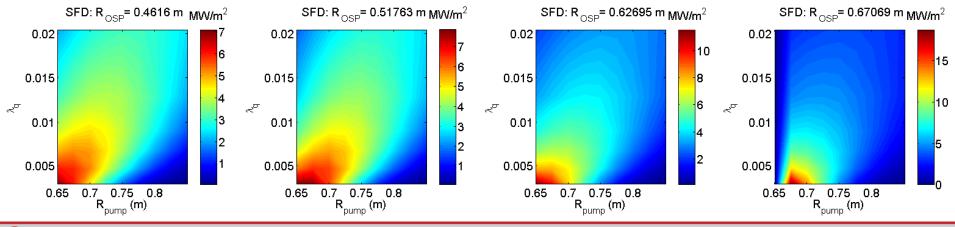
- Triple probe used to determine Te (avoids turbulence issue)
- "Far-SOL" defined as beyond second sep.
- Variation in Te not statistically significant


Heat flux projections show plenum entrance at R~0.7-0.75 m likely to provide sufficient pumping

Power handling: peak heat flux < 10 MW/m²

- Restricts R_{OSP} for narrow SOL (wider range for SFD)

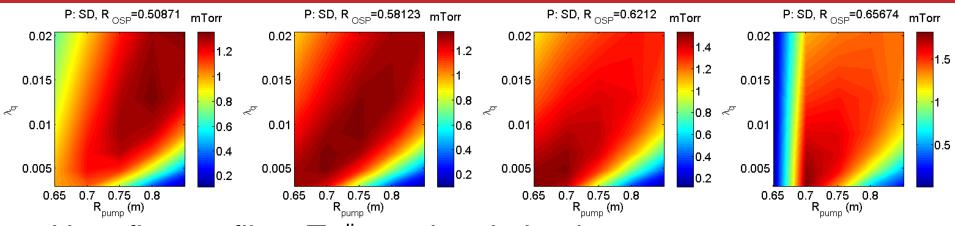

• Pumping: $q_{\perp}^{entrance} > \sim 2 \text{ MW/m}^2$

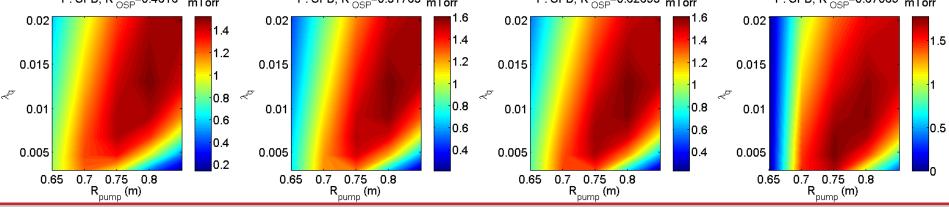


WNSTX-U

NSTX-U PAC-31 - Particle Control Plans, Canik (4/17/2012)

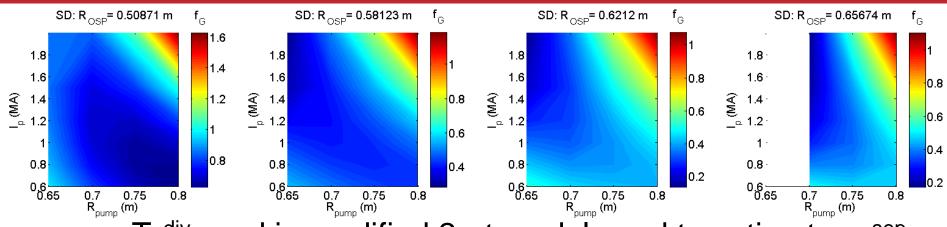
Heat flux at potential plenum entrances for 8 equilibria

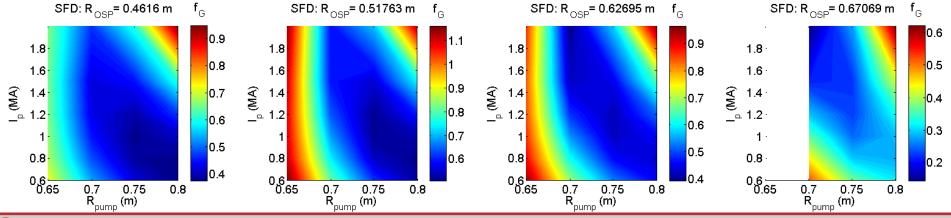



WNSTX-U

NSTX-U PAC-31 – Particle Control Plans, Canik (4/17/2012)

