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Resistive Wall Mode Research in NSTX has Progressed to

Address Advanced Topics, support Future Devices

a Motivation

Global MHD modes, including the resistive wall mode (RWM), limit
plasma pressure (f), fusion power

RWM stabilization highly desired in fusion reactors to maximize
fusion power (~ [#)

Q Outline

Plasma operation in wall-stabilized, high beta regime

RWM detection — unstable toroidal mode numbers n > 1

Passive RWM stabilization in rotating plasmas

Active RWM stabilization in low rotation plasmas (ITER relevant)
Plasma rotation damping due to non-axisymmetric fields

RWM stabilization system physics design for future devices




RWM - branch of the ideal kink/ballooning mode coupled to wall

0 RWM stabilization i ohetigtn i ([oA
Stapllity curves
Kink/ballooning mode poses hard limit Phys. Plasmas 9 (2002) 3459
to plasma pressure (/) 10 P
Conducting wall, plasma rotation %) E-EARRAN '
stabilizes kink, leads to RWM < o505 L0 wall
: : e @ J y stabilized
Passive / active RWM stabilization can § V=10
increase £ limit 2 00} _no-wall limit |
. )
a Analysis tools 3 _
_ . c-0.5 stable -
EFIT — equilibrium reconstruction [ 0 _
DCON - ideal MHD stability qol o AN

i : 0.0 0.5 10 _ 15
VALEN — RWM stability, system design plasma rotation (3,

(7-i63,f + 0.7 - 163, )+ @ sY1-ma)| 5.7 + 1+ md)) = (1~ (mdl )

plasma inertia dissipation mode strength X wall response wall/edge coupling
S.~ 1/t

wall
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RWM
sensors

control
coils (6)

120047

RWM

SEensors

t=0.745s

0.0 05 1.0 15 20

R (m)

Machine

Aspect ratio =>1.27
Elongation <3.0
Triangularity <0.8
Plasma Current <1.5 MA
Toroidal Field <06T
NBI <7MW

0 Stabilizer plates for kink
mode stabilization

0 External midplane control
colls closely coupled to

vacuum vessel

2 Internal sensors can detect

n=1-3RWM
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NSTX is equipped to detect and stabilize kinks, RWM
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Kink stabilization by wall and RWM passive stabilization by
rotation allows sustained plasma operation at maximum 3

a High g =39%, g, =7.2reached 0 Operation with £/,"°>"a" up to 1.5
at highest 4, for puf\ée >> T 0~ T

8 BN/Ii = 12 10 8 6 wall’ cr
i 7
2 [ wal o g | 112402
. stabilized S * 4 5 |
6 | Byge o0 o By 4 wall stabilized
I R N 3 L ]
5 ¢ P92 0 Seoy i |
BN I Yo © OQ o © 2 : :
4 | o O o%ooéf 1 i ' core plasma rotation\l'\% N
i - ‘o - ' (x10 kHz) ]
(5969 0 P - ! ! \ ! ! | I ]
3 - %ﬁo O o !'"-!::f" l“-..n.-.n.I.-...nu..- by
B o%%o B / :
2 | : B2l swio "0
I @% @ o ° o B n=
T o ° w0’ o 20 - DCON . :
L (@) EEIT \ | \ | \ ! \ | \ PY4 | \
0 = ‘ ‘ ‘ — 00 01 02 03 04 05 06 0.7
0.0 0.2 0.4 06 0.8 | 1.0 1.2 1.4 16 “(Sabbagh, et al., NF 46 (2006) 635.) L(S)

|
O Strong inverse dependence of B vs. pressure peaking factor*

0 _Time-evolved DCON analysis performed between shots on request
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Unstable RWM dynamics follow simple theory

growth w/o mode rotation

n=1 no-wall unstable ]
' n=2,3 ‘

| |5Bp|(n=1)

mode growth —»

N

5Bln=2) ||
5B,|(n=3) |

- Op(n=1)

(<40 kHz, odd-n) [\/\M
| 114147 |

0.24

0.26
t(s)

mode rotation and growth

1100

20
10
0

-10
-20

|

I n=1-3 nq-wall unstabi

VNS

mode |
rotation

s

o Unstable n=1-3 RWM
observed

ideal no-wall unstable
at high £

n > 1 theoretically less
stable at low A

O F-A theory / experiment
show

mode rotation can
occur during growth

growth rate, rotation

| 114452

0.28 0.18 0.20 0.22 0.24 0.26 0.28

t(s)

frequency ~ 1/z,
® <<edge O, > 1kHz

RWM phase velocity
follows plasma flow

n=1 phase velocity
not constant due to
error field

(Sabbagh, et al., NF 46 (2006) 635.)




