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Substantial Progress Is Made Towards Physics 
Database Needed for Cost-Effective Next-Step STs

• Science and energy missions of NSTX
• Physics metric of cost-effective ST fusion 

energy development
• Recent NSTX research progress
• FESAC: fusion net electrical output in 35 

years
• Near-term research plan
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Spherical Torus Offers High β Plasmas with Strong 
Shaping & Rotational Transform (Safety Factor q ~ 10)

Expanded plasma parameter space 
identified for Spherical Torus:

• High βT (≤ 40%) & central β0 (~100%)

• Stronger plasma shaping & self fields 
(A ≥1.27, κ ≤ 2.5, Bp/Bt ~1, qedge ~10)

• Reduced internal inductance (li) & 
magnetic stored energy (∝ liRIp2)

• Large plasma flow (Vrotation/VA ~0.3)

• Larger flow shearing rate (γExB >105/s)

• Supra-Alfvénic fast ions (Vfast/VA ~4–5) 

• High dielectric constant (ε ~ 30–100)

• Large B-mirror in edge magnetic field

Definitions:
• A = R/a = aspect ratio
• βT = 2µ0〈p〉/BT0

2

• q = toroidal rotations 
per poloidal rotation

Magnetic
Field Line

Magnetic
Surface

Spherical TorusSpherical Torus

Toroidal

Poloidal
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NSTX Is to Prove Scientific Principle (PoP) of the 
Extended Toroidal Plasma Parameter Space 

NSTX Mission Contributes to 
Plasma Physics Understanding

• Solenoid-free startup – magnetic
reconnection

• Energy confinement - turbulence
• Stability at beta (pressure/field2) 

→ order unity - MHD
• Heating & current drive - wave-

fast ions-plasma interactions
• Plasma heat & particle fluxes –

plasma boundary physics
• Startup & sustainment without 

induction – integrated scenarios 
to achieve all the above 
conditions

National Spherical Torus ExperimentNational Spherical Torus Experiment

Ext. Magnets

Divertor
Region

HHFW Launcher
(Behind Plasma)

Demountable
Center Stack

Assembly

Plasma

Carbon
Tiles

Conducting
Plates

Ceramic
Insulator

for CHI
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NSTX Mission Further Utilizes Expanded Physics 
Basis to Optimize Toroidal Fusion Configurations

Survivable plasma facing 
components

⇒• Dispersed plasma fluxes

Smaller unit size for 
sustained fusion burn

⇒• Reduced turbulence

Efficient fusion α particle, 
neutral beam, & RF heating

⇒• Effective wave-energetic 
particle-plasma interaction

Fully sustained operation⇒• Integrated attractive Operations

Lowered magnetic field and 
device costs

⇒• Stable high βT & β0

Simplified design, reduced 
operating cost

⇒• Solenoid-free Startup

Optimized Toroidal Fusion 
Configurations

⇒Plasma Science of Expanded 
Parameter Space
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ST DEMO & Power Plants Can Have Simplified 
Modular Designs Using a Demountable Center Post

No Solenoid Magnet!

Outboard
Stabilizer

Blanket

Inboard
Stabilizer

ARIES-ST
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The Benefits of Projected ST Properties Include 
Potential Cost-Effective PE and CTF Devices
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Metric of Physics Progress Can Be Identified for 
These Designs & Their Performances
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• Dispersed plasma fluxes

– Normalized flux, P/R (MW/m)

40
0.3
3

• Reduced turbulence
– Thermal ion radius, a/ρi
– MA = Vflow/VAlfvén
– Flow shear rate (105 /s)

50
0.7

• Effective heating & sustainment
– ωpe

2/ωce
2

– Bootstrap current fraction

3
• Integrated attractive Operations

– Sustained duration, τflattop/τskin

0.25 – 0.40
8

• Stable high β’s
– Toroidal beta, βT
– Normalized beta, βN

0.25
0.5

• Solenoid-free Startup
– Internal inductance, li
– Non-inductive energy ∝ liRIp2 (m-MA2)

