

Magnetic Confinement Fusion at the Crossroads

Michael Bell Princeton Plasma Physics Laboratory Princeton University *presented at* University of Texas, Austin March 7, 2007

The Beginnings of Fusion Energy Research

1928 Concept of fusion reactions providing energy radiated by stars proposed [R. Atkinson & F.G. Houtermans, Physik, **54** (1929)]

- J. Jeans is skeptical; A. Eddington retorts: "I suggest he find a hotter place"
- **1932** Fusion reactions discovered in laboratory by M. Oliphant
 - Lord Rutherford felt possibility of fusion power using beam - solid target approach was *"moonshine."*
- **1935** Basic understanding of fusion reactions tunneling through Coulomb barrier G. Gamov *et al.*
 - fusion requires high temperatures
- **1939** H. Bethe develops fusion power cycle for the stars
 - Nobel prize 1967 "for his contributions to the theory of nuclear reactions, especially his discoveries concerning the energy production in stars"

If Fusion Energy Powers the Sun,

can we make it work on earth?

Fusion Reactions of Interest for Terrestrial Fusion Power

D-T Fusion Cross Sections and Reaction Rates

MGB / UT / 070307

5

Three Fusion Concepts Now Remain

gravitational - not on earth transient compression drive (laser-D/l, beam)

radial profile

time profile

electrostatic?

"bubble" implosion?

surface of helical B lines twist of helix twist profile

plasma profile

toroidal symmetry

Reactivity Enhancement

muon catalysis

polarized nuclei

others?

MGB / UT / 070307

Elements of a Fusion Power Plant

Inertial Confinement Fusion (1940s-early 50s)

1940s First ideas on using fusion reactions to boost fission bombs

1950 E. Teller given approval to develop fusion bomb "Super"

- Two stage concept (Ulam-Teller), second driven by radiation

O. Lavrentiev, Soviet Army sergeant, proposed fusion-bomb concept to Beria, and gridded electrostatic confinement for fusion energy

- Sent to Sakharov and Tamm, who conceive tokamak

- **1951** Greenhouse-Cylinder radiation compression of 1cm D-T pellet
- **1952** First US H-bomb, Ivy-Mike (liquid D₂), exploded
- **1954** Castle-Bravo (solid-LiD) exploded at Bikini Atoll: **15MT yield** References -

"Dark Sun" by Richard Rhodes, 1995

"History of Soviet Fusion", V.D. Shafranov, Physics-Uspekhi 44(8) 835-865 (2001)

Inertial Confinement Works but Has Not Been Achieved on a Manageable Scale for a Power Source

Ivy-Mike "sausage" (~80 tons)

Ivy-Mike test (1952, 10.7MT)

W-80 warhead

- Compression of small D-T pellets to ignition planned for the National Ignition Facility (Lawrence Livermore Lab.) in 2010
 - Using "indirect drive" by x-rays generated in a cavity by intense frequency-tripled Nd-glass laser radiation (192 beams)
 - Laser inefficiency makes it difficult to achieve Q = 1 by this route
- "Direct drive" implosions also being investigated using lasers, particle beams or x-rays produced by exploding wires

Early Years of Magnetic Confinement Fusion Research

1940s Concept of using a magnetic field to confine a hot plasma for fusion

- **1947** G.P. Thomson and P.C. Thonemann began classified investigations of toroidal "pinch" RF discharge, eventually leading to ZETA, a large pinch at UKAEA Harwell, England in 1956
- **1949** R. Richter in Argentina claimed to have achieved controlled fusion
 - turns out to be bogus, but news piques interest of Lyman Spitzer at Princeton
- **1950** Spitzer conceived "stellarator" (while on a ski lift) and makes proposal to AEC (\$50k)

- Project Matterhorn initiated at Princeton

1950s Classified US Project Sherwood on controlled thermonuclear fusion

1958 Magnetic fusion research declassified. US and others unveil results at 2nd UN Atoms for Peace Conference in Geneva

Requirements for Magnetic Confinement D-T Fusion Energy Development Were Understood Very Early

