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Goal of MS research is to establish predictive capability for 
stability, 3D field, and disruption, in future STs and ITER

• Directly aligned with OFES research themes for “Validated 
predictive capability” and “3D magnetic fields” for FNSF, ITER, and 
next-step devices

• MS TSG milestones: 
– R(12-1): Investigate magnetic braking physics to develop toroidal 

rotation control at low collisionality for NSTX-U and ITER
– R(13-4): Identify disruption precursors and disruption mitigation & 

avoidance techniques for NSTX-U and ITER
– R(14-1): Assess access to reduced density and collisionality in high-

performance scenarios – with new NBIs and 3D coils (NCCs)

• NSTX-U MS researchers are active in collaborations world-wide, in 
both theory and experiment

– RWM, TM, NTV, 3D field, disruption: ITPA MDC-1,2,4,7,15,17,WG7,9
– RWM, TM, NTV, 3D field : DIII-D, KSTAR, ITER
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Outline

• Research highlights and progress towards FY12 milestones
– Importance of rotation and its control for RWM and EF correction
– Improvement of understanding NTV braking and plan for study
– Study on fast particle effects on RWM in NSTX and NSTX-U 

• Research plans and progress for FY13-14 milestones
– Study on disruptivity and halo current dynamics
– Full 3D modeling of eddy currents for active RWM control

• Highlights and plans for collaborations with other devices
• Plans during years 1-2 for NSTX-U operation
• Long term research plans in years 3-5 for NSTX-U operation

– Importance of Nonaxisymmetric Control Coil (NCC) for future research
• Summary
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Study of RWM kinetic stabilization is unveiling 
complex rotation and collisionality dependence  

• RWM can be stabilized by kinetic effects through rotational resonance 
– Implying importance of rotation control, NTV, NCC coils

• NSTX-tested kinetic RWM stability theory showed that reduced ν* can be 
stabilizing through kinetic resonances
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J. W. Berkery et al., POP 17 082504 (2010)
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• IPEC applications are successfully combining error field threshold data 
across various tokamaks and are being used for ITER  

• However, error field threshold can be substantially changed when strong 
braking is introduced 

– Implying importance of non-resonant field correction by NCC coils 

Error field correction requirements more demanding 
due to non-resonant braking of rotation   

5

Resonant error field threshold scaling J.-K. Park, 
R. J. Buttery (GA), 
T. Hender (CCFE), 
M. J. Schaffer (GA), 
S. M. Wolfe (PSFC), 
Y. M. Jeon (NFRI)

ITPA WG9

DIII-D TBM: Locking by dB21/BT0 ~10-5

NSTX: Locking by dB21/BT0 ~10-5

Scaling correction for rotation

R(12-1)

J. E. Menard, J.-K. Park et al., 
ITER IPEC TA (2011)

J. -K. Park et al, NF 52 023004 (2012)
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Studying effects of 3D fields on plasma rotation to 
develop and understand NTV braking for rotation control
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• NTV analysis on NSTX data shows:
– n=1 braking has a complex but similar dependency on rotation and collisionality to the 

RWM kinetic stabilization (as the dissipation plays a same role to both physics)
– n=3 braking is strongly dominated by SuperBanana-Plateau (SBP) and traditional 1/ν

and ν dependency on collisionality (providing qualitative explanation of NSTX data)
• Present tools will be put to the rigorous verification and validation
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• IPEC and NTV codes have been successfully used to
– Explain locking by DIII-D proxy error field experiment
– Verify NTV peaks observed in DIII-D low rotation
– Predict required NTV braking for DIII-D QH mode experiments
– Explain observed damping in KSTAR RMP experiments

Collaboration with other facilities important and useful 
for NTV model validation
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Proxy error case

NTV increase in DIII-D proxy error correction

J.-K. Park, R. J. Buttery, J. M. Hanson

Providing explanation for increased locking sensitivity

J.-K. Park, for A. J. Cole, PRL 106 225002 (2011)

J.-K. Park, K. H. Burrell

J.-K. Park, Y. M. Jeon

NTV Experiments vs. Theories
Reproducing SBP peaks
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• Fundamental relation between perturbed energy (RWM) and toroidal 
torque (NTV) has been theoretically proved 

– Implying both physics studies can be unified and validated all together

• RWM analysis tools, MISK/MARS-K/HAGIS, are under benchmark in 
details (ITPA MDC-2, Group leader: S. A. Sabbagh)

