

Supported by

Office of

Science

NSTX Physics Results and Analysis Highlights

Coll of Wm & Mary	S. A. Sabbagh (FY11-12 Run Coordinator)	
Columbia U CompX General Atomics	Columbia University	Culham Sci Ctr York U Chubu U
FIU INL Johns Hopkins II	M.G. Bell (Deputy) – (<i>now happily retired)</i>	Fukui U Hiroshima U
LANL LLNL	PPPL	Hyogo U Kyoto U Kyushu U
Lodestar MIT Lebigh U	for the NSTX Research Team	Kyushu Tokai U NIFS
Nova Photonics ORNL	NSTX PAC-31 meeting PPPL B318	Niigata U U Tokyo JAEA
Princeton U Purdue U	April 17th, 2012	Inst for Nucl Res, Kiev Ioffe Inst
SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Illinois		Chonbuk Nati U NFRI KAIST POSTECH Seoul Nati U ASIPP CIEMAT
U Maryland U Rochester U Tennessee U Tulsa U Washington U Wisconsin X Science LLC	V1.8	FOM Inst DIFFER ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

NSTX research targets predictive physics understanding needed for fusion energy development facilities

Enable key ST applications

- Move toward steady-state ST FNSF, pilot plant
- Close key gaps to DEMO
- Extend understanding to tokamak / ITER
 - Leverage ST to develop predictive capability

Present Research

- Develop key physics understanding to be tested in unexplored, hotter ST plasmas
 - Study high beta plasma transport and stability at reduced collisionality, extended pulse
 - Prototype methods to mitigate very high heat/particle flux
 - Move toward fully non-inductive operation

Following last PAC, the largest NSTX experimental program to date was planned for FY11-12

- Research Forum (March 2011): Record number of proposals
 - □ 193 XPs/XMPs were considered, totaling 226 days requested
 - Run time was ~3 times oversubscribed (see backup slide for detail)
 - TSG leaders + run coordination defined a full prioritized and scheduled plan for CY11-FY12 period (20 weeks)
- FY2011 run was abbreviated by TF coil fault
 - Only 4 weeks of run in FY2011 important BES and transport data
 NSTX-U was accelerated 6 months (upgrade began 1-Oct-2011)
- Research Milestones FY11-12 drove the run plan
 - FY11 milestones were largely addressed
 - Experiments aimed to exploit new capabilities are deferred to NSTX-U
 - e.g. Broader 3D fields studies, n > 1 control (2nd SPA); MSE-LIF; moly tiles; tangential fast ion D_α; more Thomson channels, real-time V_φ,...
 - Continued research based on NSTX data prepares needed physics hypotheses to be tested in the new, lower collisionality ST operational regime to be provided by NSTX-U

Brief summary of NSTX Milestones – key guidance for TSG XP prioritizations – FY2011

- <u>2011</u> OFES Joint Research Milestone (Boundary Physics, Transport & Turbulence)
 - Improve understanding of physics mechanisms responsible for pedestal structure, compare with predictive models
 - Perform detailed measurements of the height and width of the pedestal, E_r, initial measurements of pedestal region turbulence
 - Perform focused analytic theory/computational effort, including large-scale simulations, on physics controlling pedestal structure, height
- R(11-1): Measure fluctuations causing turbulent electron, ion, impurity transport
 - **TSGs:** Transport & Turbulence
- R(11-2): Assess ST stability dependence on plasma aspect ratio and boundary shaping
 - TSGs: Macrostability, Advanced Scenarios and Control
- R(11-3): Assess very high flux expansion divertor operation
 - **TSGs:** Boundary Physics, Advanced Scenarios and Control
- R(11-4): H-mode pedestal transport, turbulence, and stability response to 3D fields
 TSGs: ITER/CC, Transport & Turbulence, Boundary Physics, Macrostability

See backup slides for original FY2012 milestones

First successful nonlinear microtearing simulations for NSTX predict reduced electron heat transport at lower collisionality

