

Supported by

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U Nova Photonics ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

R. Raman University of Washington D. Mueller, S.C. Jardin **Princeton Plasma Physics Laboratory**

> and the NSTX Research Team NSTX PAC-31

B318, PPPL 17-19 April 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev **loffe Inst** TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Overview

Outline:

- Motivation
- Highlights from NSTX operations
- MHD Simulation studies
- Experimental plans on NSTX-U
- Plans for modeling work
- Plans for external collaboration activities
- Summary

Milestones:

R(12-2): Simulate confinement, heating, and ramp-up of CHI start-up plasmas

CHI is planned to be used as initial current seed for subsequent non-inductive current ramp-up in NSTX-U

NSTX-U Start-up and Ramp-up strategy

CHI in NSTX/NSTX-U

🔘 NSTX-U

NSTX has made considerable progress in developing CHI as a method to start-up an ST

- Best inductive plasma (from 10 YR NSTX data base) uses 340 mWb of solenoid flux to get to 1MA
- Un-optimized CHI started discharges require 258 mWb
- Full non-inductive start-up and ramp-up will be developed on NSTX-U

[PAC29-5a]

0 NSTX-U

Additional electron heating of CHI plasma is needed to increase start-up current and duration

- Both NSTX and HIT-II CHI discharges have attained 20-50eV during CHI phase
 - 200kA (NSTX), 100kA (HIT-II)
- Issues:
 - This T_e likely too low for HHFW to be efficiently/reliably absorbed
 - I_P likely decays too quickly for NBI fast-ions to remain confined
- Increased T_e predicted to significantly increase
 CHI closed flux current & reduce I_P decay rate
 - − TSC simulations show I_p stays above 400kA for 10-15ms for $T_e \ge \sim 100 eV$
 - Even higher T_e is highly desirable

PAC29-31

Ramp-up strategy significantly benefits from 1-2 MW ECH to heat CHI plasma

- In a 500kA decaying inductive discharge, TSC simulations indicate 0.6MW of absorbed ECH power could increase T_e to ~400eV in 20ms
 - ECH absorption and deposition profile being modeled using RF codes
 - CHI discharge densities at T_e = 70 eV would allow 60% first-pass absorption by 28 GHz ECH in NSTX-U
- ECH enables improved ramp-up strategy:
 (a) ECH heating for direct coupling to NBI, or
 (b) Pre-heat with ECH and heat to > 400 eV using HHFW
 - Maximum HHFW power > 4 MW, higher B_T in NSTX-U would improve coupling
 - HHFW has demonstrated heating a 300 kA / 300 eV plasma to > 1 keV in 40ms*

PAC29-31

(D) NSTX-U

*G. Taylor, et al., PoP 19, 042501 (2012)

PAC-31, SFPS, Raman (04/17-19/2012)

CHI start-up to ~0.4MA is projected for NSTX-U, and is projected to scale favorably to next-step STs

Injector flux in NSTX-U is ~ 2.5 times higher than in NSTX \rightarrow supports increased CHI current

Parameters	NSTX	NSTX-U	ST-FNSF	ST Pilot Plant
Aspect ratio: A	1.30	1.50	1.50	1.70
Elongation: κ	2.6	2.8	3.1	3.3
Major radius: R ₀ [m]	0.86	0.93	1.2	2.2
Minor radius: a [m]	0.66	0.62	0.80	1.29
Toroidal field at R_0 : B_T [T]	0.55	1	2.2	2.4
TF rod current: I _{TF} [MA]	2.4	4.7	13.2	26.4
Toroidal flux: Φ _T [Wb]	2.5	3.9	15.8	45.7
Reference maximum sustained plasma current: I _{PS} [MA]	1	2	10	18
Start-up plasma normalized internal inductance: I _i	0.35	0.35	0.35	0.35
Injector flux footprint: d [m]	0.6	0.56	0.73	1.17
Injector flux for projecting start-up current: ψ_{inj} [Wb]	0.047	0.10	0.66	2.18
Bubble-burst current: Ibb [kA]	3.3	9.0	79	165
Injector current: I _{inj} [kA]	4.0	10.8	95	198
Start-up plasma flux: ψ_p [Wb]	0.04	0.08	0.53	1.74
Start-up plasma current achieved or projected: I _P [MA]	0.20	0.40	2.00	3.60
Current multiplication: I _P / I _{inj}	50	37	21	18
Multiplication limit: Φ_T / ψ_{inj}	53	38	24	21
Injector current density [kA/m ²]	4.9	12	63	39

