

Resistive Wall Mode Research in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI Princeton U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado U Maryland **U** Rochester **U** Washington **U** Wisconsin

S.A. Sabbagh¹, R.E. Bell², J.M. Bialek¹, J.E. Menard²,
D.A. Gates², A.C. Sontag³, W. Zhu¹, A.H. Boozer¹, A.H. Glasser⁴, B. LeBlanc², F. Levinton⁵, K.C. Shaing³, K. Tritz⁶, H. Yu⁵, and the NSTX Research Team

¹Department of Applied Physics, Columbia University, New York, NY, USA
 ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA
 ³University of Wisconsin, Madison, WI, USA
 ⁴Los Alamos National Laboratory, Los Alamos, NM, USA
 ⁵Nova Photonics, Inc., Princeton, NJ, USA
 ⁶Johns Hopkins University, Baltimore, MD, USA

University of Wisconsin Research Conference

Madison, Wisconsin - February 5th, 2007

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

<u>Resistive Wall Mode Research in NSTX has Progressed to</u> <u>Address Advanced Topics, support Future Devices</u>

Motivation

- Global MHD modes, including the resistive wall mode (RWM), limit plasma pressure (β), fusion power
- □ RWM stabilization highly desired in fusion reactors to maximize fusion power (~ β^2)

Outline

- Plasma operation in wall-stabilized, high beta regime
- □ RWM detection unstable toroidal mode numbers *n* > 1
- Passive RWM stabilization in rotating plasmas
- Active RWM stabilization in low rotation plasmas (ITER relevant)
- Plasma rotation damping due to non-axisymmetric fields
- RWM stabilization system physics design for future devices

RWM - branch of the ideal kink/ballooning mode coupled to wall

RWM stabilization

- Kink/ballooning mode poses hard limit to plasma pressure (β)
- Conducting wall, plasma rotation stabilizes kink, leads to RWM
- Passive / active RWM stabilization can increase β limit

Analysis tools

- EFIT equilibrium reconstruction
- DCON ideal MHD stability
- VALEN RWM stability, system design

$$\left[\left(\hat{\gamma} - i\hat{\Omega}_{\phi} \right)^{2} + v_{*} \left(\hat{\gamma} - i\hat{\Omega}_{\phi} \right) + (1 - s)(1 - md) \right] \left[S_{*} \hat{\gamma} + (1 + md) \right] = \left(1 - (md)^{2} \right)$$
plasma inertia dissipation mode strength $\sqrt{}$ wall response wall/edge coupling $S_{*} \sim 1/\tau_{wall}$

NSTX is equipped to detect and stabilize kinks, RWM

Machine

≥ 1.27
≤ 3.0
≤ 0.8
≤ 1.5 MA
≤ 0.6 T
≤ 7 MW

- Stabilizer plates for kink mode stabilization
- External midplane control coils closely coupled to vacuum vessel
- □ Internal sensors can detect n = 1 3 RWM

Kink stabilization by wall and RWM passive stabilization by rotation allows sustained plasma operation at maximum β

Time-evolved DCON analysis performed between shots on request
 NSTX

Unstable RWM dynamics follow simple theory

Unstable n=1-3 RWM observed

- □ ideal no-wall unstable at high β_N
- n > 1 theoretically less stable at low A
- F-A theory / experiment show
 - mode rotation can occur during growth
 - □ growth rate, rotation frequency ~ $1/\tau_{wall}$
 - < edge Ω_{ϕ} > 1 kHz
 - RWM phase velocity follows plasma flow
 - n=1 phase velocity not constant due to error field

(Sabbagh, et al., NF 46 (2006) 635.)

Theoretical RWM reconstructed from experimental data

Before RWM activity

(exterior view)

(interior view)

Visible light emission, USXR is toroidally asymmetric during RWM

DCON theory + data reconstructs mode

- uses experimental equilibrium reconstruction
- □ includes n = 1 3 mode spectrum
- uses relative amplitude / phase of n spectrum measured by RWM sensors

Resonant field amplification (RFA) magnitude dependent on applied field frequency

 $\mathsf{RFA} = \frac{\mathsf{B}_{\mathsf{plasma}}}{\mathsf{B}_{\mathsf{applied}}}$

- Applied field phased to create traveling wave in toroidal direction
- Peak in RFA shifted in the direction of plasma flow
 - Peak near 30 Hz
 - Expected by RWM theory / experiment
 - Observed in DIII-D (H. Reimerdes, NF 45 (2005) 368.)