Theoretical RWM reconstructed from experimental data

RWM with AB, =92 G

114147
t = 0.268s

114147

114147

(exterior view)

(interior view)

Q Visible light emission, USXR is toroidally
asymmetric during RWM

0 DCON theory + data reconstructs mode
uses experimental equilibrium reconstruction
includes n = 1 — 3 mode spectrum

114147 uses relative amplitude / phase of n spectrum
t=0.250s measured by RWM sensors




Resonant field amplification (RFA) magnitude dependent on

1.8

1.6

1.4

1.2

1.0

0.8

0.6

RFA magnitude (n = 1)

0.4

0.2

0.0

applied field frequency

Shifted peak _>.

Single mode

model fit
Counter Direction of
plasma flow : plasma flow

-120 -90 -60 -30 0 30 60 90 120

Applied frequency (Hz)

2 Ap
phased to create
traveling wave in
toroidal direction

0 Peak in RFA shifted
in the direction of
plasma flow

REA = Bplasma
applied
plied field

Peak near 30 Hz

Expected by RWM
theory / experiment
® Observed in DIII-D (H.

Reimerdes, NF 45 (2005)
368.)




Physics understanding and control of pressure-amplified error

fields, unstable RWMs reduce performance risks for ITER

0 RWM active stabilization
RWM control demonstrated
RWM actively stabilized in
slowly rotating plasmas

0 Plasma rotation control

Sustained rotation by real-
time reduction of amplified
error field

Reduced rotation by non-
resonant magnetic braking

Quantitative understanding of
momentum dissipation

NSTX /ITER RWM control

_ Passive plates Blanket modules  Port
+ | Control
Coils

Coils
—

I Control

il

UITER
plasma
T~ = boundary L

" ITER vessel ‘

2

-2

0 " R(m)

Advantage: low aspect ratio, high £ plasmas provide high leverage on theory
to uncover key tokamak physics

UW 2/5/07 - S.A. Sabbagh
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Dynamic error field correction increases pulse length

by maintaining plasma rotation

Plasma current
[

tmngmh

' control off

real-tilme EF

0 Real-time correction of
known error field (EF)

yields higher rotation
yields longer pulse

real-tim& EF 4 RW \_

0 Combined real-time EF
correction + n =1 RWM
feedback yielded best

result

Toroidal rotation, @y,
increase or saturation at
long pulse lengths - first
E time for NSTX

Passively stabilized
6F . - -
N Y A N i
u no-wall |
2 - - PN [3&"(%”31).
0 i =
20 F’Igsma rotgtion frequgncy atp = 0.7-0.8 |
2 lgtilu Rotating mode
onset 1
10 - “ E
0 - ' - | -
00 02 04 06 08 1.0
t(s)

1.2

J. Menard, APS 2006
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RWM actively stabilized at low, ITER-relevant rotation

Control ON 92 x (1lhygwm)

— Q First such demonstration in

\

120712

_— o~
A~ — —N'\~\-v+~

i\ |
i BN Control OFF ¢+ \ By > Bno—wall !

L

120047 low A tokamak
Long duration > 90/ %M

N (n=1)

1€

\_I\_

Exceeds DCON g ro-wal for
n=1andn=2

n = 2 RWM amplitude

increases, mode remains
stable while n = 1 stabilized

n = 2 internal plasma mode
seen in some cases

A OO~

a Plasma rotation W, reduced

= N - -
O O OO O OCOUICUI1O &~ CON O

) 1 J by non-resonant n = 3
h Hy M\/\ magnetic braking

Non-resonant braking to

a R accurately determine RWM
0.7 0.8 0.9 critical ro%lation

(Sabbagh, et al., PRL 97 (2006) 045004.)
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RWM actively stabilized at low, ITER-relevant rotation

