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ASC Research Targets Integrated, Steady-State Scenario
Needs for FNSF/CTF and ITER

A steady state CTF/FNST must:

 Have full current drive with
acceptable recirculating power.
— Research program exploring a range of
Bn With 100% non-inductive CD. 000NN AR =
« Control the divertor heat flux to be

within acceptable material limits.
— Research program in divertor control.

« Simultaneously optimize confinement
and passive disruption avoidance.

— Research program on the optimization
and control of the boundary shape,
rotation and current profiles.

« Detect and respond to disruptions | |
Conventional NSTX Operating Space

and off-normal events. High-A Experiment During FY-11 Run

— Research program in disruption detection
and soft-shutdowns.

NSTX Operational Space: B Vs «
>1t average for each point

4
&
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ASC Research Targets Integrated, Steady-State Scenario
Needs for FNSF/CTF and ITER

A steady state CTF/FNST must:
 Have full current drive with

acceptable recirculating power.

— Research program exploring a range of
By with 100% non-inductive CD.

8f
 Control the divertor heat flux to be .:
within acceptable material limits. 65 :
— Research program in divertor control. 2 SAL N ev
« Simultaneously optimize confinement u Ty
and passive disruption avoidance. 3 a8 oCulham “Gperating <]
— Research program on the optimization 2‘ X“

and control of the boundary shape,
rotation and current profiles.
* Detect and respond to disruptions
and off-normal events.

— Research program in disruption detection o
and soft-shutdowns. ORNL
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Outline

« Recent activities in the ASC TSG.

— Scenario modeling for NSTX-U with free boundary TRANSP
— Progress in axisymmetric control development

— Disruption detection

« ASC research plans for NSTX-U

— 1: Scenario development

— 2: Axisymmetric control development Proposed ASC
| . [ Elements of the
— 3: Event handling NSTX-U 5-Year Plan

— 4: Scenario optimization for next step devices

« Summary
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Outline

« Recent activities in the ASC TSG.

— Scenario modeling for NSTX-U with free boundary TRANSP

NSTX-U NSTX-U PAC31- ASC Progress and Plans, Gerhardt (4/18/2012)



We Have Extended the NSTX-Upgrade Scenario Modeling
Using Free-Boundary TRANSP

Variations considered: vl

— Beam configuration & boundary shapes
— Confinement level & profile shapes

— Z.4 (=2 in most simulations)

— Anomalous fast ion diffusion

Used free-boundary capability in TRANSP
Allow the current profile to fully equilibrate

Profiles:

— Use neoclassical theory to predict the ion temperature

— Scaled experimental T, profiles to achieve a Hyg, ,=1, or Hgr=1.
— n, profile scaled from experiment to give desired fg,.

Studied many types of scenarios:

— High current
— Full non-inductive
— Very long pulse

- ngh BT- Under review at Nuclear Fusion
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Profile Peaking Over the Range Observed in NSTX Results

PAC29-7

in ~35% Variation in q,,,;, and .

Scan of Thermal Pressure Peaking to Accommodate
1.0MA,1.0T, Pinj=1 2.6 MW, near Different ELM Regimes and Core Peaking
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We Anticipate The Non-Inductive Current Level at B;=1.0 T
and P; .=12.6 MW To Be Between ~900 & ~1300 kA

0.0

0.0

10

8t

0

Broad, Hyz=1

Narrow, Hgg=1

PR S Y

02 04 06 08 1.0

Broad, Hyg=1 ]
Narrow, Hgz=1 ‘

0.0 0.2 04 06 08 1.0

ppol

25[

5} Narrow, Hgg=1
0 . a2 1 o g 2 1 o g 2 1 . 2
00 02 04 06 08 1

L _Broad, Hyz=1

ppol

.0

Dashed: ITER-98
confinement scaling

0.93 0.15—0.41 p-0.69
T98y,20cIP BT ne P

Loss

PAC29-7
PAC29-41

Fix: 1.0T, P;,=12.6 MW, fg,=0.72
Fix: A=1.75, «=2.8

Find the non-inductive current level for 2 confinement and
2 profile assumptions...yields 4 different projections.

