

Parametric dependencies of low-k pedestal turbulence in NSTX H-mode plasmas

David R. Smith¹

with R. Fonck¹, G. McKee¹, D. Thompson¹, I. Uzun-Kaymak¹, A. Diallo², and B. Stratton²

> ¹University of Wisconsin-Madison ²Princeton Plasma Physics Lab

> > Plasma Physics Seminar UW-Madison April 23, 2012

What are the characteristics and parametric dependencies of pedestal turbulence in NSTX?

- ITER and next-step devices need accurate models of pedestal dynamics
 - Global confinement predictions
 - Diverter heat flux and first-wall lifetime predictions
 - ST edge parameters are among the most challenging regimes for turbulence simulations (steep gradients, high β , large ρ_t/a , strong shaping)
- Here, we measure pedestal turbulence parameters in NSTX H-mode plasmas during ELM-free, MHD quiescent periods
 - Poloidal correlation length, wavenumber, and decorrelation time
 - Identify parametric dependencies (∇n_e , ∇T_i , etc)

Outline

- Beam emission spectroscopy (BES) diagnostic overview
- Pedestal turbulence measurements
 - LH transition
 - ELM-free, MHD quiescent periods
 - Parametric scalings
- Correlation length during the ELM cycle
 - Initial theory/experiment comparison
- Other BES observations
 - Post-ELM harmonic features
 - TAE and GAE mode structures
- Future work and summary

Beam emission spectroscopy (BES) is a diagnostic technique for measuring ion gyroscale (kρ_i < 1) density fluctuations

BES measures Doppler-shifted D_{α} emission (λ_0 =656 nm) from neutral beam particles

NSTX BES system includes 56 sightlines in radial and poloidal arrays spanning core to SOL

- 32 detection channels; expansion planned for NSTX-U
- 2 MHz sampling with digital anti-alias filter
- 2-3 cm image size and sensitive to \tilde{n} with $k_{\perp}\rho_{i} \leq 1.5$
- Field-aligned optics with high throughput (etendue = 2.3 mm²-ster)

Point spread functions

	Model	Ideal fiber	Focusing optics	Optical+NB decay	Optical+NB intensity	Optical+fieldline excursion	All effects	
	Y 1/e ² width (cm)	3.2	4.0	4.4	3.2	4.4	4.4	
	Y displacement (cm)	0.0	0.0	0.5	0.0	-0.5	0.3	
	Ideal fiber image w/ magnification			Optical image		Optical+NB decay		
X axis (sightline)	1 0.5 0 -0.5 5 0 Z axis -5 -5	(a) = 1 $(a) = 0.5$ $(a) = 0.5$ $(a) = 0.5$ $(b) = 0.5$ $(b) = 0.5$ $(c) =$	-5 0 Y axis (//	(i)	X (au) image int. Y (cm) ~ radial Z (cm) ~ binormal			
X axis (sightline)	Optical+NB	intensity	Op 1 0.5 0 x axis (sightline) 5 5 5 0 2 axis -5 0 5 0 -0.5 5 0 -0.5 5 0 -0.5 5 0 -0.5 -0 -0.5 -0 -0.5 -0 -0.5 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	trical+fieldline excursion -5 $0Y$ axis (//	on (i) (i)	Full image 10 cm 5 cm -5 0 5 Y axis (// to midpl	ane)	150 cm
	ISCONSIN VERSITY OF WISCONSIN-MADISON	🛞 NSTX	X-U	D. Smith,	UW Plasma Physic	s Seminar, 4/23/12		7

Ŵ

NSTX BES system commissioned in 2010

🕅 NSTX-U

NISCONSIN JNIVERSITY OF WISCONSIN-MADISON

BES measurements show radially-localized response to NB emission and high signal-to-noise ratio

BES measurements provide poloidal correlation lengths (L_c), poloidal wavenumbers (k_{θ}), and decorrelation times (τ_{d}) in the pedestal

Decrease in fluctuations at LH transition observed from edge to core regions

Similar increase in fluctuations observed at HL back-transitions

BES shows complex turbulence activity in pedestal during quiescent H-mode periods

() NSTX-U

D. Smith, UW Plasma Physics Seminar, 4/23/12

Questions about pedestal turbulence to ask and answer with BES measurements

• What are typical L_c , k_{θ} , and τ_d values in the H-mode pedestal during ELM-free, MHD quiescent periods?

