

Supported by

Advanced Scenarios and Control (ASC) Progress and Plans

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Stefan Gerhardt

E. Kolemen and the NSTX Research Team

> NSTX-U PAC 31 B318, PPPL April 18th, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFR KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

ASC Research Targets Integrated, Steady-State Scenario Needs for FNSF/CTF and ITER

A steady state CTF/FNST must:

- Have full current drive with acceptable recirculating power.
 - Research program exploring a range of β_N with 100% non-inductive CD.
- Control the divertor heat flux to be within acceptable material limits.
 - Research program in divertor control.
- Simultaneously optimize confinement and passive disruption avoidance.
 - Research program on the optimization and control of the boundary shape, rotation and current profiles.
- Detect and respond to disruptions and off-normal events.
 - Research program in disruption detection and soft-shutdowns.

NSTX Operational Space: β_N vs κ >1 τ_E average for each point

Conventional NSTX Operating Space High-A Experiment During FY-11 Run

ASC Research Targets Integrated, Steady-State Scenario Needs for FNSF/CTF and ITER

A steady state CTF/FNST must:

- Have full current drive with acceptable recirculating power.
 - Research program exploring a range of β_N with 100% non-inductive CD.
- Control the divertor heat flux to be within acceptable material limits.
 - Research program in divertor control.
- Simultaneously optimize confinement and passive disruption avoidance.
 - Research program on the optimization and control of the boundary shape, rotation and current profiles.
- Detect and respond to disruptions and off-normal events.
 - Research program in disruption detection and soft-shutdowns.

Outline

- Recent activities in the ASC TSG.
 - Scenario modeling for NSTX-U with free boundary TRANSP
 - Progress in axisymmetric control development
 - Disruption detection
- ASC research plans for NSTX-U
 - 1: Scenario development
 - 2: Axisymmetric control development
 - 3: Event handling
 - 4: Scenario optimization for next step devices
- Summary

Proposed ASC Elements of the NSTX-U 5-Year Plan

Outline

- Recent activities in the ASC TSG.
 - Scenario modeling for NSTX-U with free boundary TRANSP
 - Progress in axisymmetric control development
 - Disruption detection
 - ASC research plans for NSTX-U
 - 1: Scenario development
 - 2: Axisymmetric control development
 - 3: Event handling
 - 4: Scenario optimization for next step devices

Summary

Proposed ASC Elements of the NSTX-U 5-Year Plan

We Have Extended the NSTX-Upgrade Scenario Modeling Using Free-Boundary TRANSP

- Variations considered:
 - Beam configuration & boundary shapes
 - Confinement level & profile shapes
 - Z_{eff} (=2 in most simulations)
 - Anomalous fast ion diffusion
- Used free-boundary capability in TRANSP
- Allow the current profile to fully equilibrate
- Profiles:
 - Use neoclassical theory to predict the ion temperature
 - Scaled experimental T_e profiles to achieve a $H_{98y,2}$ =1, or H_{ST} =1.
 - n_e profile scaled from experiment to give desired f_{GW}.
- Studied many types of scenarios:
 - High current
 - Full non-inductive
 - Very long pulse
 - High β_T .

Under review at Nuclear Fusion

PAC29-7

PAC29-4

Profile Peaking Over the Range Observed in NSTX Results in ~35% Variation in q_{min} and I_i

NSTX-U

We Anticipate The Non-Inductive Current Level at B_T=1.0 T and P_{inj}=12.6 MW To Be Between ~900 & ~1300 kA

🔘 NSTX-U

We Anticipate The Non-Inductive Current Level at B_T=1.0 T and P_{ini}=12.6 MW To Be Between ~900 & ~1300 kA

NSTX-U

Non-Inductive Operating Points Projected Over a Range of Toroidal Fields, Densities, and Confinement Levels

Projected Non-Inductive Current Levels for κ ~2.85, A~1.75, f_{GW}=0.7

Β _τ [T]	P _{inj} [MW]	I _P [MA]
0.75	6.8	0.6-0.8
0.75	8.4	0.7-0.85
1.0	10.2	0.8-1.2
1.0	12.6	0.9-1.3
1.0	15.6	1.0-1.5

- From GTS (ITG) & GTC-Neo (neoclassical):
 - $-\chi_{i,ITG}/\chi_{i,Neo} \sim 10^{-2}$
 - Assumption of neoclassical ion thermal transport should be valid.