Present NTV and kinetic RWM physics analysis tools 
are under active benchmarking and upgrading 
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*For improved MISK analysis through benchmark, see backup page 23 

Solov’ev test case
Trapped thermal ions

MARS‐K
MISK

MISK and MARS-K benchmark for energy integral

J. W. Berkerypitch angle variable

kWinT δϕ 2= J.-K. Park, POP 18, 110702 (2011) 

R(12-1)

ITPA MDC-2PAC29-20

Marginal stability prediction by improved MISK
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Advanced NTV and kinetic RWM computations are 
also being developed and benchmarked

• NTV and kinetic RWM calculations can be improved 
by computing precise 3D orbits and perturbed 
distribution function

– Particle Orbit Code for Anisotropic pressures (POCA) 
is under development and benchmark

– MARS-K and M3DC-1 computations are also planned  
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Analytic NTV and POCA benchmark

K. Kim, Submitted to POP
Benchmark for the same case  on

S. Satake(NIFS), J.-K. Park, PRL 107 055011,(2011)

POCA demonstration of superbanana-plateau

K. Kim, Sherwood 2012

3D orbits without collision

dФ/dT

*For MARS-K with self-consistent eigenfunctions, see backup page 24 

R(12-1)

PAC29-20
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Extended RWM study indicates stabilizing effects of 
energetic particles will be modified in NSTX-U

• Reminder: NSTX-U will have three additional tangential beam sources
• Anisotropic slowing-down distribution function for energetic particles:

– RWM kinetic stabilization effects were tested with perpendicular vs. parallel 
and broad vs. narrow NB injection
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*For further highlights, see backup page 25 (RWM active control) and page 26 (Tearing mode)
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TRANSP Model

Simulated distribution function by TRANSP

J. W. Berkery

R(12-1)

PAC29-20
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• NSTX disruptivity has been studied based on ~40000 sampled time   
slices, and revealed correlations with stability indices such as q, βN, ω

– Disruptivity increases in lower q*, as expected, but decreases in highest βN
(Consistent with “weaker” RWM stability at “intermediate” rotation)

– Rotation decreases disruptivity, but not strongly when ω>2-3%ωA

NSTX database shows important correlations 
between disruptivity and stability variables 
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Disruptivity vs. q* and βN
S. P. Gerhardt Disruptivity vs. rotation (ω)

*For more statistics for disruptivity, see backup page 27

R(13-4)

ITPA MDC-15PAC29-45PAC29-21
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• Dynamics of NSTX n=1 halo currents 
(Important for ITER, ITPA MDC-15)

– Rotates 2 kHz in average during ~4ms
– Typically rotates 1-3 times
– Halo current tend start at about time of 

edge-q dropping beneath 2
– Appears that n=1 vanishes when LCFS 

vanishes, n=0 a few ms later as the 
open field line current dies away

Halo currents propagate toroidally and depend on 
evolution of q at limiter flux-surface during disruption
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Halo current rotation vs. q and LCFS

Statistics for q when n=1 rotates

S. P. Gerhardt
Submitted to NF

*For more about disruption studies, see back up 28-30 (including head loading) 

R(13-4)

ITPA MDC-15PAC29-45



NSTX-U PAC-31 – MS Research Progress and Plans (Park/Berkery/Boozer) April 18, 2012NSTX-U

• Reduced-density operation in NSTX was occasionally unsuccessful by early    
MHD modes, which could be induced by unfavorable q-profiles or error fields

– Implying importance of current, heating, 3D field control
• MHD stability and control in reduced density and collisionality will be actively 

studied on developed NSTX-U scenarios, with new NBIs and potential NCC coils

Access to reduced density in NSTX-U can be 
improved by early MHD mode control in startup
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Non-disruptive low density startup by beam control

S. P. Gerhardt
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Full 3D modeling for RWM control pioneered on 
NSTX will be important for NSTX-U, ITER, FNSF

• RWM State Space (RWMSC) controller created using full 3D eddy current      
model (VALEN-3D code) has been implemented and successfully tested in NSTX, 
and will be used with independent coil control in NSTX-U
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State space controller modeling

S. A. Sabbagh, O. Katsuro-Hopkins, J. Bialek (CU)

*For more about RWMSC, see backup page 31, for RWM control summary in NSTX , see backup page 32

~3000 states for 3D eddy currents in total

R(14-1)

100
150

50

0

-50
-100
-150S

en
so

r D
iff

er
en

ce
 (G

)