Projections show plenum entrance at R=0.72 can give >1 mTorr for wide range of SOL width, equilibria

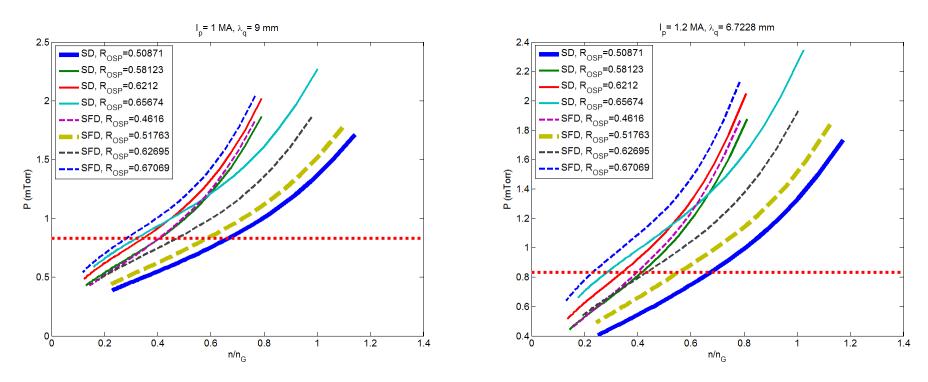

- Heat flux profiles, T_e^{div}, and optimized entrance parameters used in analytic model for plenum pressure
- Optimizing position for narrowest SOL gives R_{pump}~0.72
 - Narrow SOL gives least flexibility in moving R_{OSP} to improve pumping P: SFD, R_{OSP}=0.4616 mTorr P: SFD, R_{OSP}=0.51763 mTorr P: SFD, R_{OSP}=0.62695 mTorr P: SFD, R_{OSP}=0.67069 mTorr


🔘 NSTX-U

NSTX-U PAC-31 - Particle Control Plans, Canik (4/17/2012)

R_{pump}=0.72 supports low Greenwald fraction for range of I_p, equilibria

- q_{||}sep, T_e^{div} used in modified 2-pt model used to estimate n_e^{sep}
 q_{||}^{sep} from I_p scaling, T_e^{div} varied
- n_e/n_e^{sep} ~ 3 assumed to estimate f_G
- f_G shown is that at which pumped flux balances NBI input



(III) NSTX-U

NSTX-U PAC-31 - Particle Control Plans, Canik (4/17/2012)

Estimating achievable n/n_G

- n/n_G varied by scanning T_e^{div}
- To pump beams, need P~0.8 mTorr
- f_G shown is where the pumping balances beam input
 - Minimum achievable n_e -> could puff to increase

The Basic Two-Point Model

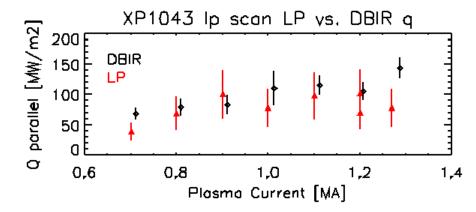
- Begins from the fluid equations and simplifies...
- Provides simple relations for upstream and target (PFC) plasma parameters
- Varying levels of complexity can be implemented
 - Fluid reconstruction via generalized 2-point (e.g. OSM/OEDGE code)
 - Coupling with Monte Carlo neutrals and impurities (e.g. DEGAS 2/EIRENE/DIVIMP)
- Start with the basics

Assume:

$$T_{e}=T_{i} \& p=p_{e}+p_{i}$$

$$\frac{d}{dx}\left[\left(\frac{1}{2}m_{i}v^{2}+5kT\right)nv-\kappa_{0e}T_{e}^{5/2}\frac{dT_{e}}{dx}\right]=Q_{R}+Q_{E}$$