Confinement Profiles Ir [KA] Bn Aimin
Hos=1 Broad 975 4.34 1.5
Hog=1 Narrow 875 4.87 1.4
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We Anticipate The Non-Inductive Current Level at B;=1.0 T
and P;..=12.6 MW To Be Between ~900 & ~1300 kA
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Non-Inductive Operating Points Projected Over a Range of

Toroidal Fields, Densities, and Confinement Levels

Projected Non-Inductive Current
Levels for k~2.85, A~1.75, f5,=0.7

By [T] P [MW] I [MA]

0.75 6.8 0.6-0.8
0.75 8.4 0.7-0.85
1.0 10.2 0.8-1.2
1.0 12.6 0.9-1.3
1.0 15.6 1.0-1.5

« From GTS (ITG) & GTC-Neo
(neoclassical):
= %6/ XiNeo~107
— Assumption of neoclassical ion
thermal transport should be valid.

04 05 06 0.7 08 09 1.0

04 05 06 0.7 08 09 1.0

Contours of Non-Inductive Fraction
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Contours of g,

1.4
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2.0

0.0
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Outline

« Recent activities in the ASC TSG.

— Progress in axisymmetric control development

NSTX-U NSTX-U PAC31- ASC Progress and Plans, Gerhardt (4/18/2012)
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* Improvements to our vertical control measurements

Progress in Boundary and Divertor Control

Vertical Growth Rates vs. Aspect Ratio

and modeling: o M
- GSPERT
— Begun to compare measured growth rates to 4| Corsica
theoretical predictions (Corsica and GSPERT). i ¢
— Improved plasma position observer (more flux loops). § 3 Experiment ¢
— RWM caoils for n=0 control. , $
» Smoothed transition between shape control phases. E
— Eliminate transients due to integral error resets. 1 4}
« Began to develop algorithm for snowflake divertor T T
control (PPPL, GA, LLNL Collaboration). Aspect Ratio
Examples of X-point finding via. G.-S. expansion algorithm 06 ]
Snowflake tracking: Centroid, Calculated and Efit02 X-points E 0.5k \ A W0\ A B ;‘(\\.xxx,“‘“/":;l‘";y N
-1.2r E \ \ \\‘ ‘\-‘.;.\‘ v ." N Y W
13t <—In Space 045 J '
-1.4+ | | | | | 1
_15k —— X-point (computed from snowflake location)
16 — X-point position (efit02 #135498)
'g - T T T T T :I T
N -1 _ R N A \ B o /,_/N;\;\
_1'87 In Tlme g ‘I‘lll"\\\ y ,‘ L “1/“1:{‘ o — - \
19 | = -16r ViV
#135498 \
“2f 0.305s
_21 ‘ | *r/ _1 : 8 i L | | 1 1 L |7
0 0.2 0.4 0.6 0.8 Milestone R14-3 04 05 06 07 08 09 1
R [m] Time [s]
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NSTX-U is Ramping Up Development of Realtime Profile

+ Realtime rotation diagnostic has been developed.
— Critical achievement for rotation control plans.
* Four radii spanning core to edge.
— Radial location optimized for best resolution of the profile. High-dispersion
« Readout and non-linear fitting demonstrated at 1 kHz.

— Instrument can supplement normal CHERS with high time
resolution physics studies

Diagnostics For Profile Control

grating —

* Realtime MSE has been funded in
collaboration with Nova Photonics.

— Is the fundamental rtEFIT constraint for g-profile
control. Arrangement of the NSTX MSE system (CIF)

. Output lens

PAC29-5f

Camera hardware for rtV¢

Comparison of CHERS analysis.
Standard offline code

MSE-CIF  Collection
Optics 100

Polarimeter

I

I

50

&
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50/

R=137cm plasma braking ]

vvvvvvvvvv

\
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Milestone R14-3

NSTX-U

NSTX-U PAC31- ASC Progress and Plans, Gerhardt (4/18/2012)

13



Outline

« Recent activities in the ASC TSG.