() NSTX-U

Resistive MHD simulations beginning to reproduce aspects of NSTX CHI discharges

- Objective is to understand the importance of the initial non-axisymmetric dynamics of plasma growth and reconnection
- Reproduces experimental open flux evolution and current
- Experiment: EFIT and Fast camera images show detached large volume closed flux region
- Simulations (work in progress): show resistive reconnection generates smaller closed flux volume
 - Localized to region near injector
 - Now understanding requirements for generation of large volume closed flux regions
- Simulations show a n=1 mode

PAC29-5a E.B. Hooper (LLNL), C. Sovinec (Univ. of Wisconsin)

Preliminary scenario for ramping to 1MA in NSTX-U PAC29-31

- Initial 100 kA target is heated by HHFW
 - H-mode initiated at 150ms
 - Bootstrap current increases I_p to 400 kA
- At I_p = 400kA NBI is injected (at 0.3s)
 - NBI power programmed to increase with I_p
 - HHFW is turned off at 0.9s at $I_p = 550$ kA
 - Starting from 1.5s, f_{GW} of 0.5 and central temperature of 1.7 keV is maintained until 5s
 - Bootstrap current overdrive and NB current increases I_p to 1 MA at 5s

Alternate scenario to be investigated in 2012-13 using TSC simulations: Start with 400 kA seed target and minimize reliance on HHFW

Point source helicity injection being developed by PEGASUS is an alternate method for plasma start-up in NSTX-U

- Retractability of guns potentially advantageous in FNSF/Demo nuclear environment
- Plasma guns(s) biased relative to anode

- Helicity injection rate: $\dot{K}_{ini} = 2V_{inj}B_NA_{inj}$

Old design

Hardware preparations for NSTX-U Start-up

Diagnostics [FY12-13]

PAC29-32

- New additional fast voltage monitors for upper divertor
- Additional dedicated current monitors near injector
- Special set of EMI shielded inner vessel magnetics
- Additional flux loops and Mirnov coils on lower and upper divertor
 - Langmuir probe array on lower divertor
- Multipoint Thomson scattering, Filter scopes, multi chord bolometers and SXR arrays
- PF Coil configurations [FY 12]
 - Prioritizing bi-polar supplies and voltage limits for high slew rates
- Capacitor bank power supply [FY 13] Baseline capability
 - Voltage increased to ~2 kV & improve voltage snubbing systems
 - NSTX-U to support 4kV Ops. including transients
- Capacitor bank power supply [YR 3-5] Upgraded capability
 - Voltage increased to ~3 kV, bank energy increased to 200 kJ (in design stage)
 - Additional modules for improved voltage control (in design stage)

SFPS Run Plan on NSTX-U

- Years 1 2 of NSTX-U Operations
 - Re-establish initial transient CHI discharges
 - Using graphite divertor plates
 - Use full Li coverage to reduce low-Z impurities
 - Test benefits of upper metal divertor* and Lithium during absorber arcs
 - Initially couple to induction, then assess coupling to NBI
 - 1 MW ECH may allow coupling to NBI during Year 2 [incremental funding]
- Years 3 5
 - Establish discharges using metal divertor plate electrodes

- **PAC29-34**
- Assess benefits and compare to QUEST results (if available)
- Assess benefits of cryo pumping in the absorber region*
- Maximize current start-up
 - Use 1 MW ECH, then HHFW to increase T_e to ~ 1keV for coupling to NBI
- Test plasma gun start-up on NSTX-U
 - Collaboration with PEGASUS

* Resources permitting

Plans for 2-D MHD simulations (TSC)

- FY12 [Ramp-up of CHI-started discharge IAEA 2012 & R12-2]
 - Assess requirements for electron heating by ECH
 - Use TRANSP analysis of NSTX CHI discharges with inductive ramp to obtain electron transport model
 - Improve simulations using NSTX CHI discharges with inductive ramp to obtain ECH absorption and heat deposition profiles and extend to 1T
 - Assess requirements for electron heating by HHFW (with ECH heating)
 - Requirements for NBI ramp-up to1 MA of CHI target with ECH + HHFW
 - Now developing high resolution T-CHI start-up for hand-off to NBI CD
 - Requirements on density, temperature
- FY13-14 [Extend above work to NSTX-U vessel geometry]
 - Initial focus on developing start-up scenarios for Year 1-2 NSTX-U Ops.
 - Couple TSC directly to TRANSP & RF codes to calculate ECH, HHFW and NBI deposition profiles
- Years 15-18 [Extend to FNSF and ST Demo]
 - Initial work will start in FY13 and continue