Control ON 92 x (1yrywm )
\ < :
/:/}Qw/i‘:“—-w”‘\’/ﬁw

i\
. BN Control OFF | \ _
120712 i«

—» Q First such demonstration in
= low A tokamak

Long duration > 90/ %M
o — , Exceeds DCON g, no-wall for

-1

n=1andn=2

n = 2 RWM amplitude
increases, mode remains
stable while n = 1 stabilized

n = 2 internal plasma mode
seen in some cases

AN o NP~
O O OO O COUIOUIO N ON A O

a Plasma rotation o, reduced
j by non-resonantn = 3
magnetic braking

N i ol . P99 2 LT W 1a )
ABpun=2 (G) ,'“ I M/\

4

e Non-resonant braking to
0.7 0.8 0.9 accurately determine RWM
s) ' ' critical rofation

(Sabbagh, et al., PRL 97 (2006) 045004.)
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n =2 RWM does not become unstable during n = 1 stabilization

Control OFF Control ON
40 (RWM disrupts plasma) (fast By drop plasma recovers)
40 '
— n —2 mternal , negatlve |
sl 'mode 1= . feedback
CDQ 20 | n=2 j response -
.:’_._:. ; < : :
edge 1.5 - < r‘l.néd‘e strongest at e‘d“gé‘ :=: -
SRS S S .
R — = e
fo) - . —_— _—
5 10 = e BN
14 —ks o i
x oS 105 T TR N —
2 -~ =40 -(kHz) — e ———
- T S
- I L § C V”y‘ %
r "-,AIWMJ_/__—
core 0.0 - 120705 5 ms — '4— o»n 05 _:20_—nf_2] M T
R : - HI= :“""w\l_/r’/\_/———_
0.56 060 064 068 = o=tk — ]
t(s) core 00f 06 ts) 08 = = 20pus
a Internal mode ~ 25 kHz 0.7239 0.7240 0.7241 0.7242
Plasma rotation ~ 12 kHz (n = 2) t(s)

—_—



Varying relative phase shows positive/negative feedback

feedback on

o+ 0 Feedback on n =1 RWM
450 : A(I)f 1 Control current has relative
Pn |
T phase A¢ to measured 4B
21 450 qig761y Y\ i)\ 1 P
315¢° 119755/\ AT TS 2900 (119764
0 S e 0 Phase scan shows
8t superior settings for
6, negative feedback
4+ __‘l,'______________________________:. .
2 @y/2n (KHzy _ Pulse length increases
0 = s oAt Internal plasma mode seen
I _1 N . | at A¢. = 225°, damped
28 _ABpu” (G):H: ‘;2232222 feedback system response
1000 i AT a Gain scan also performed
AN 1 o e . o
9 S
04 05 06 07 08 09 ufficiently high gain
t (s) showed feedback loop
instability

—_—



VALEN analysis demonstrates optimal relative phase
Ag, for RWM active control

a First VALEN analysis
with both active and
_ control ON (0= 0) o passive stabilization
e (a)¢ > 0)

a Unfavorable A
drives mode growth

increasing o,

control OFF

Growth rate (s1)

Ny = a Stable range of A¢,

7 \\ // : increases with
- Stabilizing A¢ Increasing a,

oO 60 120 180 250 300 360 0 Optimal A for active
stabilization at w, =0
Relative phase (VALEN) (deg) bracketed by results
with @, > 0.

—_—




Rotation reduced far below RWM critical rotation profile

047 | | | | ] 0O Rotation typically fast and
- passively stabilized by rotation ] Stjfgﬁ!en;[. for RWM passive
E & e (120038, t = 0.535s) ] stabllization

03F 1 Reached o, /0, = 0.48|

O Non-resonant n = 3 magnetic

< ; _ braking used to slow entire
\8% 0.2 [ experimental ; profile
S cnhg%;g}a}gg) proflle Qi ©p The o /w, <0.01],_,
§ \< L _ (axis)|| The 0,/Q; =0.2], -,
0.1 = ;C’tlvely\ RN . : The oy/Qqi = 0.3
-\ stabilized i-oezss \ % (q=2)] | ,l&ec}l?/ilgc]:aerc]l 1ézcc;fngrlizola