Experiment 0.04 no Li Тi 0.03 $B_{t}\tau_{E}$ (T-s) V^{*}e^{-0.79±0.1} 0.02 0.01 q_{a/2}=2-2.5 <β_{nl}>=8-12% 0.00 0.15 0.20 0.00 0.05 0.10 0.25

 v_{e}^{*} (at r/a = 0.5)

- $\begin{tabular}{ll} \Box & \end{tabular} Increase in τ_{E} as ν^*_e decreases $\end{tabular} \end{tabular}$
- Trend continues when lithium is used

- □ Predicted χ_e and scaling ~ $\nu_e^{1.1}$ consistent with experiment ($\Omega \tau_E \sim B_t \tau_E \sim \nu_e^{*-0.8}$)
- Transport dominated by magnetic "flutter"
 - □ $\delta B_r/B \sim 0.1\%$ possibly detectable by planned UCLA polarimetry system
- □ NSTX-U computed to extend studies down to ~ 1/4 of present v^*

see Y. Ren T&T talk

R(11-1)

Plasma characteristics change nearly continuously with increasing lithium evaporation inside vessel **JRT-11**

see C. Skinner Li talk

D NSTX-U

NSTX PAC 31 Meeting: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Apr 17th, 2012

BES provides poloidal correlation lengths of turbulence in ELM-free H-mode pedestal and parametric dependencies

🔘 NSTX-U

NSTX PAC 31 Meeting: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Apr 17th, 2012

7

Pedestal scaling, structure, and dynamics studied theoretically and experimentally **JRT-11** R(11-1)

- Pedestal width scaling β_{θ}^{α} applies to multiple machines
- In NSTX, observed ped. width is larger
 - 1.7 x MAST, 2.4 x DIII-D
 - Data indicates stronger for NSTX: $\beta_{\theta}^{0.94}$ vs. $\beta_{\theta}^{0.5}$

Turbulence correlation lengths

- Measured correlation lengths are consistent with theory
 - Radial (reflectometry) ~ 2 4 cm
 - Poloidal (BES) ~ 10 14 cm
 - spatial structure exhibits ion-scale microturbulence ($k_{\mu}\rho_{i}^{ped} \sim 0.1 - 0.2$)

A. Diallo, et al., NF 51, 103031 (2011) A. Diallo, C.S. Chang, S. Ku (PPPL), D. Smith (UW), S. Kubota (UCLA)

(D) NSTX-U

NSTX PAC 31 Meeting: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Apr 17th, 2012

Simulations and lab results show importance of oxygen in lithium-graphite PMI for pumping deuterium

 Quantum-classical atomistic simulations show surface oxygen plays key role in the retention of deuterium in graphite

P. Krstic, sub. to Nature Comm.

- Accordingly, lab results support that Li on graphite can pump D effectively due to O
 - XPS measurements (Purdue) show 2 µm of Li increases surface oxygen content of lithiated graphite to ~10%
 - deuterium ion irradiation of lithiated graphite greatly enhances oxygen content to 20%-40%
 - In stark contrast, D irradiation of graphite <u>without</u> Li decreases amount of surface O
 - Li acts as an O getter, and the O retains D

J.P. Allain, Taylor (Purdue U.)

see C. Skinner Li talk

(D) NSTX-U

Kinetic RWM stability theory further tested against NSTX experiments, provides guidance for NSTX-U R(11-2)

(I) NSTX-U

NSTX PAC 31 Meeting: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Apr 17th, 2012 10

Improved RWM control includes radial and poloidal field, and state space feedback with a 3D conducting structure model

🔘 NSTX-U

NSTX PAC 31 Meeting: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Apr 17th, 2012 11

Higher aspect ratio of NSTX-U tested in NSTX, vertical stability growth rate data obtained, compared to simulation

R(11-2)

 NSTX Discharges have matched aspect ratio and elongation of NSTX-U without performance degradation Vertical Stability Growth Rates vs. A