— Disruption detection

NSTX-U NSTX-U PAC31- ASC Progress and Plans, Gerhardt (4/18/2012)
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Disruption Detection Studies Show That No Single
Diagnostic Can Predict All Disruptions

« Examined >20 different signals that might be used for disruption prediction.
— Rotation, confinement, rotating MHD, RWMs and locked-modes, q*, By fows Prag/Piots- - -

« For each signal, define limits beyond which disruptions become likely.
— Use physics based predictions of signals if possible.

Milestone R13-4

Example #2: Neutron Emission
Example #1: In-Vessel n=1 RWM sensors predict the neutron rate using a 0D slowing-down model

Instantaneous values >~15 G indicative of Measured/Model ratios <~0.4 indicative of imminent
imminent disruption.

disruptions
300r._ ........ i"" ....... : ................... Y .__ 300- ........ l[, ....... R : .................. a
[ ' B,>15.0000 | : ' & Sy, Meas./Model<0;400000 ]
250 Vi i . 250 F 4 i | .
o I ; ] 0 [ :
& 200f S 200f ;
- : -
o - o C :
g 150¢ 3 150F !
N Q L 1
C o C 1
S 100} S5 100} :
+* C E-3 - ]
I B ]
50| 50 :
of of :
-100 0 100 200 300 400 500 100 0 100 200 300 400 500
Warning Time [ms] Warning Time [ms]
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Simple Predictor Can Predict Disruptions With High
Probability of Success

Physics Origins of “False Positives”

* Predictor based on combinations of threshold
based tests.
— Multiple thresholds for each test.
— No machine learning

 Produces a very low missed disruption rate.

0.3F

Fraction of all false positives

0.2F
1.2 T T P T AR AARARAARS ] i
: i : Reset Time: 40 ms - :
1.0 vl Required Points: 5 0.1¢f
o 0.8:— Ei E -:500<twam<10:1.30% ]
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o _ WL 1500 8.10% | prNoaGON GRS
© 04 1 : ; 7 2&@&“25??55?2
: A ; s =858%3273
0.2 i ! 7 -8-8339,"3589:-9"
: : | 60 I Lo @8 33
0.0t i i ' %‘g'ggggggﬁm
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b &g ®3 g m
« Most false positives are due to “near disruptive” ) =8 & s 32 = £
— o -
events. s 3 § =S
. . " " : :
« If tuned for a missed disruption fraction of 2%, T g ® T @
ign . o]
then false positive rate is only 6%. =
4 Milestone R13-4
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Outline

« ASC research plans for NSTX-U

— 1: Scenario development

— 2: Axisymmetric control development Proposed ASC
| . [ Elements of the
— 3: Event handling NSTX-U 5-Year Plan

— 4: Scenario optimization for next step devices

Research plan is cross-cutting with essentially all other TSGs
Collaboration is implied through the plan.

NSTX-U NSTX-U PAC31- ASC Progress and Plans, Gerhardt (4/18/2012) 17



Thrust 1: Many ASC Activities in Preparation for NSTX-U
Operations

« Major upgrade of the control computer underway. PAC29-6

— 64 bit, 16 processor machine running true realtime LINUX.

« Must upgrade PCS code to utilize NSTX-U hardware upgrades
— Additional divertor coils
— Three new NB sources.
— New inner-vessel magnetic constraints on rtEFIT

* New realtime profile diagnostics are to be incorporated.

« Keeping operations and control skills fresh through collaboration.
— PCS control development on KSTAR and DIII-D
— Physics operations assistance on KSTAR and EAST

* Year 1 capabilities will already vastly exceed those from NSTX
— 90 kV operation from all 6 sources.