NSTX
(goals)

Key ST Plasma Science Parameters
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NSTX Facility Has Since 9/99 Made Rapid Progress 
in Capability to Support PoP Mission

Parameters Design Achieved
Major Radius 0.85m
Minor Radius 0.68m
Elongation ≤2.2 2.5
Triangularity ≤0.6 0.8
Plasma Current 1MA 1.5MA
Toroidal Field 0.6T ≤0.6T
Heating and Current Drive
Induction 0.7Vs 0.7Vs
NBI (90keV) 5MW 7MW
HHFW (30MHz) 6MW 6MW
CHI 0.5MA 0.4MA

Pulse Length ≤5s 1.1s

}⇒A≥1.27
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NSTX is Part of U.S. and Worldwide ST Research

Proof of Principle (~MA)Concept Exploration (~0.3 MA)
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Obtained 390 kA Toroidal Current by Coaxial 
Helicity Injection (Helicity =ÚA∑B dV) 
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This Enables Studies of Reconnection Needed to 
Form Nearly Closed Magnetic Surfaces

• Flux surface closure important to solenoid-free startup
• Need effective coupling to solenoid induction and RF heating
• Lundquist No. S(CHI) ~ 104 – 106 vs. S(corona) ~ 1010 – 1012

• Laboratory investigation of interest to space plasma studies

TRACE X-Ray Image of Corona PlasmaFast Camera Image of NSTX CHI Plasma

2 m 3x107 m 

(LANL, U Wash, PPPL)False color



Current Trends, DC, 3/24-28/03Progress towards Energy

Plasmas with Beam Heating Show Favorable Energy 
Confinement Compared to Scaling Predictions

• True with (H-mode) or without (L-mode) edge 
confinement barriers

• Encouraging indications for future small fusion energy 
devices

• Important to understand why

Scaling Expectations
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Under Intense Neutral Beam Heating, Ion Energy 
and Particle Diffusivities are Very Low
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• Driven by T and n 
gradients

• kθρi < 1 (ion gyro-
scale) stable or 
suppressed by Vφ
shear

• kθρi >> 1 (electron 
gyro-scale) strongly 
unstable

Micro-
instability 
turbulence 

theory

• Dimp ~ DneoclassicalImpurity 
Diffusivity

• χion ~ χneoclassical

• χelec >> χion

Thermal 
Conductivity

NSTX ResultsCore Transport 
Physics
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Laboratory High-β (~1) Turbulence Has Broad 
Scientific Relevance Including Astrophysics

• Accretion disk: cascading of MHD 
turbulence to ion gyro-scales 
could explain observations 

• Fusion’s gyrokinetic models 
appropriate for turbulence of high 
β astrophysical systems

• Astrophysicists interested in 
benchmarked codes

Milky Way center
105 times “too dim?”

10 light years

Accretion Disk
Simulation (β ≥ 1)

(Hawley, Balbus, Univ. Virginia)

Imaging reflectometry of ion gyro-scale turbulence
Toroidal Simulation

(GA, LLNL)
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Strong Plasma Shaping Increases Stable β

0 R R+a

b

d

(Columbia U, PPPL)

Plasma Magnetic surfaces• Strong shaping:
– Small A = R/a ~ 1.4
– Large κ = b/a ~ 2.0
– Large δ = d/a ~ 0.8

• Raises edge q for fixed 
plasma current and 
toroidal field

• Higher Ip/aBt0: 
utilization of size and 
applied field:

• Increased stability
during fast Ip ramp up
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High βN (6.5) & βT (35%) Attained With Low Internal 
Inductance li, as Suggested by Theory

Rapid Progress toward
high βN & low li

• Progress benefited from 10x 
reduction of field errors

• Positive effects of nearby 
conducting wall & plasma 
rotation on pressure driven 
MHD modes

• “Tearing,” locked, and fast 
ion driven modes may also 
limit pressure

• In-vessel sensors and active 
mode control planned to test 
target

• Effects of shaping important

βN

βT=40%

2002 data

2001 data
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Evidence for Wall Stabilization Is Under Examination 

• Suggested by theory

• Strong experimental 
evidence from DIII-D 
tokamak (GA, U.S.)