<u>Physics understanding and control of pressure-amplified error</u> <u>fields, unstable RWMs reduce performance risks for ITER</u>

RWM active stabilization

- RWM control demonstrated
- RWM actively stabilized in slowly rotating plasmas

Plasma rotation control

- Sustained rotation by realtime reduction of amplified error field
- Reduced rotation by nonresonant magnetic braking
- Quantitative understanding of momentum dissipation

NSTX / ITER RWM control

<u>Advantage</u>: low aspect ratio, high β plasmas provide high leverage on theory to uncover key tokamak physics

Dynamic error field correction increases pulse length by maintaining plasma rotation

- Real-time correction of known error field (EF)
 - yields higher rotation
 - yields longer pulse
- Combined real-time EF correction + n = 1 RWM feedback yielded best result
 - □ Toroidal rotation, ω_{ϕ} , increase or saturation at long pulse lengths - first time for NSTX

J. Menard, APS 2006

RWM actively stabilized at low, ITER-relevant rotation

- First such demonstration in low A tokamak
 - □ Long duration > 90/ γ_{RWM}
 - Exceeds DCON $\beta_N^{no-wall}$ for n = 1 and n = 2
 - n = 2 RWM amplitude increases, mode remains stable while n = 1 stabilized
 - n = 2 internal plasma mode seen in some cases
- Plasma rotation ω_{ϕ} reduced by non-resonant n = 3magnetic braking
 - Non-resonant braking to accurately determine RWM critical rotation

(Sabbagh, et al., PRL **97** (2006) 045004.)

RWM actively stabilized at low, ITER-relevant rotation

- First such demonstration in low A tokamak
 - □ Long duration > 90/ γ_{RWM}
 - Exceeds DCON $\beta_N^{no-wall}$ for n = 1 and n = 2
 - n = 2 RWM amplitude increases, mode remains stable while n = 1 stabilized
 - n = 2 internal plasma mode seen in some cases
- Plasma rotation ω_{ϕ} reduced by non-resonant n = 3magnetic braking
 - Non-resonant braking to accurately determine RWM critical rotation

(Sabbagh, et al., PRL **97** (2006) 045004.)

<u>n = 2 RWM does not become unstable during n = 1 stabilization</u>

UW 2/5/07 - S.A. Sabbagh 13

Varying relative phase shows positive/negative feedback

• Feedback on n = 1 RWM

- □ Control current has relative phase $\Delta \phi_f$ to measured ΔB_p
- Phase scan shows superior settings for negative feedback
 - Pulse length increases
 - □ Internal plasma mode seen at $\Delta \phi_f$ = 225°, damped feedback system response

Gain scan also performed

Sufficiently high gain showed feedback loop instability

VALEN analysis demonstrates optimal relative phase $\Delta \phi_f$ for RWM active control

Relative phase (VALEN) (deg)

First VALEN analysis with both active and passive stabilization $(\omega_{\phi} > 0)$

□ Unfavorable $\Delta \phi_f$ drives mode growth

□ Stable range of $\Delta \phi_f$ increases with increasing ω_{ϕ}

• Optimal $\Delta \phi_f$ for active stabilization at $\omega_{\phi} = 0$ bracketed by results with $\omega_{\phi} > 0$.