- Plasma conditions: *Lawson Criterion* (isothermal, isobaric plasma)
 - $Q = P_{out}/P_{in} > 10 \text{ requires } T_i \sim 10 20 \text{ keV}, m_E \approx (6 3) \times 10^{20} \text{m}^{-3} \cdot \text{s}$
 - plasma heating, fueling, confinement, radiation losses
- Fusion power density ~ 5 MWm⁻³ \Rightarrow p ~ 10 atm
 - Need to maximize $\beta = \langle p \rangle / B_{max}^2$
 - MHD stability and coil engineering
- Control interaction of plasma with surrounding material wall
 - $\sim 2 \text{ MWm}^{-2}$ thermal load on wall
 - low impurity levels, low tritium retention
- Neutron wall loading ~ 4 MWm⁻² (needed for economic feasibility)
 - material damage ~ 40 dpa/yr with low radioactive waste
 - self-sufficient tritium breeding to complete the fuel cycle
- High-duty cycle, essentially steady-state

Toroidal Magnetic Confinement Schemes -"Closed" Traps

- Plasma in a simple torus doesn't have an equilibrium
 - Curvature and gradient in B cause single particles to drift vertically
 - Charge separation at the edges produces a downward E field that drives outward drift of plasma

- Introduce rotational transform (helical twist) to field lines so drifts are compensated over several transits
 - external windings, geometrical modification
 - toroidal current in the plasma itself

In *Stellarators* Rotational Transform Is Created by Twisting the Axis or External Coils (or Both)

Figure 8 stellarator

Helical coil stellarator

- Used in first stellarator experiments and stellarator power plant studies
- Original Figure-8 designs had very small plasma volume relative to magnetic field volume
- Model C "race track" stellarator
 - $-\ell = 3$ winding (trefoil) on one U bend
 - $-\ell = 2$ winding (ellipse) on other
- Transitions from U-bends generated large *magnetic islands*
- Modern stellarators attempt to avoid these pitfalls through extensive numerical modelling and optimization of coil design MGB/UT/070307

The First Stellarator Reactor Design ~ 1955

- In 1954, Spitzer commissioned a study of a stellarator reactor Model D
- Figure 8 device with water-cooled copper coils and a divertor chamber in each U-bend

- Parameters of Model D D-T reactor:
 - confinement assumed to be classical
 - $\text{T} \sim 10 \text{ keV}, \text{ n} \approx 10^{21} \text{ m}^{-3},$
 - $-\beta = 0.24, B = 7.5 T, a_p = 0.45 m, R_0 = 24m$
 - $P_{fusion} = 17 \text{ GW} (90 \text{ MWm}^{-3}), P_n = 6 \text{ MWm}^{-2}, P_{elec} = 4.7 \text{ GW}$

The Early 1960s - The Depths of Despair

- Confinement limited by fluctuations causing "pump out", "Bohm diffusion" or "anomalous diffusion"
- Model C was large to reduce complications of impurities (divertor) and wall neutrals (a = 5 cm), *but*
 - Experiments 1961-66 confirmed Bohm diffusion

Toroidal Confinement - The Tokamak Approach

• Toroidal plasma current adds a *poloidal* magnetic field to the externally applied toroidal field causing field lines to spiral

- Field lines form nested *flux surfaces* surrounding a *magnetic axis*
- Collisions cause plasma to drift outward from one surface to the next

 This neoclassical (Pfirsch-Schlüter) diffusion adds to classical diffusion
- Variation of the toroidal field from outside to inside *traps* some particles in local magnetic mirrors
 - Trapped particles have larger orbit excursions, adding to diffusion
- A challenge is to drive toroidal plasma current continuously and efficiently
- Trapped particles plus a *pressure gradient* drive "*bootstrap*" current

The First Tokamak Reactor Design ~ 1955

- Tamm (1951) and Sakharov (1952)
 - Objective: producing nuclear material for weapons
- Parameters of a D-D reactor producing T or ²³³U
 - collisional (classical) heat loss only
 - $-T = 100 \text{ keV}, n = 10^{20} \text{m}^{-3}$
 - Ba = 10 Tm, water-cooled copper coils
 - $-\beta = 1, B = 5 T, a_p = 2 m, R_0 = 12m$
 - $P_{fusion} = 880 \text{ MW}$