 $B_T=1.0 \text{ T}, I_P=1 \text{ MA}, P_{inj}=12.6 \text{ MW}$ Contours of Non-Inductive Fraction 1.2

Outline

- Recent activities in the ASC TSG.
 - Scenario modeling for NSTX-U with free boundary TRANSP
 - Progress in axisymmetric control development
 - Disruption detection
 - ASC research plans for NSTX-U
 - 1: Control development
 - 2: Event handling
 - 3: Scenario optimization for next step devices
 - Summary

Proposed ASC Elements of the NSTX-U 5-Year Plan

Progress in Boundary and Divertor Control

NSTX-U is Ramping Up Development of Realtime Profile Diagnostics For Profile Control

- Realtime rotation diagnostic has been developed.
 - Critical achievement for rotation control plans.
- Four radii spanning core to edge.
 - Radial location optimized for best resolution of the profile.
- Readout and non-linear fitting demonstrated at 1 kHz.
 - Instrument can supplement normal CHERS with high time resolution physics studies
 - Realtime MSE has been funded in collaboration with Nova Photonics.
 - Is the fundamental rtEFIT constraint for q-profile control. Arrangement of the NSTX MSE system (CIF)

Camera hardware for rtV_{ϕ}

Comparison of CHERS analysis. Standard offline code Fast realtime code

🔘 NSTX-U

Outline

- Recent activities in the ASC TSG.
 - Scenario modeling for NSTX-U with free boundary TRANSP
 - Progress in axisymmetric control development
 - Disruption detection
 - ASC research plans for NSTX-U
 - 1: Scenario development
 - 2: Axisymmetric control development
 - 3: Event handling
 - 4: Scenario optimization for next step devices

Summary

Proposed ASC Elements of the NSTX-U 5-Year Plan

Disruption Detection Studies Show That No Single Diagnostic Can Predict All Disruptions

- Examined >20 different signals that might be used for disruption prediction.
 - Rotation, confinement, rotating MHD, RWMs and locked-modes, q^{*}, β_N , f_{GW} , P_{rad}/P_{tot} ,...
- For each signal, define limits beyond which disruptions become likely.
 - Use physics based predictions of signals if possible.

Milestone R13-4

Simple Predictor Can Predict Disruptions With High Probability of Success

- Predictor based on combinations of threshold based tests.
 - Multiple thresholds for each test.
 - No machine learning
 - 1.2 Reset Time: 40 ms 1.0 **Required Points: 5** -500<twam<10: 1.30% 0.8 occurence 10<t_{warn}<25: 7.18% 25<t_{warn}<100: 48.4% 0.6 100<twam<300: 34.9% 3<mark>00<t_{warn}<1500: 8.10%</mark> 0.4 0.2 0.0 -100 100 200 300 400 500 600 0 Warning Time t_{warn} [ms]
- Produces a very low missed disruption rate.

- Most false positives are due to "near disruptive" events.
- If tuned for a missed disruption fraction of 2%, then false positive rate is only 6%.

Outline

- Recent activities in the ASC TSG.
 - Scenario modeling for NSTX-U with free boundary TRANSP
 - Progress in axisymmetric control development
 - Disruption detection
- ASC research plans for NSTX-U
 - 1: Scenario development
 - 2: Axisymmetric control development
 - 3: Event handling
 - 4: Scenario optimization for next step devices

Proposed ASC Elements of the NSTX-U 5-Year Plan

Summary

Research plan is cross-cutting with essentially all other TSGs Collaboration is implied through the plan.

