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Resistive Wall Mode Research in NSTX has Progressed to 
Address Advanced Topics, support Future Devices

Motivation
Global MHD modes, including the resistive wall mode (RWM), limit
plasma pressure (β), fusion power
RWM stabilization highly desired in fusion reactors to maximize 
fusion power (~ β2)

Outline
Plasma operation in wall-stabilized, high beta regime
RWM detection – unstable toroidal mode numbers n > 1
Passive RWM stabilization in rotating plasmas
Active RWM stabilization in low rotation plasmas (ITER relevant)
Plasma rotation damping due to non-axisymmetric fields
RWM stabilization system physics design for future devices
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RWM - branch of the ideal kink/ballooning mode coupled to wall

RWM stabilization
Kink/ballooning mode poses hard limit 
to plasma pressure (β)
Conducting wall, plasma rotation 
stabilizes kink, leads to RWM
Passive / active RWM stabilization can 
increase β limit

Analysis tools
EFIT – equilibrium reconstruction
DCON – ideal MHD stability
VALEN – RWM stability, system design
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Stabilizer plates for kink 
mode stabilization

External midplane control 
coils closely coupled to 
vacuum vessel

Internal sensors can detect 
n = 1 – 3 RWM

NSTX is equipped to detect and stabilize kinks, RWM
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Aspect ratio ≥ 1.27
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Triangularity ≤ 0.8
Plasma Current ≤ 1.5 MA
Toroidal Field ≤ 0.6 T
NBI ≤ 7 MW
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Kink stabilization by wall and RWM passive stabilization by 
rotation allows sustained plasma operation at maximum β

High βt = 39%, βN = 7.2 reached

Strong inverse dependence of βN vs. pressure peaking factor*
Time-evolved DCON analysis performed between shots on request

Operation with βN/βN
no-wall up to 1.5 

at highest βN for pulse >> τwall, ~ τcr
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*(Sabbagh, et al., NF 46 (2006) 635.)
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Unstable RWM dynamics follow simple theory

Unstable n=1-3 RWM 
observed

ideal no-wall unstable 
at high βN

n > 1 theoretically less 
stable at low A

F-A theory / experiment 
show

mode rotation can 
occur during growth
growth rate, rotation 
frequency ~ 1/τwall

• << edge Ωφ > 1 kHz

RWM phase velocity 
follows plasma flow
n=1 phase velocity 
not constant due to 
error field

growth w/o mode rotation mode rotation and growth
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(Sabbagh, et al., NF 46 (2006) 635.)
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Visible light emission, USXR is toroidally
asymmetric during RWM

DCON theory + data reconstructs mode 
uses experimental equilibrium reconstruction
includes n = 1 – 3 mode spectrum
uses relative amplitude / phase of n spectrum 
measured by RWM sensors

Theoretical RWM reconstructed from experimental data
RWM with ΔBp = 92 G 

Before RWM activity 

114147
t = 0.250s

114147
t = 0.268s 114147 114147

(interior view)(exterior view)

Theoretical ΔBψ (x10) with n=1-3 (DCON)
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Resonant field amplification (RFA) magnitude dependent on 
applied field frequency

Applied field 
phased to create 
traveling wave in 
toroidal direction

Peak in RFA shifted 
in the direction of 
plasma flow

Peak near 30 Hz
Expected by RWM 
theory / experiment
• Observed in DIII-D (H. 

Reimerdes, NF 45 (2005) 
368.)
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Physics understanding and control of pressure-amplified error 
fields, unstable RWMs reduce performance risks for ITER

RWM active stabilization
RWM control demonstrated
RWM actively stabilized in 
slowly rotating plasmas 

Plasma rotation control
Sustained rotation by real-
time reduction of amplified 
error field
Reduced rotation by non-
resonant magnetic braking
Quantitative understanding of 
momentum dissipation
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NSTX / ITER RWM control

Advantage: low aspect ratio, high β plasmas provide high leverage on theory 
to uncover key tokamak physics
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Dynamic error field correction increases pulse length 
by maintaining plasma rotation