— Initial operations at B;=0.55-0.65 T, for up to 5 s.
* Push toward 0.75T by the end of the campaign.
» Plasma currents up to 1400-1500 kA
— Up-down symmetric divertors w/ three coils each.
Facilitate early start on upper/lower snowflake development

NSTX-U NSTX-U PAC31- ASC Progress and Plans, Gerhardt (4/18/2012) 18



Thrust 1: Pursue 100% Non-Inductive Current at

years B;[T] Current Duration

Goal [kA] Goal
1 0.75 ~600-800 A few t¢

2 0.75-1.0 ~600-800 1-2 1

3-5 1 800-1300 Upto4.5s at
lower |

« Lower currents mean that high heat
fluxes are unlikely to impede
research.

Incremental Funding: Accelerate
testing of 100% non-inductive
current drive for FNSF.

PAC29-6 Progressively Higher |; and B

PAC29-7

PAC29-41

TRANSP Projections for 100% Non-Inductive Scenarios
Each polygon for a given engineering configuration, multiple
profile and confinement assumptions
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Thrust 1: Develop Long-Pulse Partial Inductive Operation

PAC29-6

« Two types of partial inductive operation:

— High-I; operation supports collisionality

Up to 2 MA with High Power

scaling and divertor heat flux studies.

All: f,,=0.7, 1.1<q,,,;,<1.2
6x80 kV, B;=1 T, 15 cm outer gap 0.01
6x100 kV, B;=1 T, 15 cm outer gap
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T
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Parameters For Partial Inductive NSTX-U
Scenarios with Relaxed 1.1<q,,,;,<1.2 &
Heating Duration < 5 sec
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Thrust 1: Develop Long-Pulse Partial Inductive Operation

PAC29-6

Up to 2 MA with High Power PAC29-7

« Two types of partial inductive operation:

B;=0.75 T, 8-10 Second Discharge
Scenarios Limited by q,,,>1.1 or OH Coil 1%

— High-I; operation supports collisionality _ : :
scaling and divertor heat flux studies. 2 Confinement and 2 Profile Assumptions

— Long pulse operation for particle retention
and disruptivity reduction studies.

* Years 1 & 2: Re-optimize startup for
reduced fuelling at 1,=1200-1500 KA.

— Goal: Enhance utility of Li pumping by
reducing the early gas load.

* Years 3-5: Performance Extension

— Discharges up to 2 MA for 5 seconds.

— Long pulse at ~1 MA for up to 10 seconds

 High-I; development is connected to | | | |
progress on heat flux mitigation. 0 2 4 6

lon [KA]

> [MA]

Longest Ever
lNSTX Discharge

lo [] [ [
a
LI L T T T T T T T

time [s]

3 x Modulated 80 kV Beams

@ NSTX-U
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Thrust 2: Axisymmetric Divertor Control Likely Required for
PAC29-6 High-Current Operation

« Outage:

— Collaborate on snowflake divertor physics and control experiments at DIII-D.

— Implement control algorithms for new divertor coils, including snowflakes.

e Years 1 & 2;

— Develop upper/lower snowflake control at higher current.
— Assess schemes for dual X-point control using new divertor coils.
— Assess magnetic balance control in the presence of 4 X-points.

— Document heat flux reductions compared to standard DN.

— Assess impact of limited Moly. coverage on scenarios.
 Years 3-5:

— Ultilize cryopump and divertor upgrades to control density in long pulse scenarios.

— Years 3-5: Pending progress in BP TSG, begin implementation of closed loop
radiative divertor control.

@ NSTX-U NSTX-U PAC31- ASC Progress and Plans, Gerhardt (4/18/2012) 22



Thrust 2: Current and Rotation Profile Control Will Be
Developed for Stability and Confinement Optimization

 Profile control philosophy:

PAC29-7

—Torque from NBI & 3D fields for rotation.

Rotation Profile Actuators
Torque Profiles From 6 Different NB Sources
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Thrust 2: Current and Rotation Profile Control Will Be
Developed for Stability and Confinement Optimization

 Profile control philosophy:

PAC29-7

—Torque from NBI & 3D fields for rotation.