Thrust 1: Many ASC Activities in Preparation for NSTX-U Operations

- Major upgrade of the control computer underway.
 - 64 bit, 16 processor machine running true realtime LINUX.
- Must upgrade PCS code to utilize NSTX-U hardware upgrades
 - Additional divertor coils
 - Three new NB sources.
 - New inner-vessel magnetic constraints on rtEFIT
- New realtime profile diagnostics are to be incorporated.
- Keeping operations and control skills fresh through collaboration.
 - PCS control development on KSTAR and DIII-D
 - Physics operations assistance on KSTAR and EAST
- Year 1 capabilities will already vastly exceed those from NSTX
 - 90 kV operation from all 6 sources.
 - Initial operations at B_T =0.55-0.65 T, for up to 5 s.
 - Push toward 0.75T by the end of the campaign.
 - Plasma currents up to 1400-1500 kA
 - Up-down symmetric divertors w/ three coils each.
 - Facilitate early start on upper/lower snowflake development

PAC29-6

Thrust 1: Pursue 100% Non-Inductive Current at
Progressively Higher IP and BTPAC29-7
PAC29-4

years	Β _τ [T]	Current Goal [kA]	Duration Goal
1	0.75	~600-800	A few τ_{E}
2	0.75-1.0	~600-800	1-2 τ _R
3-5	1	800-1300	Up to 4.5 s at lower I _P

 Lower currents mean that high heat fluxes are unlikely to impede research.

Incremental Funding: Accelerate testing of 100% non-inductive current drive for FNSF.

TRANSP Projections for 100% Non-Inductive Scenarios Each polygon for a given engineering configuration, multiple profile and confinement assumptions

PAC29-6

Thrust 1: Develop Long-Pulse Partial Inductive OperationPAC29-6Up to 2 MA with High PowerPAC29-7

- Two types of partial inductive operation:
 - High-I_P operation supports collisionality scaling and divertor heat flux studies.

Parameters For Partial Inductive NSTX-U Scenarios with *Relaxed 1.1<q_{min}<1.2* & Heating Duration < 5 sec

(III) NSTX-U

Thrust 1: Develop Long-Pulse Partial Inductive OperationPAC29-6Up to 2 MA with High PowerPAC29-7

- Two types of partial inductive operation:
 - High-I_P operation supports collisionality scaling and divertor heat flux studies.
 - Long pulse operation for particle retention and disruptivity reduction studies.
- Years 1 & 2: Re-optimize startup for reduced fuelling at I_P=1200-1500 kA.
 - Goal: Enhance utility of Li pumping by reducing the early gas load.
- Years 3-5: Performance Extension
 - Discharges up to 2 MA for 5 seconds.
 - Long pulse at ~1 MA for up to 10 seconds
- High-I_P development is connected to progress on heat flux mitigation.

 B_T =0.75 T, *8-10 Second Discharge* Scenarios Limited by q_{min} >1.1 or OH Coil I²t

2 Confinement and 2 Profile Assumptions

Thrust 2: Axisymmetric Divertor Control Likely Required for High-Current Operation

- Outage:
 - Collaborate on snowflake divertor physics and control experiments at DIII-D.
 - Implement control algorithms for new divertor coils, including snowflakes.
- Years 1 & 2:
 - Develop upper/lower snowflake control at higher current.
 - Assess schemes for dual X-point control using new divertor coils.
 - Assess magnetic balance control in the presence of 4 X-points.
 - Document heat flux reductions compared to standard DN.
 - Assess impact of limited Moly. coverage on scenarios.
- Years 3-5:
 - Utilize cryopump and divertor upgrades to control density in long pulse scenarios.
 - Years 3-5: Pending progress in BP TSG, begin implementation of closed loop radiative divertor control.

Thrust 2: Current and Rotation Profile Control Will Be Developed for Stability and Confinement Optimization

Profile control philosophy: <u>PAC29-7</u>
– Torque from NBI & 3D fields for rotation.