• Ideal no-wall limit 
exceeded for many 
τwall

• Plasma rotation 
stabilizing

• Subject to mode, 
field error, & rotation 
control

• Active mode control

• Crucial to βT → 40%

0
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Wall Stabilized?
Unstable
With wall?

~30 τwall

(Columbia U, LANL, PPPL)
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High Harmonic Fast Wave Utilizes High ε (~100) in 
ST for Efficient Heating and Current Drive

M. Ono (1995): Fast wave decay 
(absorption) rate:

k⊥im ~  ne / B3 ~  ε / B,
ε =  ωpe

2 / ωce
2 ~  102

• 6 transmitters and phase 
controls

• Flexible spectrum

GLOSI/RANT3D calculations

(ORNL, PPPL)
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HHFW (A Magnetosonic Wave at High 
Harmonics) Can Interact Strongly with Electrons

Laser Thomson Scattering

(PPPL)

GENRAY Code
(CompX)

• Deuterium, 0.8 MA, 0.45 T, ne(0) ~ 2x1013/cm3

• PHHFW = 2.5 MW; k|| = 14 m-1 (heating phasing) 
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HHFW Also Interacts Readily with Supra-
Alfvénic Neutral Beam Injected Ions

(Ioffe Inst, PPPL)• Data from Neutral 
Particle Analyzer

• PRF = 3 MW
PNBI = 1.5 MW
Te(0) = 1.0 - 0.4 keV
ne(0) ≈ 3 × 1019m-3

• Ions accelerated to 
higher multiples of 
VAlfvén
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New Bursting Modes Observed in the Toroidal 
Alfvén Eigenmode (TAE) Frequency Ranges

• Most evident in H-mode plasmas with q(0) > 1
• Multiple modes burst simultaneously, with concomitant effects
• Impact on fast ion confinement, D-D neutrons
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Very Low Aspect Ratio Enables Enhanced Spread 
of Divertor Heat Fluxes

• Low A effects on SOL 
observed
– Large Rout/Rdiv increases 

flux-tube expansion 
– H-mode – quiescent SOL 

with intermittent bursts
– L-mode – turbulent SOL

• Important physics issues 
identified
– Scaling of SOL divertor flux
– Bursts vs. Edge Localized 

Modes (ELM’s)
– Large magnetic mirror ratio 

→ impacts SOL stability
– H-mode for inboard-limited 

ST plasmas (MAST)
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Gas puff 
manifold

Viewing 
along field 

line

• Also in C-Mod Tokamak (MIT)
• He puff in D2 discharge
• 10 µs exposures @ 100 kHz
• Several cm in cross section
• Moves at a few hundred m/s
• Coincidental with “Low-Mode”
• Absent or rare in “High-Mode”

H-mode

surface

out

L-mode(LANL, PPPL)

Emission from Gas Puff Imaging Reveals Ejected 
“Filaments” Leading to Large Edge Plasma Loss

Turbulent
Lossy

Quiescent
Contained
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Simulations Confirms Theory: Sheared Flow 
Reduces Fluctuations & Improves Edge Confinement

Density
Fluctuations

• EFIT equilibrium for 
104312, at 250 ms.

• Edge: Ti = Te = 26 eV,   
ni = 2.3×1018 m−3

• ψ=0.9: Ti = Te = 51 eV, 
ni = 4.4×1018 m−3

• Driven by edge pressure 
gradient in bad field line 
curvature, but reduced 
by sheared flow

• Kinetic and boundary 
effects important

• Impacts plasma flux 
dispersion

LLNL)BOUT Fluid Simulation code (
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First Indications of HHFW-Heated Plasmas with 
Reduced Inductive Requirements