— Variations in the beam source selection and

outer gap for the q profile.

qg-Profile Actuators

Variations in Beam Sources

800 KA Partial Inductive

10 0 kAand 1T

[50,60,70,130] cm

8[ [50,60,120,130] cm
[60,70,110,120] cm

[ [70,110,120,130] cm

0

ppol

Variations in Outer Gap

4700 T, 1.0 MA, 12.6 MW
055T,1.2 MA, 8.4 MW
3 ) '

0

27 22 17 12 7 2
Outer Gap

0.0 02 04 06 08 1.0

Milestone R14-3
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Thrust 2: Current and Rotation Profile Control Will Be
Developed for Stability and Confinement Optimization

 Profile control philosophy: PAC29-7
—Torque from NBI & 3D fields for rotation.

— Variations in the beam source selection and
outer gap for the q profile.

» Plans for model-based profile control

— Qutage: Progress by collaboration...

» E. Schuster at Lehigh for NSTX-U profile control,
E. Kolemen at GA for 2 years.

—Years 1 & 2
 Test rotation control using NB 3D field torque.

» Feed forward test ability of different beam
combinations to modify the g-profile.

* Install and commission tMSE and implement as
constraint in tEFIT.

—Years 2-4: Test current profile control

—Years 4-5:
» Utilize NCC caoil for better NTV control
» Study feasibility of combined control.

Incremental Funding: Accelerate testing of
large R,.,, NBCD for current profile control.

qg-Profile Actuators

Variations in Beam Sources

800 KA Partial Inductive

10 0 kAand 1T

[50,60,70,130] cm

8[ [50,60,120,130] cm
[60,70,110,120] cm

[ [70,110,120,130] cm

0 :

0.0 02 04 06 08 1.0

ppol

Variations in Outer Gap

3} )

g ;}Q;e

0

4700 T, 1.0 MA, 12.6 MW
055T,1.2 MA, 8.4 MW

27 22 17 12 7 2
Outer Gap

Milestone R14-3
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Thrust 3: Disruption Avoidance and Off-Normal Event
Handling Will be Studied

« There are good reasons to avoid high-energy/current disruptions in NSTX-U.

— Avoid stressing mechanical components, compromising lithium coatings, or
potentially damaging metal PFCs.

— Develop the basis for disruption free operation in next-step STs & FNSF, help
with the ITER disruption avoidance needs.

« OQutage:
— Use NSTX data to develop an optimal disruption detector.
— Determine realtime data requirements.

e Years1 & 2:

— Implement basic detector in PCS, and design architecture of control response.
* Incorporate data from new “Digital Coil Protection System”.

— Assess accuracy of predictor for NSTX-U disruptions, and refine as necessary.
— Do initial tests of automated rampdowns.
 Years 3-5
— Add additional realtime diagnostics for improved detection fidelity.
— Optimize rampdowns for different types of alarms.
— Incorporate closed loop MGl if it appears promising.
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Thrust 4: Explore Optimal Scenarios for Next Step STs

Study optimal profiles for high

confinement and good stability.

— Years 3-4: Optimization of the current profile
for best confinement and core n=1 stability.

— Years 3-5: Explore alternative optimal
scenarios, such as EPH or w/ ITBs.

Study the conditions for classical
beam current drive

— Years 1-2: Study what parameters determine
when *AE modes lead to anomalies in the
fast ion diffusion and NBCD.

— Years 3-5: Determine if anomalous diffusion
be used for scenario optimization.

Explore & validate integrated
models for projections to FNSF.
— Years 1-2: Compare NBCD & g-profile

predictions from integrated codes to NSTX-U.

— Years 3-5: Use knowledge to project

scenarios to ST FNSF devices. PAC29-7

1T,1MA, 12.6 MW, Near Non-Inductive Scenario
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NSTX-U ASC Research is Supporting NSTX-Upgrade Needs While
Developing the Knowledge Base for Next-Step STs

* Recent progress

— Developed an extensive database of free boundary TRANSP
simulations for a large range of NSTX-U scenarios.