0.4 0.6 0.8 1.00.2 t (s)

118298

118298

100
150

50

0

-50
-100
-150

S
en

so
r D

iff
er

en
ce

 (G
) Measurement

Controller
(observer)

5 wall
states
used

10 wall
states
used

(no n = 1
state)

Controller reproducing rotating n=1

Use of RWM state space controller for NSTX
Controller with 12 states (including 10 wall + 2 

plasma states) sustains discharge at high βN=6.4
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MS group will continue strong collaborations with 
other devices such as KSTAR, DIII-D, and ITER team 
• KSTAR: Collaborations on 3D fields achieved 

n=1 ELM suppression, error field, tearing 
mode, NTV analysis, and supported 
equilibrium reconstruction

• DIII-D: Strong collaborations and joint 
experiments will be continued on RWM, NTV, 
error fields, and RMP suppressions

• ITER: Leading RWM and error field physics 
analysis efforts for recently requested ITER 
control group needs
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RMPs

ELM suppression by 3D fields in KSTAR

KSTAR operation window

S. A. Sabbagh, Y.-S. Park (CU), IAEA2012

Joint RWM experiments in DIII-D 

Stability decreases 
by off-axis beams

*For MISK calculations for ITER, see backup page 33

J. M. Hanson (CU),
S. A. Sabbagh,
J. W. Berkery

Y. M. Jeon, J.-K. Park, Submitted to PRL
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MS research will exploit new 2nd NBI and upgraded SPA 
capabilities during years 1-2 of NSTX-U operation

• Focus in Year 1 of NSTX-U operation:
– Recover and explore NSTX MS control capabilities
– Identify n=1,2,3 error fields and optimize corrections with new SPAs
– Assess the βN or q limit with new shaping control and off-axis NBCD
– Recover and upgrade RWM BP+Br and state space control with SPAs, 

including n>1 and multi-mode control
– Revisit disruptivity and study halo current dynamics and heat loads on divertor
– Apply MGI mitigation and explore dependency on injection locations*

• Focus in Year 2 of NSTX-U operation: 
– Explore NTV physics with new NBIs and SPAs
– Begin implementation of rotation control with new NBIs and SPAs
– Validate RWM physics in reduced ν* and varied fast ion populations
– Utilize off-axis NBCD to vary q-profile and applies to RWMs and tearing modes
– Identify disruption characteristics in various scenarios obtained by off-axis 

NBCD
– Test and optimize MGI techniques by varying positions and actuators

16

*For MGI plans and present modeling efforts, see backup page 34
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Key diagnostics have been identified and are being 
developed or proposed to support MS research

• Key diagnostics identified for MS study:
– Real-Time Velocity measurement for 

successful implementation of rotation 
control, and disruption detection

– Toroidally displaced multi-energy SXR to 
study 3D physics including island dynamics, 
and RWM eigenfunctions

– Core X-ray imaging spectrometer to 
study rotation effects on error field and early 
MHD without NBIs

– Internal magnetic fluctuation 
measurement for island structures in 
details

– Real time MSE and MPTS for fast and 
precise kinetic equilibrium reconstruction

– Magnetic sensors including BP and BR
sensors will be refurbished and upgraded

17

Edge islands by single ME-SXR

*For present identification for key diagnostics, see backup page 35

R(14-1)

Algorithm test for RTV with off-line CHERS

M. Podesta

K. Tritz (JHU)
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Long term research plans for next 3-5 years will 
be focused on integrated MS study in NSTX-U

• Year 3 NSTX-U operation:
– Optimize rotation feedback control for improving RWM and TM stability
– Assess and optimize tradeoffs between q, rotation, β to improve stability
– Explore the lowest ν* regimes and optimize RWM and TM stability
– Explore disruption precursors and avoidance scenarios with various MHD 

origins
– Explore MGI triggering for real-time actuation for disruption mitigation

• Year 4 NSTX-U operation:
– Combine rotation and β feedback control to maximize performance
– Provide FNSF/Pilot projection on RWM and TM stability and disruption
– Couple MGI triggering techniques to mitigate disruptions 

• Year 5 NSTX-U operation:
– First use of NCC (if resources permitting)
– Integrate MS control to avoid RWM, TM, ELM instability, disruption, with 

disruption mitigation protection
– Integrate validation of models for FSNF/Pilot

18
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Non-axisymmetric Control Coil  (NCC) would greatly 
improve control capabilities on stability and 3D fields