- · Concept first discussed with the west at Geneva 1958 after declassification
- There was skepticism and resistance in the west
 - Concern that the plasma current was a source of instability
 - Maintaining the toroidal current stellarators were steady-state
- A group at Australian National University investigated a tokamak-like device - "slow toroidal θ-Z pinch" or "Liley torus" in the mid-late 60s

MGB / UT / 070307

Ref: V.D. Shafranov, "History of Soviet Fusion" Physics-Uspekhi 4 835-865 (2001)

The Late 1960s - The Tokamak Emerges

 At Kurchatov Institute under L. Artsimovich, tokamaks progressed through a sequence to T-3

- B = 4T, a = 0.20m, R = 1.0 m, I_p < 200 kA, Ohmically heated

- Measurements in T-3 presented at the 1968 IAEA Conference in Novosibirsk indicated $T_e \approx 1 \text{ keV}$ and $\tau_E / \tau_{Bohm} \approx 50$
- A team from UKAEA Culham (D. Robinson and N. Peacock) took a Thomson Scattering system to T-3
- Confirmatory results were obtained and presented at Dubna in 1969
- Within 6 months, Model C stellarator at PPPL was converted to the Symmetric Tokamak (ST)
- Led to an explosion in tokamak research worldwide, culminating in TFTR (US), JET (EU), JT-60 (Japan)

\$ in Millions (Actual) **Fusion Budget** Dollars per Barrel Crude Oil*

1973 Oil Embargo - Energy R&D Explodes

*In Actual \$'s from Energy Information Administration/Annual Energy Review 2004 Table 9.1, Crude Oil Price Summary, Refiners Acquisition Costs, Imported, Nominal. Web Site: <u>eia.doe.gov</u>. Year 2004 is estimated based on 9 months record.

Years

MGB / UT / 070307

The Beginning of the TFTR Era at PPPL

July 1973 DOE proposes superconducting D-T ignition device at ORNL: FIBX – Parameters were not yet well defined

Dec 1973 PPPL counter proposal for Two-Component Torus (H. Furth) *"If all you want is neutrons"* – intense neutral beam heating, simple

July 1974 DOE selects PPPL design – goal: significant D-T fusion power

Dec 1975 PLT starts operation - similar design with NB heating, but smaller

Mar 1976 TFTR construction starts

Aug 1978 PLT $T_i = 5.5 \text{ keV}$

– Trapped Ion Mode vanquished!

Dec 1982 First TFTR plasma – ~50 kA

Status of Tokamak Physics at the Start of TFTR

- Reliable operation at current <1MA with pulse lengths up to 1s
- Neutral beam injection (NBI) heating up to ~8MW; RF heating up to ~5MW (ion cyclotron, electron cyclotron, lower hybrid); Compressional heating (transient)
- High ion temperatures, ~ 7keV, with NBI in PLT
- Global scalings for energy confinement:
 - "Alcator" scaling for ohmic heating (\propto density): τ_E up to 50ms
 - "L-mode" scaling for NB heating ($\tau_E \propto I_p P_h^{-1/2}$): $\tau_E \sim 20$ ms
 - \Rightarrow poor predictions for DT performance of TFTR
- H-mode just discovered (ASDEX, Germany) in NB-heated divertor plasmas with improved confinement times (~2 × L-mode)
 - TFTR did not have a divertor but its competitors the Joint European Torus and JT-60 (Japan) did

TFTR, in Competition with JET, JT-60U, Propelled Fusion Research Forward for Over a Decade

Feb 1986 Record $n\tau$ using pellet injection – still stands

June 1986 "Super shots" emerge with NBI – record T_i (eventually to 40keV), P_{DD}

