

An Update of ST-VNS Based on New NSTX Results

Martin Peng*, Charles Neumeyer

NSTX National Team *UT-Battelle, ORNL & Princeton Plasma Physics Laboratory

THE U.S.-RUSSIA BILATERAL EXCHANGE I.2: BLANKET AND FUSION CONCEPT FOR THE TRANSMUTATION OF ACTINIDES

June 24-27, 2002 ISTC Moscow, R.F.

Columbia U Dartmouth U GA JHU LANL LLNL Lodestar MIT Nova Photonics NYU ORNL **PPPL PSI SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland U Wash U Wisc **UKAEA** Fusion Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST

NSTX is a New Magnetic Fusion Energy Sciences Experiment in the U.S.

New results are expanding the parameter space of toroidal plasma science

- Capabilities; research goals in science and fusion energy
- Solenoid-free startup magnetic reconnection
- Energy confinement turbulence
- Stability at beta (pressure/field²) = order unity - MHD
- Heating & current drive wavefast ions-plasma interactions
- Plasma heat & particle fluxes plasma edge physics
- Future development possibilities

NSTX Facility Has Made Rapid Progress in Capability Since Start of Operation in 9/99

Parameters	Design	Achieved
Major Radius	0.85m ₁₋	→
Minor Radius	0.68m ^{/-}	-//121.21
Elongation	≤2.2	2.5
Triangularity	≤0.6	0.8
Plasma Current	1MA	1.5MA
Toroidal Field	0.6T	≤0.6T
Heating and Curre	ent Drive	
Induction	0.7Vs	0.7Vs
NBI (90keV)	5MW	7MW
HHFW (30MHz)	6MW	6MW
CHI	0.5MA	0.4MA
Pulse Length	≤5s	1.1s

Spherical Torus Permits Studies of High β Plasmas with Strong Shaping & Rotational Transform (q ~ 10)

Spherical Torus

- A = aspect ratio
- $\beta_T = 2\mu_0 \langle p \rangle / B_{T0}^2$
- q = rotational transform
- ρ_i = ion gyroradius

Expanded plasma parameter space:

- Strong plasma shaping (A \geq 1.27, $\kappa \leq$ 2.5, B_p/B_t ~1, q_{edge} ~10)
- High β_T (≤ 40%) & central β_0 (~100%)
- Large plasma flow ($V_{rotation}/V_A \sim 0.25$)
- Large flow shearing rate ($\gamma_{ExB} > 10^{5}/s$)
- Supra-Alfvénic fast ions (V_{fast}/V_A ~4–5)
- High dielectric constant ($\varepsilon \sim 30-100$)
- Large curvature in edge magnetic field

Expanded Plasma Parameter Space Potentially Also Lead to Attractive Fusion Energy Devices

Plasma Science of Expanded Parameter Space	⇒	Attractive Energy Development Steps
Solenoid-free Startup	⇒	Simplified design, reduced operating cost
 Reduced turbulence 	\Rightarrow	Smaller unit size for sustained fusion burn
 Stable high β_T & β₀ 	⇒	Lowered magnetic field and device costs
 Strong wave-energetic particle- plasma interaction 	⇒	Efficient fusion α particle, neutral beam, & RF heating
 Dispersed plasma fluxes 	⇒	Survivable plasma facing components
 Self organization 	⇒	Sustainment without induction

Obtained 390 kA Toroidal Current by Coaxial Helicity Injection (Helicity =ÚA B dV)

Plasmas with Beam Heating Can Surpass "High-Confinement Mode" Level Without Edge Barrier

- Trend of confinement time data better than expectations based on Tokamak data
- Encouraging indications for future small fusion energy devices

Troyon Scaling ($\beta_{t0} = \beta_N I_p / aB_{t0}$ **) Continues to be Obeyed**

- β_{N,max} ~ 6.3, W_{MAX} ~ 390kJ
- $\beta_P \le 1.5 \Rightarrow$ first indication of diamagnetic current that lowers B_t
- Improved field axisymmetry and wall cleanliness \Rightarrow higher β

First Indications of HHFW-Heated Plasmas with Reduced Inductive Requirements

- \bigcirc NSTX —
- Moderate plasma current
- High $\beta_p \sim 1$
- H-mode with Edge-Localized Modes
- Induction voltage reduced to <0.5 V
- Low internal inductance I_i ~ 0.9

Emission from Gas Puff Imaging Reveals Ejected "Filaments" Leading to Large Edge Plasma Loss

Non-inductive current ~50% in high β_p discharges

- Bootstrap current crucial to the ST concept
- Loop voltage < 200mV for > 0.4s
- Single null offers easier H-mode access
- Plasma pulse > 1 s also achieved

ST Could Enable a Small Volume Neutron Source (VNS) with Desirable Maintenance and Testing Features

'NS

VNS Update

Prototype Transmutation ST (P-TST) & full scale Transmutation ST (TST)

	P-TST	TST	VNS		
R0 (m)	1.000	1.000	1.070		
А	1.400	1.400	1.400		
κ	2.521	2.521	2.300		
δ	0.400	0.400	0.400		
q ₉₅	7.000	7.000	8.443		
$B_{T}(T)$	1.500	1.500	1.900		
Ip (MA)	10.144	10.144	9.700		
$\beta_{\rm N}$ (%)	3.48%	5.37%	3.59%		
$\beta_{\rm T}(\%)$	32.9%	50.8%	24.0%		
β _P (%)	34.0%	52.4%	42.5%		
f_{GW} (%)	16.4%	31.6%	25.8%		
f_{BS} (%)	22.3%	34.3%	36.8%		
$< T_e > (keV)$	12.2	9.75	13.0		
НН	1.6	1.6	1.8		
Q	0.92	1.41	1.60		
P _{Fusion} (MW)	20.0	50.0	32.1		
∑P _{Electric Input} (MW)	154.5	188.7	192.7		
Average N _{wall} (MW/m ²)	0.43	1.07	0.619		

• PPPL System Code includes engineering algorithms for steady state TF and PF coils

-TF uses water cooled Glidcop AL-25 inner leg @ 4.3kA/cm², 15% coolant fraction

-TF return current through Al vacuum vessel @ 150A/cm²

-PF coils are water cooled copper @ 1kA/ cm², 20% coolant fraction

The Basic Design Concept for VNS Has Remained Consistent with the Latest NSTX Data

• Recent NSTX data has been encouraging:

Ip = 0.8 MA, A ~ 1.4, κ ~ 2, q₉₅ ~ 8, β_N ~ 6, β_p ~ 1.2, β_T ~ 16%, ℓ_i ~ 0.7, Induction ~ 0.1-0.2 V, H_{98pby2} ~ 1.5, constant for ~ 0.4 s.

VNS

- Data under analysis; extrapolate to VNS: κ ≥ 2.5, β_T ≥ 25%, ℓ_i ~
 0.4 at R ~ 1.1 m and current ~10MA?
- Physics issues:
 - Ti ~ 2 Te?
 - NBI current drive efficiency vs. beam energy in ST?
 - H-mode plasma with inboard limited natural divertor?
- Data needs:
 - Proof of Principle data for durations >> τ_{skin}
 - Performance Extension data at ~ 5MA level