Rotation reduced far below RWM critical rotation profile

Rotation typically fast and sufficient for RWM passive stabilization

Reached $\omega_{\phi}/\omega_{A} = 0.48|_{axis}$

- Non-resonant n = 3 magnetic braking used to slow entire profile
 - The $\omega_{\phi}/\omega_{A} < 0.01|_{q=2}$
 - The $\omega_{\phi}/\Omega_{crit} = 0.2|_{q=2}$

$$\Box \text{ The } \omega_{\phi} / \Omega_{\text{crit}} = 0.3 |_{\text{axis}}$$

Rotation profile responsible for passive stabilization, not just single radial location

RWM may change form and grow during active control

- Poloidal n = 1 RWM field decreases to near zero
 - Radial field increasing
- Subsequent growth of poloidal RWM field
 - Asymmetric above/below midplane
- Radial sensors show RWM bulging at midplane
 - midplane signal increases, upper/lower signals decrease
 - Theory: may be due to other stable ideal n = 1 modes becoming less stable (multimode analysis next step)

Future research will assess using combined sensors for optimization

Observed rotation decrease follows NTV theory

- First quantitative agreement using full neoclassical toroidal viscosity theory (NTV) (K.C. Shaing, UW)
 - Due to plasma flow through non-axisymmetric field
 - Computed using experimental equilibria
 - Trapped particle effects, 3-D field spectrum important
- Viable physics for simulations of plasma rotation in future devices (ITER, CTF)
 - Scales as $\delta B^2(p_i/v_i)(1/A)^{1.5}$
 - Low collisionality, v_i, ITER plasmas expected to have higher rotation damping

(Zhu, et al., PRL 96 (2006) 225002.)

Experimental Critical Rotation Frequency for RWM passive

stabilization, Ω_{crit} , follows Bondeson-Chu theory

Phys. Plasmas 8 (1996) 3013

□ Experimental Ω_{crit}

- □ stabilized profiles: $\beta > \beta_N^{no-wall}$ (DCON)
- □ profiles not stabilized cannot maintain $\beta > \beta_N^{no-wall}$
- □ regions separated by $\omega_{\phi}/\omega_{A} = 1/(4q^{2})$

Drift Kinetic Theory

- Trapped particle effects significantly weaken stabilizing ion Landau damping
- Toroidal inertia enhancement more important
 - Alfven wave dissipation yields $\Omega_{crit} = \omega_A/(4q^2)$

RWM critical rotation profile shape can be altered

- Benchmark profile for stabilization is $\omega_c = \omega_A/4q^2*$
- n = 1,3 braking used to reduce rotation
- High rotation outside q = 2.5 not required for stability
 - Zero rotation at single q can be stable
- □ Scalar Ω_{crit}/ω_A at q = 2, > 2 not a reliable criterion for stability
 - consistent with distributed dissipation mechanism
 - investigating trapped particle precession as stabilization physics at low rotation

(B. Hu and R. Betti, PRL 93 (2004) 105002.)

*A.C. Sontag, et al., Phys. Plasmas **12** (2005) 056112. *A. Bondeson, M.S. Chu, Phys. Plasmas **3** (1996) 3013.

<u>*Ocrit*</u> not correlated with Electromagnetic Torque Model

- Rapid drop in ω_{ϕ} when RWM unstable may seem similar to 'forbidden bands' model
 - theory: drag from electromagnetic torque on tearing mode*
 - Rotation bifurcation at \omega_0/2 predicted
- No bifurcation at $\omega_0/2$ observed
 - no correlation at q = 2 or further into core at q = 1.5
 - Same result for n = 1 and 3 applied field configuration

NSTX Ω_{crit} Database

(ω_0 = steady-state plasma rotation)

A.C. Sontag, IAEA 2006 paper EX/7-2Rb.

*R. Fitzpatrick, Nucl. Fusion **33** (1993) 1061.

Increased Ion Collisionality Leads to Decreased Ω_{crit}

- **D** Plasmas with similar v_A
- Consistent with neoclassical viscous dissipation model
 - at low γ, increased ν_i leads to lower
 Ω_{crit}
 (K. C. Shaing, Phys. Plasmas 11 (2004) 5525.)
- ITER plasmas with lower v_i may require higher degree of RWM active stabilization

Future research aims to uncover critical RWM stabilization physics to confidently scale to new devices (NSTX FY09 Milestone)

(Sontag, et al., IAEA FEC 2006 paper EX/7-2Rb.)