- Confinement 2 3 x L-mode prediction, little power degradation
- Control of plasma interaction with surrounding wall was key
- ~1988 Confirmation of the neoclassical "bootstrap" current in supershots – important for possibility of a steady-state tokamak
- ~1990 Evidence that Ion Temperature Gradient (ITG) modes determine transport $k_r \rho_i \ll 1$, $\delta T_i / T_i \approx 3-4 \delta n/n$, $T_i(0) \propto T_i(a)$ marginal stability

MGB / UT / 070307

First D-T Experiments Yielded a Wealth of Physics

- 1991 JET conducted its "Preliminary Tritium Experiment" producing P_{DT} > 1MW
- Dec 1993 TFTR D-T experiments begin leading to $P_{DT} = 10.7$ MW, favorable isotope scaling, alpha-particle heating, alpha-driven instabilities, tritium and helium "ash" transport, tritium retention in walls and dust

 1995 Discovery (simultaneous with DIII-D) of benefits of reversed magnetic shear – Basis for "advanced tokamak" designs: better confinement
 1996 Confirmation of role of sheared plasma flow in suppressing ITG turbulence
 April 1997 TFTR shut down after >60000 plasma shots, >1000 with D-T fuel

Since TFTR, Magnetic Confinement Research Has Pursued Two Tracks

- **ITER:** build a device to produce and study ignited ($Q \ge 10$) DT plasmas
 - Originally International Thermonuclear Experimental Reactor, now "The Way"
 - Originated in 1985 (Gorbachev-Reagan summit)
 - Large superconducting tokamak: R = 6.2m, $I_p = 15MA$
 - Implementing agreement signed November 2006 between EU, Japan, Russia, USA, Korea, China, India
 - US had pulled out in 1999 but rejoined in 2003
 - Delayed by competition between EU and Japan for host site
 - To be built in Cadarache, France: cost estimated at 10B Euro
 - First plasma operation in 2016, D-T operation in 2021
- Innovation: use existing devices or new confinement concepts to improve the prospects for magnetic fusion
 - New devices include advanced stellarators at PPPL and IPP Greifswald, DE
 - Benefit from advances in computation and simulation
 - Research may also benefit ITER by improving its design margins, relaxing its requirements and broadening its operating regime

MGB / UT / 070307

TFTR Achieved Many of the Parameters Expected to be Produced in ITER

			7 TPHYSICS LB		
	<u>TFTR</u>	ITER			
Central pressure $\beta(0)$ %	6	6			
Collision frequency v_e^* (10 ⁻²)	1	0.8			
Electron density (10 ²⁰ m ⁻³)	1.0	1.1			
T _i (keV)/T _e (keV)	36/13	18/20			
Fuel mixture D/T	1	1			
Toroidal field B _T (T)	5.6	5.3			
Fusion Power Density (MWm ⁻³)	2.8	1			
 Confinement was the outstanding issue and remains so 					
Confinement time (s)	0.2	2.5			
 Most reliable solution: bigger device with higher current 					
Normalized gyro-radius ρ_i /a (10 ⁻³)	6.5	2			

ITER will Demonstrate the Scientific and Technological Feasibility of Fusion Power

- ITER is a dramatic step towards selfsustained fusion reactions
 - 500 MW(th) for >400 s with gain >10 but ...
- ITER is not a self-sufficient powerproducing plant
- New science and technology are needed for a demonstration power plant
 - 2500 MW(th) with gain >25, in a device with similar size and field
 - Higher power density
 - Efficient continuous operation
 - Tritium self-sufficiency
- Research programs are needed to address these issues

Experiments Around the World Are Investigating and Attempting to Optimize the Magnetic Configuration

MGB / UT / 070

"Spherical Torus" Extends Tokamak to Extreme Toroidicity

- Motivated by potential for increased β [Peng & Strickler, 1980s] β_{max} (= $2\mu_0 \langle p \rangle / B_T^2$) = $C \cdot I_p / aB_T \propto C \cdot \kappa / Aq$
 - B_T: toroidal magnetic field on axis;
 - $\langle p \rangle$: average plasma pressure;
 - I_p: plasma current;
 - a: minor radius;
 - κ : elongation of cross-section;
 - A: aspect ratio (= R/a);
 - q: MHD "safety factor" (> 2)
 - C: Constant ~3%·m·T/MA [Troyon, Sykes - early 1980s]
- Confirmed by experiments
 - $-\beta_{max} \approx 40\%$