Rotation Profile Actuators

Torque Profiles From 6 Different NB Sources

Thrust 2: Current and Rotation Profile Control Will Be Developed for Stability and Confinement Optimization

• Profile control philosophy:

PAC29-7

- Torque from NBI & 3D fields for rotation.
- Variations in the beam source selection and outer gap for the q profile.

q-Profile Actuators

Variations in Beam Sources 800 kA Partial Inductive

Thrust 2: Current and Rotation Profile Control Will Be Developed for Stability and Confinement Optimization

PAC29-7

- Profile control philosophy:
 - Torque from NBI & 3D fields for rotation.
 - Variations in the beam source selection and outer gap for the q profile.
- · Plans for model-based profile control
 - Outage: Progress by collaboration...
 - E. Schuster at Lehigh for NSTX-U profile control, E. Kolemen at GA for 2 years.
 - -Years 1 & 2
 - Test rotation control using NB 3D field torque.
 - Feed forward test ability of different beam combinations to modify the q-profile.
 - Install and commission rtMSE and implement as constraint in rtEFIT.
 - -Years 2-4: Test current profile control
 - -Years 4-5:
 - Utilize NCC coil for better NTV control
 - Study feasibility of combined control.

Incremental Funding: Accelerate testing of large R_{tan} NBCD for current profile control.

q-Profile Actuators

Variations in Beam Sources 800 kA Partial Inductive

Thrust 3: Disruption Avoidance and Off-Normal Event Handling Will be Studied

- There are good reasons to avoid high-energy/current disruptions in NSTX-U.
 - Avoid stressing mechanical components, compromising lithium coatings, or potentially damaging metal PFCs.
 - Develop the basis for disruption free operation in next-step STs & FNSF, help with the ITER disruption avoidance needs.
- Outage:
 - Use NSTX data to develop an optimal disruption detector.
 - Determine realtime data requirements.
- Years 1 & 2:
 - Implement basic detector in PCS, and design architecture of control response.
 - Incorporate data from new "Digital Coil Protection System".
 - Assess accuracy of predictor for NSTX-U disruptions, and refine as necessary.
 - Do initial tests of automated rampdowns.
- Years 3-5
 - Add additional realtime diagnostics for improved detection fidelity.
 - Optimize rampdowns for different types of alarms.
 - Incorporate closed loop MGI if it appears promising.

Thrust 4: Explore Optimal Scenarios for Next Step STs

- Study optimal profiles for high confinement and good stability.
 - Years 3-4: Optimization of the current profile for best confinement and core n=1 stability.
 - Years 3-5: Explore alternative optimal scenarios, such as EPH or w/ ITBs.
- Study the conditions for classical beam current drive
 - Years 1-2: Study what parameters determine when *AE modes lead to anomalies in the fast ion diffusion and NBCD.
 - Years 3-5: Determine if anomalous diffusion be used for scenario optimization.
- Explore & validate integrated models for projections to FNSF.
 - Years 1-2: Compare NBCD & q-profile predictions from integrated codes to NSTX-U.
 - Years 3-5: Use knowledge to project scenarios to ST FNSF devices.

PAC29-7

NSTX-U ASC Research is Supporting NSTX-Upgrade Needs While Developing the Knowledge Base for Next-Step STs

Recent progress

- Developed an extensive database of free boundary TRANSP simulations for a large range of NSTX-U scenarios.
 - Being used for studies of boundary physics, energetic particle and global stability, and transport and turbulence.
- Made progress in X-point tracking and snowflake divertor control.
- Developed new realtime diagnostics
- Developed disruption detection algorithms.
- Comprehensive ASC research plan for NSTX-U is being developed with four main thrusts:
 - High performance scenario development
 - Axisymmetric control
 - Event handling and disruption avoidance
 - Scenario optimization for next-step STs

Backup

ASC-Related Collaboration Activities

- D. Mueller assisting with KSTAR and EAST operations.
- E. Kolemen relocated to GA for DIII-D control development work.
 - Presently working on realtime steerable ECCD mirrors.
- NTV physics
 - NSTX continuing long-time collaboration on NTV physics w/ CU.
 - QH-mode and EFC experiments in DIII-D
- Rotation and Current Profile Control:
 - Collaboration with E. Schuster of Lehigh University and CU.
 - E. Kolemen at DIII-D will participate in profile control experiments.