Rotating mode 
onset

control off
real-time EF

real-time EF + RWM

Real-time correction of 
known error field (EF)

yields higher rotation
yields longer pulse

Combined real-time EF 
correction + n = 1 RWM 
feedback yielded best 
result

Toroidal rotation, ωφ, 
increase or saturation at 
long pulse lengths - first 
time for NSTX

J. Menard, APS 2006
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RWM actively stabilized at low, ITER-relevant rotation

First such demonstration in 
low A tokamak

Long duration > 90/γRWM

Exceeds DCON βN
no-wall for 

n = 1 and n = 2
n = 2 RWM amplitude 
increases, mode remains 
stable while n = 1 stabilized
n = 2 internal plasma mode 
seen in some cases

Plasma rotation ωφ reduced 
by non-resonant n = 3 
magnetic braking

Non-resonant braking to 
accurately determine RWM 
critical rotation
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ΔBpu
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Control OFF
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(Sabbagh, et al., PRL 97 (2006) 045004.)
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RWM actively stabilized at low, ITER-relevant rotation
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(Sabbagh, et al., PRL 97 (2006) 045004.)

Control OFF

Control ON First such demonstration in 
low A tokamak

Long duration > 90/γRWM

Exceeds DCON βN
no-wall for 

n = 1 and n = 2
n = 2 RWM amplitude 
increases, mode remains 
stable while n = 1 stabilized
n = 2 internal plasma mode 
seen in some cases

Plasma rotation ωφ reduced 
by non-resonant n = 3 
magnetic braking

Non-resonant braking to 
accurately determine RWM 
critical rotation
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n = 2 RWM does not become unstable during n = 1 stabilization
Control OFF

(RWM disrupts plasma)
Control ON

(fast βN drop, plasma recovers)
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Control current has relative 
phase Δφf to measured ΔBp

Phase scan shows 
superior settings for 
negative feedback

Pulse length increases
Internal plasma mode seen 
at Δφf = 225o, damped 
feedback system response

Gain scan also performed
Sufficiently high gain 
showed feedback loop 
instability

Varying relative phase shows positive/negative feedback
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VALEN analysis demonstrates optimal relative phase 
Δφf for RWM active control

First VALEN analysis 
with both active and 
passive stabilization 
(ωφ > 0)

Unfavorable Δφf
drives mode growth

Stable range of Δφf
increases with 
increasing ωφ

Optimal  Δφf for active 
stabilization at ωφ = 0 
bracketed by results 
with ωφ > 0.

Relative phase (VALEN) (deg)
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Ωcrit/ωA

(axis)
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Rotation reduced far below RWM critical rotation profile

Rotation typically fast and 
sufficient for RWM passive 
stabilization

Reached ωφ/ωA = 0.48|axis

Non-resonant n = 3 magnetic 
braking used to slow entire 
profile

The ωφ/ωA < 0.01|q = 2

The ωφ/Ωcrit = 0.2|q = 2

The ωφ/Ωcrit = 0.3|axis

Less than ½ of ITER 
Advanced Scenario 4 
ωφ/Ωcrit (Liu, et al., NF 45 (2005) 1131.)

Rotation profile responsible 
for passive stabilization, not 
just single radial location

(120717, t = 0.915s)
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Poloidal n = 1 RWM field 
decreases to near zero

Radial field increasing

Subsequent growth of poloidal
RWM field

Asymmetric above/below 
midplane

Radial sensors show RWM 
bulging at midplane

midplane signal increases, 
upper/lower signals decrease 
Theory: may be due to other 
stable ideal n = 1 modes 
becoming less stable 
(multimode analysis next step)

RWM may change form and grow during active control
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Future research will assess using
combined sensors for optimization
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Observed rotation decrease follows NTV theory
First quantitative agreement 
using full neoclassical toroidal
viscosity theory (NTV)

Due to plasma flow through 
non-axisymmetric field
Computed using experimental 
equilibria
Trapped particle effects, 3-D 
field spectrum important 

Viable physics for simulations 
of plasma rotation in future 
devices (ITER, CTF)

Scales as δB2(pi/νi)(1/A)1.5

Low collisionality, νi, ITER 
plasmas expected to have 
higher rotation damping

(Zhu, et al., PRL 96 (2006) 225002.)
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not stabilized