• Non-axisymmetric Control Coil (NCC) 
will play an important role in each 

– Rotation control, and thereby RWM 
kinetic stabilization, error field 
correction, tearing mode stabilization 

– RWM active control for significant 
multi-mode spectrum

– ELM control and stabilization
– Prediction for ITER 3D coil capabilities

• NCCs may prove essential to achieve 
integrated MS control

– Simultaneous control for rotation, 
RWM, error field, TM, ELM

• IPEC, NTV, VALEN-3D, RWMSC 
codes will be actively used for 3D 
physics studies with NCCs

19
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NCCs can maintain edge stochastic layer over a 
wide range of q95 by varying n=6 toroidal phase
• TRIP3D code analysis on NCCs for various target plasmas showed:

– In high shaping NSTX plasmas, n=6 fields produce a wider edge stochastic 
layer than n=3 I-coil fields in DIII-D, over a wide range of q95 (5.3<q95<12.8)

– Combined n=6 and existing n=3 field line loss fractions exceed those 
combined n=3 I-coil and n=1 C-coil fields in DIII-D

• Next step: Plasma response and NTV calculations with NSTX-U scenarios

20

NCC model in TRIP3D Stochastic layer by n=6 NCC fields

T. E. Evans (GA)
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Summary of MS research progress and plans 

• MS research is addressing important issues to establish predictive 
capability for stability, 3D field effects, and disruptions, for NSTX-U, ITER, 
and FNSF

• NSTX is making vital contributions in the areas of:
– Physics understanding for complex rotation dependencies in RWM 

stabilization, error field correction, tearing modes, and NTV braking, in present 
NSTX and future devices

– Understanding disruptivity and halo current dynamics
– Full 3D modeling of eddy currents in RWM control

• MS research and integrated stability control of NSTX-U plasmas would be 
greatly enhanced with NCC coils 

• Integrated MS research and control in NSTX-U will be compared and 
validated with upgraded analysis tools, utilizing more principle-based 
computations* 

• Collaborations with other devices will play important role in developing MS 
predictive capability

21

*For key modeling efforts, see backup page 36
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Back up

22
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Kinetic stability calculations show reduced stability in low li
target plasma as ωφ is reduced, RWM becomes unstable

• Stability evolves
– Computation shows stability at 

time of minimum li
– Region of reduced stability vs. 
ωφ found when RWM becomes 
unstable (li = 0.49)

• Quantitative agreement between 
theory/experiment

– MISK, MARS-K, HAGIS code 
benchmarking (ITPA MDC-2)

– MISK calculations improved
• (already good) agreement 

between theory/experiment 
improved (no free params.)

• Conclusion: Best agreement 
with fast particle effects 
included
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140132, t = 
0.704s

unstable

marginal
stability

(experiment)

RWM stability vs. ωφ (contours of γτw)
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1.0
ωφ/ωφ
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thermal

w/fast particles

- S.A. Sabbagh, et al., IAEA FEC 2008, Paper EX/5-1
- J.W. Berkery, et al., PRL 104 (2010) 035003
- S.A. Sabbagh, et al., NF 50 (2010) 025020
- J.W. Berkery, et al., Phys. Plasmas 17, 082504 (2010)
- S.A. Sabbagh, et al., IAEA FEC 2010, Paper EXS/5-5

More quantitative comparison to theory

R(12-1)

ITPA MDC-2PAC29-20
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RWM stability changes not only by particle kinetic 
energy, but also by modified eigenfunctions

• Kinetic δW can be comparable to or larger in magnitude than the fluid     
δW component, implying eigenfunctions can change

• MARS-K calculations showed self-consistent eigenfunctions can 
substantially differ by rotations and can even change ideal-wall limit

24

Ideal wall stability in fluid plasma Ideal wall stability in kinetic plasma
Plasma becomes unstable along with rotation, 

by Kevin-Helmholtz instability
Without bounce motions, kinetic effects 

stabilize plasma, as expected, but can be 
destabilizing by rotation

Shot 119621
t = 0.47s with

βN scaled to 5.1 
(Expt Ωφ(0) τA ~ 0.22)

Unstable even with ideal wall
J. E. Menard, Y. Liu (CCFE), EPS2012 ITPA MDC-7PAC29-20

R(12-1)
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Combined RWM Br + Bp sensor feedback gain and phase 
scans produce significantly reduced n = 1 field