Plans for 3-D MHD NIMROD simulations

- FY12-13 [Improved comparison with experiment]
 - Requirements for the generation of large volume closed flux surfaces
 - Quantify influence of time-changing boundary flux on dynamics of CHI
 - Requirements for gap width, crowbar time, $T_{\!e},\,n_{\!e}$ and $Z_{e\!f\!f}$
 - Requirements on injector voltage and programming requirements
 - Plasma growth rate implications for electron heating
- FY 14 16 [Extend modeling to NSTX-U]
 - Understand mechanisms that lead to closed flux generation
 - Role of MHD fluctuations & toroidal field
 - Importance of vessel geometry
 - Benefits of PF1C vs PF1B operation for inducing reconnection
 - Examine current drive using NBI
 - F. Ebrahimi (Univ. of New Hampshire)
- Years 17-18 [Develop 3-D model for FNSF and ST Demo]

R.H. Weening (Thomas Jefferson University) may provide part-time theory support for CHI (Now investigating use of M3D-C1 code to support some of above FY12-13 activities)

PAC29-34

CHI design for Quest supports NSTX-U research

- Design uses two floating electrodes
 - Insulators not part of vacuum structure
 - CHI operation at up to 5kV
 PAC29-34
 - Metallic electrodes (SS + Mo, Ta or W)
 - Provides early data for NSTX-U metal electrodes
 - Will also explore steady-state CHI & edge CD
- >100 kA current generation potential
 - Ip ~200kA with lower baffle plate height
- Initial design completed (March 2012)
 - R. Raman invited by QUEST to conduct design study (March 2012)
 - Finish Engineering design of electrodes & insulator (June 2012) & rest of design (September 2012)
 - Design appears feasible for installation

Current feed

Plans for external collaboration & design studies

- FY12
 - Preliminary design study of CHI for QUEST completed (looks feasible)
 - Develop detailed engineering design of CHI system
- FY 13-14
 - CHI system design for FNSF, ST Demo
 - Planned participation with HIST device for Transient CHI test for comparison with HIT-II and NSTX results (Raman)
 - Participation with PEGASUS on plasma gun start-up (Mueller)
 - Assessment of requirements for NSTX-U
 - Possible installation of CHI capability on QUEST*
 - Establish Transient CHI discharges on QUEST
- Years 15-17*
 - Assessment of benefits of metal electrodes on QUEST (for NSTX-U)
 - Assessment of new design CHI installation on QUEST
 - Test of edge current drive & steady-state CHI on QUEST

Summary: SFPS research plan supports development of solenoid-free current formation and ramp-up to the 1MA level

- CHI start-up achieves record-low flux consumption on NSTX to get to 1MA
 - Discharges coupled to induction transition to H-mode demonstrating compatibility with high performance operation
 - Generates discharges with low internal inductance and density needed for ECH heating and non-inductive ramp-up with NBI on NSTX-U
 - Favorable scaling with machine size (HIT-II, NSTX)
- ≥ 1MW 28 GHz ECH would greatly benefit start-up/ramp-up capabilities
- MHD codes now starting to reproduce NSTX CHI discharges
 - TSC being used to develop initial start-up scenarios for NSTX-U
 - NIMROD (and possibly M3D-C1) to understand flux closure mechanisms and the early dynamic phase of CHI
- External collaboration aids NSTX-U, FNSF & ST Demo
 - Plan to test metal electrodes and new electrode design on QUEST
 - PEGASUS developing plasma gun start-up for a future test on NSTX-U

Back-up slides

3-D MHD simulations with the NIMROD code reproduces injector and plasma current

- Time-dependent boundary conditions used as input
 - Current amplification in approximate agreement with experiment
- Voltage rise time different as there is no prebreakdown phase in simulation
 - Power supply inductance limits rate of rise
 - Added power supply damping for stability reasons

E.B. Hooper (LLNL) with support of C. Sovinec (U-Wisconsin)