(120717,t=0.9158)
0 Rotation profile responsible

O 9 10 11 12 13 14 15 for passive stabilization, not

just single radial location
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RWM may change form and grow during active control

- Bn

By collapse

®y/27 (kHz)

8B, "1 (G) |

8 P, 5 i
4 i ower W
0 TN T ot I :
G 0B, (G) A/”N \/‘
% | bUIge \’ 120048 |
0

.05 059 063 067 0.71 0.75

t(s)

O Poloidal n =1 RWM field

decreases to near zero
Radial field increasing

O Subsequent growth of poloidal

RWM field

Asymmetric above/below
midplane

0 Radial sensors show RWM

bulging at midplane

midplane signal increases,
upper/lower signals decrease

Theory: may be due to other
stable ideal n = 1 modes
becoming less stable
(multimode analysis next step)

Future research will assess using
combined sensors for optimization
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Observ

Tyrv (N M)

4
 “n=3"| theory HIE9S
3§ field \
: ' measured
20 dL ‘z
: ; \
0 ét=0.3603§
e
3§ field . ]
: 'With RFA .
: ; : applied ;
2 . (DCON) field 1
: 5 Ir onl
1 g \« )
0) Lo
0.9 1.1 1.3
R (m)

ed rotation decrease follows NTV theory

Q First quantitative agreement
using full neoclassical toroidal
viscosity theory (NTV)

(K.C. Shaing, UW)

Due to plasma flow through
non-axisymmetric field

Computed using experimental
equilibria

Trapped particle effects, 3-D
field spectrum important

0 Viable physics for simulations
of plasma rotation in future
devices (ITER, CTF)

Scales as oB?(p/v)(1/A)L->

Low collisionality, v, ITER
lasmas expected to have

igher rotation damping

(Zhu, et al., PRL 96 (2006) 225002.)
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Experimental Critical Rotation Frequency for RWM passive
stabilization, Q_.,, follows Bondeson-Chu theory

Phys. Plasmas 8 (1996) 3013

o,/0(q,t) profiles 0 Experimental £2,.,

0.5 | ' - stabilized profiles:
+ stabilized Js; >IBN”°'Wa” (DCON)

* ++ ---1/(49?) . -
A ot stabilized| profiles not stabilized
cannot maintain

,B > lBNno-waII

- regions separated b
N co¢9mA=1/( q?) y

0 Drift Kinetic Theory

+ Trapped particle
effects significantly
weaken stabilizing

- lon Landau damping

_ s _ Toroidal inertia
R AN T enhancement more
0.0 ————==aim— o ol = important

1 2 3 4 S ® Alfven wave
q dissipation ¥;elds

CD chit = O)A/(4q
UW 2/5/07 - S.A. Sabbagh 19
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RWM critical rotation profile shape can be altered

0.25

1 1 1 1
— NO applied field

a Benchmark profile for stabilization is 020N — % i
D = a)A/4q < \ — n=3max braking
. : 2 0.15 -t -10ms 7
O n =1,3 braking used to reduce rotation = 0.10 \ - - 14
S \ -
. . . G \
0 High rotation outside g = 2.5 not 0.05F _
required for stability I A\ e =
Zero rotation at single g can be stable 0'0(1) —52'02 5 13 03'54 0
0 Scalar Q.. /o,atq=2.>2nota 9
elable Giterion for stability 0.4 ]
— no applied fie
consistent with distributed dissipation 03F\W ——n=3spbe
. \W{ — n=1DC
mechanism 8< W\ -- n =1 traveling
investigating trapped particle = 0.2p \§} —n=18&n=3 |
recession as stabilization physics at S v
ow rotation G 0.1k
(B. Hu and R. Betti, PRL 93 (2004) 105002.) :
0.0k L ==
*A.C. Sontag, et al., Phys. Plasmas 12 (2005) 056112. 1. 20 3.0 4.0
q

. *A. Bondeson, M.S. Chu, Phys. Plasmas 3 (1996) 3013.