» Being used for studies of boundary physics, energetic particle and global
stability, and transport and turbulence.

— Made progress in X-point tracking and snowflake divertor control.
— Developed new realtime diagnostics
— Developed disruption detection algorithms.

 Comprehensive ASC research plan for NSTX-U is being
developed with four main thrusts:
— High performance scenario development
— Axisymmetric control
— Event handling and disruption avoidance
— Scenario optimization for next-step STs
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ASC-Related Collaboration Activities

D. Mueller assisting with KSTAR and EAST operations.

E. Kolemen relocated to GA for DIII-D control development
work.

— Presently working on realtime steerable ECCD mirrors.

NTV physics

— NSTX continuing long-time collaboration on NTV physics w/ CU.

— QH-mode and EFC experiments in DIII-D

Rotation and Current Profile Control:
— Collaboration with E. Schuster of Lehigh University and CU.
— E. Kolemen at DIII-D will participate in profile control experiments.
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Potential NSTX Contributions to the FY-13 JRT

« Dynamics and characteristics of type-V regimes
— Demonstration that transient heat loads scale appropriately to FNST/ITER.
— Exploration of the shaping/collisionality/p regime for accessibility.

« Dynamics of low-level ‘EHOs’ observed in NSTX.
— EHOs observed in both type-V ELM and lithiumized ELM-free plasmas.

* Are these the same modes?
— Developing strategies to actively drive these modes.

 Search for I-mode in the NSTX database.

— For instance, more careful examination of the reversed-B; campaign in
2009, high X-point cases with favorable grad-B orientation.

« Study effect of 3D fields on particle transport.

— Start with “ELM-let” experiments in 2010, expand to other discharges.

« Other: Compare EPH to VH? NTV support using IPEC.
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Reminder: NSTX Discharges Have Matched the Aspect Ratio and
Elongation of NSTX-Upgrade Without Performance Degradation

Performance Characteristics vs. Aspect Ratio
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Reminder: NSTX Discharges Have Matched Many Important
Equilibrium and Stability Parameters with Next Step Device
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Small Amounts of Fast lon Diffusion Reduce Non-Inductive

Fraction...

PAC29-7

1.0 MA, 1.0 T, P;,=12.6,
near non-inductive
1.6 MA,1.0 T, P;,;=10.2 MW, partial
inductive
1.2MA, 0.55 T, P;,=8.4 MW, high f

All: f5,=0.7, Hgg=1

+ Result from PAC-29:

— In MHD free H-modes, bound
0<Dg<~1 m?/s

— Large sequence of TAE
avalanches yields time average
Dg~4 m?/s

« For scenarios with smaller beam
current drive, the effect of D¢, up to
~4 is irrelevant.

« For scenarios with larger beam
current drive, D, ~1 already has a
strong effect.

— Lowers the non-inductive fraction.
— Lowers the pressure peaking.
— Raises q,,, (less central NBCD)

0.0}

1.0

0.8}

0.0

0.2}

0.6}
0.4}

0.2}

0 12 ....... 3 p 5
Dy, [m?/s]
3 [P O oy OO n

qmin

ptot(o)/ < I:’tot>vol

3.5
3.0

0.0l

1.0}
0.5}

@ NSTX-U

NSTX-U PAC31- ASC Progress and Plans, Gerhardt (4/18/2012)

34



Small Amounts of Fast lon Diffusion Reduce Non-Inductive

PAC29-7 Fraction ...But Improve Stability
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Scenario Goals Can be Met over a Range of Z 4, Provided
PAC29-7 Confinement is Maintained

 Li H-modes, even w/ small ELMs
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Discharges Up to 10 s in Duration May Ultimately Be
PAC29-7 Possible Using Modulated 1st and 2"9 NBI

Modulation of 6 Beams To Produce Minimal q,,,, Variation
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