NSTX RWM stabilization research applied to next-step tokamaks

ITER active coil modification can significantly raise stable β_N

VALEN dual-wall vessel / blanket model (full view)

- Original external coil design for ITER stabilizes up to $\beta_N = 2.7$
- Dual-wall vacuum vessel and blanket used in VALEN model

Active feedback coil modification (coils in ports)

ITER non-axisymmetric coil designs being studied by USBPO for combined ELM, RWM, error field control

- J. Menard, USBPO MHD group leader
 - RWM: G. Navratil, J. Bialek (CU)
 - □ ELM: T. Evans (GA)
 - □ Error field: M. Schaffer (GA)

Coil position considerations

- **1. Present error field correction coils**
- 2. Mid-plane port-plug RWM coils
- 3. ELM coils on vessel, inside TF
- 4. ELM coils in blanket modules
- 5. ELM coils on TF, near mid-plane
- 6. ELM coils on upper/lower ports

Extension of work performed by M. Becoulet (CEA), et al. presented at IAEA-FEC 2006: Paper IT/P1-29

KSTAR equilibrium has large wall-stabilized region at low I_i

- □ High I_i: narrow stability window
 - **No-wall** β_N limit = 3.2
 - **With-wall** β_N limit = 3.6 4.0
 - □ Internal mode β_N limit = 4.3
 - Low I_i: wide stability window
 - **No-wall** β_N limit = 2.5
 - □ With-wall β_N limit = 4.85 6.8

(DCON: A.H. Glasser, LANL)

KSTAR configuration set up in VALEN-3D

n = 1 RWM passive stabilization currents

IVCC (RWM) control coils (upper,middle,lower)

- Conducting hardware modeled
 - Vacuum vessel
 - Center stack backplates
 - Divertor backplates
 - Passive stabilizer (PS)
 - PS Current bridge
- Stabilization currents dominant in SP
 - 40 times less resistive than nearby conductors

Active control may sustain 73% margin above $\beta_N^{\text{no-wall}}$

- Slow mode sets actively stabilized $C_{\beta} = 0.73$ in low I_i equilibria
 - Stabilized to $\beta_N = 4.17$
 - Passive growth time of 15 ms at β_N = 4.2
 - Active feedback gain <u>not optimized</u>
- **D** Computed β_N limits

$$\square \beta_N^{\text{no-wall}} = 2.56$$

$$\square \beta_N^{\text{wall}} = 4.76$$

Future study to optimize and implement advanced control algorithms

$$C_{\beta} \equiv \frac{(\beta_{N} - \beta_{N}^{\text{no-wall}})}{(\beta_{N}^{\text{wall}} - \beta_{N}^{\text{no-wall}})}$$

<u>NSTX begins RWM active stabilization research</u> <u>relevant to ITER, KSTAR and beyond</u>

- □ First demonstration of RWM active stabilization in high β , low *A* tokamak plasmas with ω_{ϕ} significantly less than Ω_{crit}
 - In the predicted range of ITER
 - Positive and negative RWM feedback demonstrated by varying feedback gain and relative phase
- Stability of n = 2 RWM observed during n = 1 RWM stabilization
 - \square *n* = 1,2 plasma mode sometimes observed; fast β collapse, recovery
- Plasma rotation reduction by non-resonant applied field; follows neoclassical toroidal viscosity theory
 - Full NTV calculation yielding quantitative agreement to experiment ; general momentum transport relevance
- **\Box** Results continue to support Ω_{crit} as profile; scalar insufficient

<u>Active RWM control remains vitally important to</u> <u>minimize performance risk in ITER</u>

- Agreement does not yet exist regarding Ω_{crit}, RWM stabilization physics in low-rotation tokamak plasmas
- Observed inverse dependence of Ω_{crit} on ν_i indicates lower ITER collisionality may require a higher degree of RWM active stabilization
- □ Similar inverse dependence of plasma momentum dissipation on v_i in NTV theory indicates ITER plasmas will be subject to higher viscosity, greater ω_{ϕ} reduction
- □ Strong δB^2 dependence of quantitatively verified NTV theory shows that error fields, resonant field amplification, ELMs need be minimized to maximize stabilizing ω_{ϕ}
- □ Pressure, q, and ω_{ϕ} profiles unknown for burning plasma. RWM (and ELM, error field) control reduces performance risk

Extra slides