• Moderate plasma 
current

• High βp ~ 1

• H-mode with 
Edge-Localized 
Modes

• Induction voltage 
reduced to <0.5 V

• Low internal 
inductance li ~ 0.9

3 MW

H-mode

~0.2τskin

PPPL, ORNL
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Stronger Indications of NBI-Heated High-βp Plasma 
Nearly Sustained without Induction

• Edge turbulence largely quieted – H-mode
• βp (∝ pressure/Ip2) ~ 1.2 ⇒ high bootstrap 

current fraction (~0.5)
• Neutral beam also drives substantial current
• Inductive voltage reduced ~10-fold for > 0.4s

Time (s)

τskin
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FESAC Panel Recently Articulates Key Components Needed
for Developing Net Fusion Electricity in 35 Years 

(“A Plan for the Development of Fusion Energy,” final report to FESAC, March 5, 2003)

In 35 YearsTimeToday
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Spherical Torus Is Strong Candidate for MFE Performance
Extension (PE) Experiment and Component Test Facility (CTF)
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Assume #109070 
plus χe, χi ∝ P−0.5:
κ = 2.6, H98(y,2) = 1.1, 
βN = 7.0, βT = 20%,
Stable to n = 1 & ∞

• ST research topics
– Bootstrap J at low A
– HHFW heating in presence of NBI
– Scaling of χe, χi with Ti >> Te

– Effects of large Vφ and Vφ shear on 
stability & transport

• Scenario elements
– CHI or EBW Ip initiation
– Non-inductive Ip ramp-up
– Active particle control

• Relevance: CTF plasmas

Identified Scenarios to Achieve
Long Pulse Sustainment

Simulations of JNI = 100% Plasmas Identify Scenarios 
and Motivate Important NSTX Research Topics
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Research Planned for FY03-05 Aims to Achieve the 
Initial Goals of the NSTX 5-Year Plan

• 5-year plan (FY04-08)
– Establish physics 

basis for optimization 
and integration of 
extrapolable high 
performance & long 
pulse

– Database for next 
step (NSST)

• FY03-05 plan
– Complete preliminary 

determination of ST 
attractiveness

• Both
– Advance control 

tools
– Implement key 

measurements
– Carry out supporting 

analyses Proof of Principle Science

Physics exploration & passive limits
Identify needed control tools

Optimize & Integrate

• high βT and JBS
near with-wall limit for ∆t >> τskin

‘02

‘03

‘04

‘07

‘08

‘09

Extrapolable high 
performance, long pulse

‘05

Advanced control & 
longer pulse high β physics

• high βT (or βN)
& τE , ∆t >> τE

• solenoid-free startup
• 100% non-inductive

Preliminary Determination of Attractiveness
‘06
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ST Physics Mission in Fusion Energy Science Has 
Led to Broadened Collaborations

• Merging database with MAST, U.K.
– NBI H-mode, transport, τE

– EBW H&CD (1 MW, 60 GHz), FY03
– Divertor heat flux studies, FY03-04
– NTM, ELM characterization

• Exploratory ST’s in Japan
– TST-2: ECW-EBW initiation
– TS-3,4: FRC-like β~1 ST plasmas
– HIST: helicity injection physics
– LATE: solenoid-free physics

• MST: electromagnetic turbulence, EBW
• Began participation in ITPA (ITER)

– A and β effects: H-mode, ITB, ELM’s
& pedestal, SOL, RWM, and NTM

• DIII-D & C-Mod collaboration
– Joint experiments on RWM, Fast ion 

MHD, pedestal, core confinement, 
edge turbulence

C-Mod (U.S.)
DIII-D (U.S.)

MST (U.S.)

MAST (U.K.)
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Substantial Progress Is Made Towards Physics 
Database Needed for Cost-Effective Next-Step STs

• Mission expands toroidal science basis for 
cost-effective fusion energy

• Identified physics metric for PoP, PE, and 
CTF

• Made rapid progress towards physics basis
• FESAC recommends strong ST roles in 

achieving net electrical output in 35 years
• Establish in 5 years physics basis for next 

step
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