25

• Favorable Bp + Br feedback      
(FB) settings found (low li plasmas)

– Fast RWM growth ~ 2 - 3 ms 
control by Bp

– Br feedback controls slower (~10 
ms) n=1 field amplification, modes

• Time-evolved theory simulation of 
Br+Bp feedback follows experiment
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Tearing stability threshold in NSTX can be explained 
with existing models with rotations

26

• NSTX island rotations, which are faster than ExB rotations, should   
provide stabilizing helical polarization currents 

• The polarization model gives a fair fit to the marginal island data for both 
NSTX and DIII-D

– Advantageous for STs

TM stability vs. ExB and diamagnetic rotation

Theory vs. experiments for marginal islands

R. La Haye (GA), S. P. Gerhardt
ITPA MDC-4

R(12-1)
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Further disruptivity study shows importance of q95, 
density, shaping control to disruption avoidance 

• Disruption analysis on NSTX database 
additionally shows disruptivity

– (a) dramatically increases for q95<7.5 
(as shown by q*)

– (b) increases in low density with 
fGW<0.3 by typically early disruption in 
the flat-top, and in high density with 
fGW>1.1

– (c) Increases in low elongation and
– (d) increases in low shaping factor 
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Disruptivity as a function of macro-variables

High shaping
S=37

Low shaping
S=20
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Halo currents in NSTX disruptions have low toroidal 
peaking, but get stronger in fast quench

• Detailed study for halo currents showed Toroidal Peaking Factor        
(TPF) is anti-correlated with Halo Current Fraction, but peaking is low

• Halo Current Fraction becomes stronger in fast quench
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Halo current detection system TPF = 1+C/HCF, C~0.1

HCF vs. current quench

S. P. Gerhardt
Submitted to NF
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NSTX high energy disruptions were investigated to 
study heat loading on divertor

• High energy disruptions in NSTX occurred soon after loop voltage was 
reversed without leading RWM, TM locking, or vertical motion before TQ

• USXR analysis shows that heat is lost in two steps very rapidly
– May provide an ideal scenario for studying disruptive heat transport through 

scrape off layer region
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3 of the 4 largest NSTX disruptions since 2007

Loop voltage reversal

129922  134269 129953

USXR before and during disruption

S. P. Gerhardt, A. Mclean (ORNL)
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Fast IR camera demonstrated ability to resolve 
disruption heat loading

• 2-D surface temperature shows 
significant turbulence

• T, q in time shows interesting pre-
collapse signature

– Peak q using THEODOR shows much 
lower value (~10) than 1-D C&J

• Fast cooling of the surface shows that 
incorporation of surface layer physics is 
essential

30

R(13-4)

ITPA MDC-15PAC29-46

NSTX fast dual-band IR temperature
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Open-loop comparisons between measurements and state 
space controller show importance of states and 3D model

• Agreement can be greatly improved with sufficient number of states       
and with 3D detail of model (such as NBI port)

• Extra NBI port is also included in NSTX-U prediction
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Effect of Number of States Used
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NSTX-U passive stability vs. βN

S. A. Sabbagh, J. Bialek
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(R10-1) Improvements in stability control techniques 
significantly reduce unstable RWMs at low li and high βN

• Computed n = 1 no-wall limit βN/li,~ 6.7 (low li range 
0.4 – 0.6)

• Synthetic equilibria variation: n = 1 no-wall unstable 
at all βN at li < 0.38 (current-driven kink limit)

– significant for NSTX-U, next-step ST operation
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• Subset of discharges
– High Ip ≥ 1.0MA, 

INICD/Ip ~ 50%
• 2009 experiments

– 48% disruption 
probability (RWM)

• 2010 experiments
– n = 1 control 

enhancements
– Significantly reduced 

disruption probability 
due to unstable 
RWM

• s14% of cases with 
βN/li > 11

• Much higher probability 
of unstable RWMs at 
lower βN, βN/li

S. A. Sabbagh
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ITER advanced scenario requires alpha particles for 
RWM stability across all rotation values

• Improved MISK calculations again shows the importance of alpha  
particles in ITER for RWM stability

• RWM, error field, and NTV prediction for ITER and next-step devices will 
be continued 
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Revisited from MARS-K benchmark and 

still showing importance of alpha particles

J. W. Berkery, POP 17 082504 (2010)

ITER equilibrium WG7
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MS research will be combined to improve 
disruption detection, as well as mitigations