- Improvements to vertical control capability and understanding
 - Begun to compare measured growth rates to theoretical predictions (Corsica, GSPERT)
 - Improved plasma position observer
 - Modeled use of RWM coils for n=0 control

see S.P. Gerhardt ASC talk

Disruption Detection and Warning Analysis is Being Developed for Disruption Avoidance

occurence

Disruptivity

Physics results

- Minimal disruptivity at relatively high β_{N}
 - ~ 6; $\beta_N / \beta_N^{\text{no-wall}(n=1)}$ ~ 1.3-1.5
 - Consistent with past specific disruption control experiments
- Strong disruptivity increase for $q^* < 2.5$
- Strong disruptivity increase for lowest rotation

Warning Algorithms

- Disruption warning algorithm shows high probability of success
 - Based on combinations of threshold based tests; no machine learning

- **Results & Physics implications**
 - ~99% disruptions flagged with at least 10ms warning, ~8% false positives
 - Most false positives are due to "near disruptive" events
 - Early MHD slows ω_{ϕ}
 - see S.P. Gerhardt recoverable Z motion ASC talk

(D) NSTX-U

Snowflake divertor experiments provide basis for required divertor heat flux mitigation in NSTX-U

 Divertor heat flux width strongly decreases as I_p increases in NSTX, DIII-D, C-Mod

- Snowflake divertor experiments in NSTX (P_{NBI}=4 MW, P_{SOL}=3 MW)
 - $\label{eq:condition} \begin{array}{l} \square & Good \ \text{H-mode confinement} \ (\tau_{\text{E}}, \\ T_{e,i}(0), \ \beta_{\text{N}}, \ \text{H98}(y,2) \) \end{array}$
 - Significant reduction in steadystate divertor heat flux (from 3-7 to 0.5-1 MW/m²)
 - Synergistic combination of detachment + radiative snowflake divertor

See V. Soukhanovskii, boundary physics talk

Snowflake divertor in NSTX

(D) NSTX-U

Fast ion redistribution associated with low frequency MHD measured by fast ion D_{α} (FIDA) diagnostic

- Caused by kink-like, global instabilities
 Primarily n = 1, weaker n = 2 present
- Redistribution can affect stability of *AE, RWMs, other MHD
 - CAE activity observed <u>after</u> onset of low frequency MHD
- Full-orbit code (SPIRAL) shows redistribution in real and velocity space
 - Radial redistribution from core plasma
 - □ Particles shift towards $V_{\parallel}/V = 1$
- Measured CAEs (reflectometer) examined as possible cause of enhanced core χ_e
 mode #, frequency measured: modes peak in core, resonant with electron orbit frequencies

N. Crocker et al. PPCF 53, 105001 (2011) FEATURED article

Change in distribution due to kink mode

Non-inductive current fractions of up to 65% sustained in NSTX, >70% transiently; Upgrade projected to achieve 100%

- Maximum sustained non-inductive fractions of 65% w/NBI at I_P = 0.7 MA
- 70- 100% non-inductive reached transiently using HHFW CD

see G. Taylor W&EP talk

0.0 0.5 1.0 1.5 2.0 I_P [MA]

- 100% non-inductive scenarios found over wide operation range
 - Scenarios at 74% Greenwald density

(S. Gerhardt, submitted to NF) see S. Gerhardt ASC talk

(D) NSTX-U

NSTX PAC 31 Meeting: Overview of Physics Results from NSTX (S.A. Sabbagh, for the NSTX Team) Apr 17th, 2012 16

L-mode discharge ramping to 1MA requires 35% less inductive flux when coaxial helicity injection (CHI) is used

- CHI initiated discharge
 - Uses 258 mWb to get to 1MA (35% less inductive flux)
- Estimated startup current of 0.4 MA
 0.6 MA for NSTX-U
- Decaying poloidal flux induces positive loop voltage, causes flux closure

20

-16

-20 -10

10

0

Time (ms)

20

R. Raman, et al. Nucl. Fusion 51, 113018 (2011)

20

-20

-10

0

Time (ms)

10

[🔘] NSTX-U

Continuing analysis of NSTX data targets a predictive physics understanding required for future fusion devices