(.w.not correlated with Electromagnetic Torque Model

0 Rapid drop in @, when RWM

unstable may seem similar NSTX Qg Database
to ‘forbidden bands’ model 1.0— - T |
theory: drag from 0 8-; 2:; % + i
electromagnetic torque on ' 4 1
tearing mode* S 0.6t g predlcted
Rotation bifurcation at /2 \-*g - g e - ——
predicted o 0.4f ¢ X -
0 No bifurcation at ay/2 0.2F g -
observed 0ol . : | |
no correlation at g = 2 or 12 16 24

further into core atg = 1.5

Same result forn=1and 3
applied field configuration

(@, = steady-state plasma rotation)

A.C. Sontag, IAEA 2006 paper EX/7-2Rb.

*R. Fitzpatrick, Nucl. Fusion 33 (1993) 1061.
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Increased lon Collisionality | eads to Decreased Q. ;

a Plasmas with similar v, 250
200

0 Consistent with neoclassical 1soF
viscous dissipation model lgg
at low y, increased v; leads to lower 0
Q 1400

crit
(K. C. Shaing, Phys. Plasmas 11 (2004) 5525.) 1200

1000
a ITER plasmas with lower v may 800
require higher degree of RWM 600

active stabilization 2000

1500

Future research aims to uncover 1000

critical RWM stabilization physics 500

to confidently scale to new devices 0
(NSTX FY09 Milestone)

(Sontag, et al., IAEA FEC 2006 paper EX/7-2Rb.)

- 1 v I
e == 121071

100 120 140
R (cm)
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NSTX RWM stabilization research applied to
next-step tokamaks

NSTX ITER KSTAR (not to scale)

Passive stabilizers Blanket modules Port -~ In-Vessel Control Coils

~3

2 Control ‘ i VCC) (to
|I - Coils j’ i T ( ) (top)
1 u
v =
ﬁ I}
= Control H ' A
é 0 | Coils
N |
_ -
o n
i, a =5 ' A
ITER i 448
~ - g o
plasma % .}
boundary
.!:-""!, eezazane} 1

ITER vessel “ +

R(m)

0 ITER: Midplane port control coils, blanket
. 0 KSTAR: Midplane control coil, passive plate geometry with midplane gap

UW 2/5/07 - S.A. Sabbagh 23
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ITER active coil modification can significantly raise stable B

10¢8

(no blankets) i
= VALEN dual-wall vessel / blanket model

Passive \/ ~ | (full view)

104 A -
- (blankets) ..f/ //I/
; /

102 o
e

" 7/‘? gai

1o f [ 107 (VIWb) 108 |
101 1, —
20 30 40 50

B il

a Origir_\al external coil design for ITER
stabilizes up to B = 2.7

10°

Growth rate (s)

O Proposed improvement raises maximum
stable 3 to near 5 Active feedback coil modification

0 Dual-wall vacuum vessel and blanket used (coils in ports)
in VALEN model

UW 2/5/07 - S.A. Sabbagh 24




ITER non-axisymmetric coil designs being studied by USBPO

for combined ELM, RWM, error field control

| =

HE ANKE T

24 PFFENTNG
i N

J. Menard, USBPO MHD qgroup leader
0 RWM: G. Navratil, J. Bialek (CU)

a ELM: T. Evans (GA)
a Error field: M. Schaffer (GA)

Coll position considerations

2. Mid-plane port-plug RWM coils

3. ELM colls nside TF

4. ELM coils in blanket modules

5. ELM coils on TF, near mid-plane

Extension of work performed by M. Becoulet (CEA),
et al. presented at IAEA-FEC 2006: Paper IT/P1-29

UW 2/5/07 - S.A. Sabbagh 25




KSTAR active stabilization system now modeled

.~ IVCC (RWM) coils == Vertical Control
G '
7

il )
| — Upper FEC/RWM

Radial Control—{EHEH

Middle FEC/RWM _,

\

Radial Contro

-«

X ““‘\,"*’

N[ T 1 o)y )
2

— |

i F‘@,

’ LSS ?
FFM v
\,
!

e
<
D
=
=
(@)
=
O
o
5
—
=
=3

,%

AR N - R A AT
.
T e Yo | i /i

top IVCC (RWM) coil
_ e

3 -t:?/
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KSTAR flux contours and parameters for N scan at Iow I_

4 18 22 18 22 18 2.2
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KSTAR equilibrium has large wall-stabilized region at low |;