34

• Disruption mitigation techniques will be tested in NSTX-U, using our 
unique access in inboard and private flux region

• Modeling for gas dynamics has been started

UEDGE+DEGAS2 gas penetration modeling

R. Raman (UW), D. P. Stotler

MGI location variation in NSTX configuration

ITPA MDC-1PAC29-45
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Important diagnostics for MS topics were identified 
and will be under proposal and/or development
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Diagnostics Resolution Related topics
Magnetic refurbishment kHz-MHz Whole MS area
Radial and poloidal magnetic sensors 3D, global
rtMSE 1-3cm, 5ms Global, tearing
Internal magnetic fluctuation measurement 18CH, 100kHz, 5-10ms 3D, Tearing
rtMPTS 10-20CH, 11-16.7ms Global, tearing
Toroidally displaced ME-SXR 1-3cm, 10-100kHz 3D, global, tearing, disruption
Core X-ray Imaging Spectrometer  <1cm, >5ms 3D, global, tearing
Disruption force diagnostics Disruption
RTV (Real Time Velocity) measurements 4-6CH, <5kHz 3D, global, tearing
Neutron collimator 3-4CH, 5-20ms Global, tearing
Tangential FIDA, High density FIDA  1cm, 5ms Global, tearing
NPA, ssNPA 5-10cm, 1MHz, 10keV Global, tearing
SOLC with magnetic probes, electrodes, sensors 3D, global, tearing, disruption
Additional RWM sensors near upper and lower divertors 3D, global
EBW measurements for magnetic field 1-3mm (rho=0.7-0.9) 3D, global, tearing, disruption
MSE-LIF 1-3cm, 5ms 3D, global, tearing
Radiation tomography Disruption
Improved reflectometer system 1-10kHz Global, ASC
Fast thermography, thermocouples 5-10cm, 1ms Disruption
Visible bremsstrahlung imaging 1cm, 20us Global
Error field measurements with external coils 3D
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Summarized theory topics in MS
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Category Existing efforts Associated physics issues 
More robust equilibrium 
reconstruction and modeling 
including toroidal rotation and 
SOL, and stability analysis

- EFITs including rotation
- LRDFITs including rotation
- (E,LRD)FITs + FLOW 
- (E,LRD)FITs + FLOW + M3D-C1

- Stability boundary with toroidal rotation?
- Stability boundary including separatrix?
- Can be routinely available as GEQDSK in NSTX-U?  

Quasi-linear 3D equilibrium 
modeling including islands, 
neoclassical, and kinetic MHD 
effects

- IPEC with tensor pressures and 
islands + POCA + Inner-layer
- FLOW, MARS-F, MARS-K
- M3D-C1

- 3D equilibrium with opened islands?
- 3D equilibrium with rotation?
- 3D equilibrium with anisotropic pressures?
- Self-consistent modeling for NTV in NSTX-U?

Quasi-linear stability modeling 
including neoclassical and kinetic 
MHD effects

- MISK with anisotropic pressures 
and fast ions
- MARS-K, NOVA-K
- M3D-C1

- RWM passive stability with 2nd NBIs in NSTX-U?
- Effects by Self-consistent eigenfunction?
- Second RWM code with full kinetic treatment?

Non-linear (as well as linear) 3D 
modeling for time-evolving 
dynamics of islands, neoclassical, 
full kinetic MHD effects

- M3D-C1 with distribution function 
solver (Ramos theory or NTV theory)
- XGC0

- Non-linear effects in 3D equilibrium and stability, 
including SW (q=1) and NTM?
- Two fluid effects in 3D equilibrium and stability?
- Full kinetic effects in 3D equilibrium and stability?

Gas penetration physics modeling 
including MGI and runaway 
electrons and disruption 
simulation

- DEGAS2 for gas penetration
- TSC for runaway electrons
- M3D for disruption simulation 
- Use of 3D equilibrium sequence 

- Gas penetration with atomic physics?
- Runaway electrons in NSTX-U?
- Coupling gas and plasma modeling?
- Why mode locking cause a disruption?
- What is the origin of a density limit disruption? 

Full 3D modeling for external 
structure for RWM dynamics

- Multi-mode VALEN3D
- Plasma permeability with 
neoclassical and kinetic MHD effects
- VALEN3D + Plasma permeability 

- Full 3D current effects on RWM?
- Effects of full 3D + kinetic plasma permeability on 
RMW stability and control?