Potential NSTX Contributions to the FY-13 JRT

- Dynamics and characteristics of type-V regimes
 - Demonstration that transient heat loads scale appropriately to FNST/ITER.
 - Exploration of the shaping/collisionality/ β regime for accessibility.
- Dynamics of low-level 'EHOs' observed in NSTX.
 - EHOs observed in both type-V ELM and lithiumized ELM-free plasmas.
 - Are these the same modes?
 - Developing strategies to actively drive these modes.
- Search for I-mode in the NSTX database.
 - For instance, more careful examination of the reversed- B_T campaign in 2009, high X-point cases with favorable grad-B orientation.
- Study effect of 3D fields on particle transport.
 - Start with "ELM-let" experiments in 2010, expand to other discharges.
- Other: Compare EPH to VH? NTV support using IPEC.

Reminder: NSTX Discharges Have Matched the Aspect Ratio and Elongation of NSTX-Upgrade Without Performance Degradation

Performance Characteristics vs. Aspect Ratio

Reminder: NSTX Discharges Have Matched Many Important Equilibrium and Stability Parameters with Next Step Device

NSTX-U

Small Amounts of Fast Ion Diffusion Reduce Non-Inductive

PAC29-7

Fraction...

- Result from PAC-29:
 - In MHD free H-modes, bound $0 < D_{FI} < 1 \text{ m}^2/\text{s}$
 - Large sequence of TAE avalanches yields time average D_{FI}~4 m²/s
- For scenarios with smaller beam current drive, the effect of D_{FI} up to ~4 is irrelevant.
- For scenarios with larger beam current drive, D_{FI} ~1 already has a strong effect.
 - Lowers the non-inductive fraction.
 - Lowers the pressure peaking.
 - Raises q_{min} (less central NBCD)

Small Amounts of Fast Ion Diffusion Reduce Non-InductivePAC29-7Fraction ...But Improve Stability

- Consider the nearly 100% noninductive scenario at 1.0 MA, 1.0T, and P_{inj}=12.6 MW
 - H_{98} =1.06 yields f_{NI} ~1
- Consider D_{FI}=0 &1 m²/s.
- Small fast ion diffusion results in:
 - Reduced pressure peaking, and increased q_{min}, at lower density.
 - Improved external mode stability.
 - Elimination of internal modes due to low-q.
- When combined with a conducting wall, the space is stable to all n=1 modes.
 - See MS talk for RWM stability calculations

Scenario Goals Can be Met over a Range of Z_{eff}, Provided <u>PAC29-7</u> Confinement is Maintained

- Li H-modes, even w/ small ELMs and controlled density, tend to have Z_{eff}~3.
- Increasing Z_{eff} with fixed T_e reduces non-inductive fraction.
- Increased Z_{eff}, with fixed H₉₈, results in very little change.
 - H₉₈~1 confinement (or better) observed in lithiated H-modes over a range of Z_{eff}.
- The electron confinement is a critical variable in determining the scenario performance.

$$\begin{array}{l} \text{1.0 MA, 1.0 T, P_{inj}=12.6,} \\ \text{near non-inductive} \\ \text{1.6 MA, 1.0 T, P_{inj}=10.2 MW,} \\ \text{partial inductive} \\ \text{1.2 MA, 0.55 T, P_{inj}=8.4 MW,} \\ \text{high } \beta_{\text{T}} \\ \text{All: } f_{\text{GW}}=0.7, \, \text{H}_{98}=1 \end{array}$$

Discharges Up to 10 s in Duration May Ultimately Be PAC29-7 Possible Using Modulated 1st and 2nd NBI

Modulation of 6 Beams To Produce Minimal q_{min} Variation

()) NSTX-U