Assume: Conduction Dominates Neglect Sources


Simple Extensions Attempt to Capture More Physics

- Volumetric loss terms can be included via f_{power} term
- Term can be estimated with interpretative modeling in lieu of better div. Bolom. Coverage
- Comparison of nominal LP and DBIR results are encouraging
- Two values of fpower used following: 0 and 0.5

Radiation and charge-exchange $q_{rad} + q_{cx} = f_{power} q_0$

$$(1-f_{power})q_0 = q_t = \gamma n_t c_{st} kT_t$$

$$\frac{T_t}{T_u} \propto \left(1 - f_{power}\right)^2$$

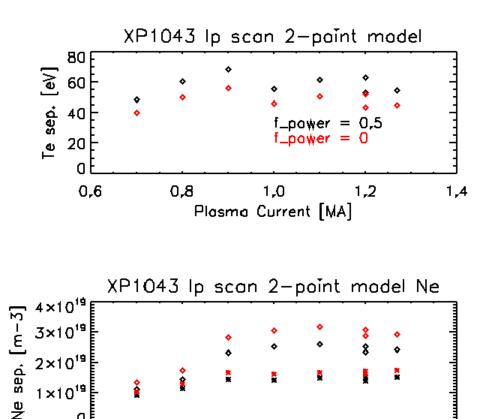
Updated Upstream Density

- Force balance in the ST requires modification to 2-PM
 - Typical formulation assumes "straight" flux tubes
 - 1.5m OMP vs. 0.5m target results in significant variation
- Flux-tube definition allows conversion of magnetic field to area
- Not yet consistently applied everywhere in calculations

 $F_u = F_t$

 $P_u A_u = P_t A_t$

$$N_{u}T_{u} = N_{t}T_{t}(1+M^{2})\frac{A_{t}}{A_{u}}$$


 $M = v/c_s \ge 1$ Mach No. at sheath

$$BA = \Psi_0 = const. \rightarrow \frac{A_t}{A_u} = \frac{B_u}{B_t}$$

$$N_u = \frac{N_t T_t (1 + M^2)}{T_u} \frac{B_u}{B_t}$$

Upstream Quantities Determined via 2-Point Model

- Parallel connection length calculated from EFIT02
 - q_{peak} used to locate nominal $\Psi_{\rm N}$ value for integration
 - Solution not sensitive to variance in length (robust model from target)
- Interpolated MPTS density at the upstream temperature shown for comparison
- Uncertainty not yet propagated in calculations to determine significance in discrepancy

1.0

Plasma Current [MA]

1,2

1,4

ŝ

0.8

1×10¹⁹

n 0,6

Wall fuel uptake is ~zero during long-pulse H-modes in pumped machines

- FY09 Joule Milestone Report
- Close balance is observed between particle input (beams+puff) and pumping
 - True for both DIII-D and C-Mod
 - Motivates pumping the beam input as figure of merit

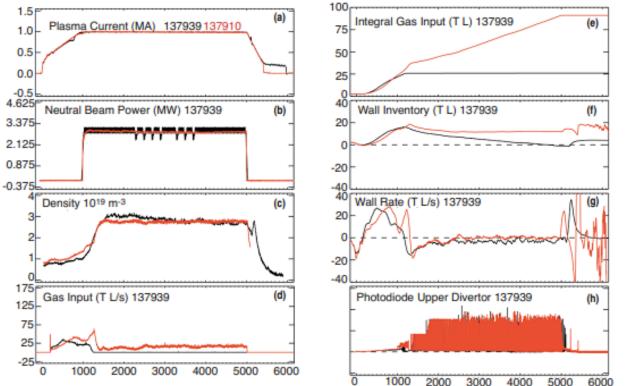


Fig. 2. ECH heated (red) H-mode plasma is compared with a NBI (black) discharge. The plasma current, neutral beam or ECH power, electron density, gas input, integral of the gas input; wall inventory and wall rate from the dynamic particle balance; along with the photodiode signal are compared with a neutral beam heated H-mode DIIID shot. Note that in both cases, the wall flux is quite large in the L-mode period, but during the ELMing H-mode, the wall flux is very close to zero.