Experimental Critical Rotation Frequency for RWM passive 
stabilization, Ωcrit, follows Bondeson-Chu theory

Experimental Ωcrit

stabilized profiles: 
β >βN

no-wall (DCON)
profiles not stabilized 
cannot maintain        
β > βN

no-wall

regions separated by 
ωφ/ωA =1/(4q2)

Drift Kinetic Theory
Trapped particle 
effects significantly 
weaken stabilizing 
ion Landau damping 
Toroidal inertia 
enhancement more 
important

• Alfven wave 
dissipation yields 
Ωcrit = ωA/(4q2)

ωφ/ωA(q,t) profiles
Phys. Plasmas 8 (1996) 3013
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RWM critical rotation profile shape can be altered

Benchmark profile for stabilization is 
ωc = ωA/4q2 *

n = 1,3 braking used to reduce rotation

High rotation outside q = 2.5 not 
required for stability

Zero rotation at single q can be stable

Scalar Ωcrit/ωA at q = 2 , > 2 not a 
reliable criterion for stability

consistent with distributed dissipation 
mechanism

investigating trapped particle 
precession as stabilization physics at 
low rotation

*A.C. Sontag, et al., Phys. Plasmas 12 (2005) 056112.
*A. Bondeson, M.S. Chu, Phys. Plasmas 3 (1996) 3013.
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(B. Hu and R. Betti, PRL 93 (2004) 105002.)  
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Ωcrit not correlated with Electromagnetic Torque Model

Rapid drop in ωφ when RWM 
unstable may seem similar 
to ‘forbidden bands’ model

theory: drag from 
electromagnetic torque on 
tearing mode*
Rotation bifurcation at ω0/2 
predicted

No bifurcation at ω0/2 
observed

no correlation at q = 2 or 
further into core at q = 1.5
Same result for n = 1 and 3 
applied field configuration

*R. Fitzpatrick, Nucl. Fusion 33 (1993) 1061.

NSTX Ωcrit Database

(ω0 ≡ steady-state plasma rotation)
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0.2
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cr
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0
2.42.01.61.2

q

 n = 1
 n = 3

A.C. Sontag, IAEA 2006 paper EX/7-2Rb.

predicted
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Increased Ion Collisionality Leads to Decreased Ωcrit

Plasmas with similar vA

Consistent with neoclassical 
viscous dissipation model

at low γ, increased νi leads to lower 
Ωcrit

ITER plasmas with lower νi may 
require higher degree of RWM 
active stabilization

(K. C. Shaing, Phys. Plasmas 11 (2004) 5525.)

(a)

(b)

(c)

Ωcrit (km/s)

vA(km/s)

νii (kHz)

121083
121071

(Sontag, et al., IAEA FEC 2006 paper EX/7-2Rb.)

Future research aims to uncover
critical RWM stabilization physics
to confidently scale to new devices
(NSTX FY09 Milestone)
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NSTX RWM stabilization research applied to 
next-step tokamaks

Passive stabilizers

(IVCC) (top)
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NSTX ITER KSTAR

ITER: Midplane port control coils, blanket
KSTAR: Midplane control coil, passive plate geometry with midplane gap

In-Vessel Control Coils

(not to scale)
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ITER active coil modification can significantly raise stable βN

VALEN dual-wall vessel / blanket model
(full view)

Active feedback coil modification
(coils in ports)
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2.0 3.0 4.0 5.0

(no blankets)

107
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gain 

(V/Wb) 108
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Passive

Original external coil design for ITER 
stabilizes up to βN = 2.7

Proposed improvement raises maximum 
stable βN to near 5

Dual-wall vacuum vessel and blanket used 
in VALEN model
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ITER non-axisymmetric coil designs being studied by USBPO 
for combined ELM, RWM, error field control

Extension of work performed by M. Becoulet (CEA), 
et al. presented at IAEA-FEC 2006:  Paper IT/P1-29