S ¢ :
- ~1.15 stable walls used
— o T
£ C wall 2 /\%% internal
W 5 | mode
- wall 1 | k!' unstable
% 10 nowall/i"i
. unstable \ - 0 High I: narrow stability window
- 1,~0. 7 stable No-wall By limit = 3.2
— 0 - BuNolinlie il With-wall By limit = 3.6 — 4.0
-CEU I — Internal mode B limit = 4.3
= OF a0 Low I wide stability window
% o f : | No-wall B limit = 2.5
: | - wall 1 With-wall By limit = 4.85 — 6.8
,unstable:
_15 I |
0 2 4 6 3 BN (DCON: A.H. Glasser, LANL)
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KSTAR configuration set up in VALEN-3D

n = 1 RWM passive stabilization currents

0 Conducting hardware
modeled

Vacuum vessel

Center stack
backplates

Divertor backplates

Passive stabilizer
(PS)

PS Current bridge

O Stabilization currents
dominant in SP

40 times less
| | resistive than
IVCC (RWM) control coils nearby conductors

(upper,middle,lower)

UW 2/5/07 - S.A. Sabbagh 29




Active control may sustain 73% margin above ,o-wa!

O Slow mode sets

Midplane IVCC control coils actively stabilized C, =
105 ; ] 0.73 in low |, equilibria
; , no-wall , o
1 PN | Stabilized to B = 4.17
—
~ 104 : : Passive growth time of
o E |// 15 ms at B = 4.2
L 103 : ' Active feedback gain
hu -, Passive Active not optimized
2 - | stabilizati ilizati .
5 102 | | i — | stabilization 0 Computed By limits
; : \ / BNno-waII = 2.56
= 101! ! I With-wall limit B el = 4.76
4 z : :/ (Bn"a") " .
O | Future study to optimize
100 | = and implement advanced
E | -
- : VALEN control algorithms
10-1 N P R
2 3 4 5 6 7 8 CB = (By— By
BN (BNwaII_ BNno-waII)

UW 2/5/07 - S.A. Sabbagh 30



NSTX begins RWM active stabilization research
relevant to ITER, KSTAR and beyond

2 First demonstration of RWM active stabilization in high g,
low A tokamak plasmas with «, significantly less than €2,

In the predicted range of ITER

rit

Positive and negative RWM feedback demonstrated by varying
feedback gain and relative phase

a Stability of n = 2 RWM observed during n = 1 RWM
stabilization
n = 1,2 plasma mode sometimes observed; fast 3 collapse, recovery
2 Plasma rotation reduction by non-resonant applied field;
follows neoclassical toroidal viscosity theory

Full NTV calculation yielding quantitative agreement to experiment ;
general momentum transport relevance

0 Results continue to support (2., as profile; scalar insufficient

—_—




Active RWM control remains vitally important to
minimize performance risk in ITER

O Agreement does not yet exist regarding (2_.., RWM stabilization
physics in low-rotation tokamak plasmas

O Observed inverse dependence of (2. on v indicates lower ITER
collisionality may require a higher degree of RWM active
stabilization

O Similar inverse dependence of plasma momentum dissipation on
v in NTV theory indicates ITER plasmas will be subject to higher
viscosity, greater w, reduction

0 Strong 0B? dependence of quantitatively verified NTV theory
shows that error fields, resonant field amplification, ELMs need be
minimized to maximize stabilizing o,

a Pressure, q, and @, profiles unknown for burning plasma. RWM
(and ELM, error fiefd) control reduces performance risk

—_—



Extra slides
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n = 2 RWM does not become unstable during n = 1 stabilization

) 40 Control OFF 40 Control ON
n=1 n=1

20| j

n=2

. S\: ;- sl

. - LA . o s
A\ i L by ol
Lol - A R -~ [
G S . : VR -

PR DR -

s . . . -

L -

-

e

-

-

-

M

«— 25kHz
plasma

mode
AN=2) |

~ " (disruption)

1.5

1.0

0.5

IR L

core 0.0 120705 “5‘ms ¥ 0.0k 0.6 t(s) 0.8 —’i i‘— 20 nS

056 060 064 t(s)0.68 07239 07240 07241 0.7242 {(s)



Plasma rotation, w-isotherm, MSE included in reconstructions
0.8
0.6/

Poloidal flux and pressure 8 |
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