[START (UK) 1990s]

NSTX Designed to Study High-Temperature Toroidal Plasmas at Low Aspect-Ratio

Slim center column with TF, OH coils	Conducting plates for MHD stability		PRINCETON PLASTIN PRIVISICS LABORATORY
		Aspect ratio A	1.27
		Elongation k	2.5 (3.0)
		Triangularity δ	0.8
		Major radius R ₀	0.85m
		Plasma Current I _p	1.5MA
		Toroidal Field B_{T0}	0.6 (0.55) T
		Pulse Length	1.5s
		Auxiliary heating:	
		NBI (100kV)	7 MW
		RF (30MHz)	6 MW
		Central temperature	1 – 3 keV

NSTX Extends the Stability Database Significantly

MGB / UT / 070307

NSTX Approaches Normalized Performance Needed for a Spherical Torus - Component Test Facility (ST-CTF)

Design optimization for a moderate Q driven ST-CTF:

- Minimize B_T required for desired wall loading \Rightarrow Maximize $/B_T^2 = \beta_T$
- Minimize inductive current \Rightarrow Maximize $f_{bs} \propto \epsilon^{0.5} \beta_{P}$
- Do this simultaneously \Rightarrow Maximize $f_{bs}\beta_T \propto \epsilon^{0.5}\beta_P\beta_T$

NSTX Provides a Novel Vantage Point from which to View Plasma Transport and Turbulence

- Operates in a unique region of dimensionless parameter space: R/a, β_T , (ρ^* , ν^*)
 - Large range of β_T spanning electrostic to electromagnetic turbulence regimes
- Routine operation in "H-mode" confinement regime
- Dominant electron heating with NBI
 - Relevant to $\alpha\text{-heating}$ in ITER
- Strong rotational shear driven by NBI affects transport
 - Ion transport approaches neoclassical
 - Electron transport anomalous
- Localized electron-scale turbulence measurable ($\rho_e \sim 0.1~\text{mm})$

Calculations Suggest Electron Temperature Gradient Mode Dominates Electron Transport at Low B_T

GS2 calculations show ETG

 Good agreement between experimental and theoretical saturated transport level at low magnetic field in NSTX

NSTX Accesses Fast-Ion Phase-Space Regime Overlapping With and Extending Beyond ITER

- ITER will operate in new regime for fast ion transport
 - Fast ion transport expected from interaction of many modes
 - NSTX can access multi-mode regime via high β_{fast} / β_{total} and v_{fast} / v_{Alfven}

NSTX Is Making Good Progress Toward the ST-CTF While Contributing to the Physics Basis of ITER

- Ability of the ST to achieve high β now well established
- Advanced mode stabilization methods and diagnostics are being applied to improve performance
 - Dynamic Error Field Correction and RWM feedback suppression
- Unique tools available to study transport and turbulence
 - Excellent laboratory in which to study core electron transport
- Investigating fast-ion instabilities
 - Capability to mimic ITER situation
- Developing non-inductive startup and sustainment schemes
 - CHI, also current drive by RF plasma waves
- Developing methods for heat flux and particle control
 - Lithium coating of plasma-facing components, radiative divertors

Magnetic Confinement Fusion Research is Indeed at a Crossroads

- We must demonstrate that ignited DT plasmas can be produced and controlled in ITER
 - After almost 60 years, this is the crucial step
 - ITER requires an unprecedented level international cooperation
 - Information from the existing tokamak program is needed to make critical choices remaining on some aspects of its design
- At the same time, we must look beyond ITER to a fusion power plant
 - Electricity from a tokamak based on the ITER design would be not be competitive with other sources
 - Are there configurations that can achieve the needed confinement in steady-state?
 - Smaller unit size is a great advantage for introducing new technology
- Finding the optimum balance between these research efforts will determine whether fusion energy can succeed in meeting its potential