1. Present error field correction coils 1. Present error field correction coils 

2. Mid2. Mid--plane portplane port--plug RWM coilsplug RWM coils

3. ELM coils on vessel,  inside TF3. ELM coils on vessel,  inside TF

4. ELM coils in blanket modules4. ELM coils in blanket modules

5. ELM coils on TF, near mid5. ELM coils on TF, near mid--planeplane

6. ELM coils on upper/lower ports6. ELM coils on upper/lower ports

J. Menard, USBPO MHD group leader
RWM: G. Navratil, J. Bialek (CU)

ELM: T. Evans (GA)

Error field: M. Schaffer (GA)

Coil position considerations
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KSTAR active stabilization system now modeled

top IVCC (RWM) coil middle IVCC (RWM) coil

Passive stabilizer (bottom)

IVCC (RWM) coils Vertical Control

Radial Control Upper FEC/RWM

Middle FEC/RWM

Radial Control

Vertical Control
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KSTAR flux contours and parameters for βN scan at low li
βN = 0.5 βN = 4.0 βN = 8.0
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Ip = 2 MA
Bt = 3.5 T
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KSTAR equilibrium has large wall-stabilized region at low li

High li: narrow stability window
No-wall βN limit = 3.2
With-wall βN limit = 3.6 – 4.0
Internal mode βN limit = 4.3

Low li: wide stability window
No-wall βN limit = 2.5
With-wall βN limit = 4.85 – 6.8
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unstable
wall 1 wall 2

walls used

wall 1

wall 1

wall 2

no
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wall 2

no wall

(DCON: A.H. Glasser, LANL)
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KSTAR configuration set up in VALEN-3D

Conducting hardware 
modeled

Vacuum vessel
Center stack 
backplates
Divertor backplates
Passive stabilizer 
(PS)
PS Current bridge

Stabilization currents 
dominant in SP

40 times less 
resistive than 
nearby conductors

X
Y

Z

n = 1 RWM passive stabilization currents

IVCC (RWM) control coils
(upper,middle,lower)
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Active control may sustain 73% margin above βN
no-wall

Slow mode sets 
actively stabilized Cβ = 
0.73 in low li equilibria

Stabilized to βN = 4.17
Passive growth time of 
15 ms at βN = 4.2
Active feedback gain 
not optimized

Computed βN limits
βN

no-wall = 2.56
βN

wall = 4.76

R
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 g
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 (s

-1
)

10-1

100

101
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βN

2 3 4 5 6 7 8

Midplane IVCC control coils

With-wall limit
(βN

wall)

Passive
stabilization

Active
stabilization

βN
no-wall

Cβ ≡ (βN – βN
no-wall)

(βN
wall – βN

no-wall)

VALEN

Future study to optimize
and implement advanced
control algorithms
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NSTX begins RWM active stabilization research 
relevant to ITER, KSTAR and beyond

First demonstration of RWM active stabilization in high β, 
low A tokamak plasmas with ωφ significantly less than Ωcrit

In the predicted range of ITER
Positive and negative RWM feedback demonstrated by varying 
feedback gain and relative phase

Stability of n = 2 RWM observed during n = 1 RWM 
stabilization

n = 1,2 plasma mode sometimes observed; fast β collapse, recovery

Plasma rotation reduction by non-resonant applied field; 
follows neoclassical toroidal viscosity theory

Full NTV calculation yielding quantitative agreement to experiment ; 
general momentum transport relevance

Results continue to support Ωcrit as profile; scalar insufficient
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Active RWM control remains vitally important to 
minimize performance risk in ITER

Agreement does not yet exist regarding Ωcrit, RWM stabilization 
physics in low-rotation tokamak plasmas

Observed inverse dependence of Ωcrit on νi indicates lower ITER 
collisionality may require a higher degree of RWM active 
stabilization

Similar inverse dependence of plasma momentum dissipation on 
νi in NTV theory indicates ITER plasmas will be subject to higher 
viscosity, greater ωφ reduction

Strong δB2 dependence of quantitatively verified NTV theory 
shows that error fields, resonant field amplification, ELMs need be 
minimized to maximize stabilizing ωφ

Pressure, q, and ωφ profiles unknown for burning plasma. RWM 
(and ELM, error field) control reduces performance risk
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Extra slides
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Plasma rotation, ψ-isotherm, MSE included in reconstructions
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