Operating at reduced collisionality

- □ Nonlinear microtearing simulations predict reduced χ_e of experiment
- Measured high-k turbulence reduction consistent with lower edge χ_e
- Reduced v can be stabilizing for resistive wall modes, but only near kinetic resonances (requires control)
- Nearly continuous increase of favorable effects with increased lithium
- **ELM** stabilization through density profile modification by lithium

Handling increased heat flux

Large heat flux reduction from synergistic combination of detachment + radiative snowflake divertor

Detecting & avoiding disruptions

- Initial success in disruption detection and avoidance algorithms
- Expansion of physics model for RWM state space active control; determine favorable stability at ω_{ϕ} targets accessible by rotation control
- Developing non-inductive start-up and sustainment
 - Non-inductive current up to 65%, CHI yields 35% flux savings (I_p=1MA), NSTX-U scenarios computed to access 100% NICD in broad operational range

Supporting slides follow

(III) NSTX-U

CY2011-FY2012 prioritized run plan met run-time guidance

Run time guidance for experiments and proposal stats (CY2011 & FY2012)

Topical Science Group	Milestones	FY11 1st priority XPs	FY11 2nd priority XPs	FY12 1st priority XPs	FY12 2nd priority XPs	FY11+12 total run days	XPs (+XMPs) submitted	Run days requested
Advanced Scenarios and Control	R12-3	3.0	1.0	4.0	1.5	9.5	23	22.0
Boundary Physics	Y11 JRT, R11	7.0	2.5	3.0	1.0	13.5	28	35.5
ITER urgent needs & cross-cutting	R11-4	4.0	1.0	2.5	1.0	8.5	42	52.5
Lithium Research	R12-1	3.0	1.0	5.0	1.5	10.5	17	19.0
Macroscopic Stability	R11-2	5.5	1.5	3.5	1.0	11.5	22	23.5
Solenoid-free Start-up & Ramp-up	R12-2	3.0	1.0	4.0	1.5	9.5	8	17.5
Transport and Turbulence	Y12 JRT, R11	4.0	1.0	4.0	1.0	10.0	24	29.0
Waves and Energetic Particles	12-2 (w/ SFSI	3.0	1.0	4.5	1.5	10.0	29	27.0
Total		32.5	10.0	30.5	10.0	83.0	193	226.0

Record number of proposals (193 XPs/XMPs were considered)

Requested run days outpaced available days by factor of 2.8

TSGs were either very close to meeting, or met run time guidance

Slight (up to 0.5 day) mis-alignment of FY12 1st and 2nd priority not an issue – some shuffling may be required at mid-run assessment

WEP TSG is +0.5 days on their FY11 1st priority XPs (but total # days ok)

Brief summary of NSTX Milestones – key guidance for TSG XP prioritizations – FY2011

- 2011 OFES Joint Research Milestone (Boundary Physics, Transport & Turbulence) JRT-1 Improve understanding of physics mechanisms responsible for pedestal structure, compare with the predictive models. Perform detailed measurements of the height and width of the pedestal, E_r, initial measurements of pedestal region turbulence. Perform focused analytic theory/computational effort, including large-scale simulations, on physics controlling pedestal structure, height. -1): Measure fluctuations causing turbulent electron, ion and impurity transport R(11-2): Assess ST stability dependence on plasma aspect ratio and boundary shaping (11-3): Assess very high flux expansion divertor operation H-mode pedestal transport, turbulence, and stability response to 3D fields -4)
 - 2012 OFES Joint Research Milestone (Transport & Turbulence)

Original FY12 Milestones

- Improve understanding of core transport and enhanced capability to predict core temperature and density profiles.
- Assess the level of agreement between theoretical / computational transport models and available experimental measurements of core profiles, fluxes and fluctuations.
- Emphasize simultaneous comparison of model predictions with experimental energy, particle and impurity transport levels/fluctuations in various regimes, including with electron modes.
- **R**(12-1): Investigate relationship between Li-conditioned surface comp. and plasma behavior
- □ R(12-2): Assess confinement, heating, and ramp-up of CHI start-up plasmas
- R(12-3): Assess access to reduced density and collisionality in high-performance scenarios

🔘 NSTX-U