- How do L_c, k₀, and τ_d change with plasma parameters? - ∇n_e , ∇T_i , q/ŝ, v_e , β_e , n_{ped} , etc.
- Can we connect observations to edge turbulence simulations?
 - XGC1 or BOUT++?

NSTX-U

Pedestal turbulence measurements and plasma parameters from ELM-free, MHD quiescent H-modes were gathered in a database

Database details

- 129 entries from 29 discharges
 B_{T0} = 4.5 kG
 I_p = 700-900 kA
 15-45 ms averaging
- Turbulence parameters $L_c/\rho_i \sim 12$ $k_{\theta}\rho_i \sim 0.2$ $\tau_d/(a/c_s) \sim 5$ $\tau_d\omega^*_{pi} \sim 0.15$
- Plasma parameters
 - generally 50%-300% variation

NSTX-U

 $\begin{array}{l} - \ n_{e}, \ \nabla n_{e}, \ T_{e}, \ \nabla T_{e}, \ Ti, \ \nabla T_{i}, \ v_{t}, \\ \nabla v_{t}, \ q, \ \mathbf{\hat{s}}, \ v_{e}, \ v_{i}, \ \beta, \ \beta_{e}, \ n_{ped}, \\ \Delta R_{ped}, \ \delta_{r}^{\ sep} \end{array}$

A search algorithm identified linear regression models that show similar scalings despite different parameter compositions

- Search algorithm minimizes regression model's squared sum of errors (SSE) by adding or removing x_k in model
- Many SSE local minima exist in high dimensional x_k space
- Objective: find **many** models and screen for statistical quality
 - Statistical significance (α_k t-statistics)
 - Multicollinearity (variance inflation factor)
 - Error normality (Studentized residuals)

(0) NSTX-U

Linear regression models exhibit similar scalings despite different parameter compositions

TABLE III: α coefficients for a subset of L_c/ρ_s models												
Model	α_k coefficients of parameters in model											
R^2	∇n_e	T_e	T_i	$1/L_{Ti}$	∇V_t	ν_e	n_{ped}					
0.63	0.28	_	-0.20	-0.29	_	0.31	_					
0.63	0.34	_	_	_	-0.37	0.30	_					
0.61	0.46	-0.21	_	_	-0.38	_	_					
0.60	_	_	_	_	-0.47	0.38	0.24					
0.60	_	_	-0.22	-0.35	_	0.40	0.15					
0.55	-	-0.24	-	-	-0.55	-	0.36					

L_c increases at higher ∇n_e , $1/L_{Te}$, ν , and n_{ped} ; decreases at higher T_i , ∇T_i , and ∇v_t

k_{θ} scalings consistent with L_c scalings; τ_{d} scalings provide additional insight

🕕 NSTX-U

Scalings point to a variety of turbulence mechanisms

- Parametric scalings point to enhanced turbulence structures (larger L_c and τ_d) at higher ∇n_e and $1/L_{Te}$
 - Possibly **TEM** turbulence

NSTX-U

- ∇v_t scalings for L_c and k_{θ} point to turbulence suppression – Equilibrium E×B flow shear
- v_e and v_i scalings for L_c and k_θ are consistent with **zonal flows** - τ_d decreases with v_e
- Pedestal height (n_{ped}) increases at larger L_c and τ_d
 - Consistent with larger structures and wider pedestals

Poloidal correlation lengths during inter-ELM cycle are consistent with XGC1 simulation

Post-ELM harmonic features at 50-100 kHz are localized at the top of the pedestal

Harmonic features are either absent from or weakly present in magnetic spectra

 \bigcirc

NSTX-U

D. Smith, UW Plasma Physics Seminar, 4/23/12

TAE and GAE mode structures have been observed in extended radial regions

TAE burst

NSTX-U

GAE mode

Directions for future work

- Quantify fluctuation amplitudes
- Quantify radial correlation length
- Study pre- and post-LH transition
- Measure flow fluctuations and flow shear
 - Study flow fluctuations and shear across LH transition
- Identify post-ELM harmonic oscillations
 - Captured by peeling-ballooning model?
 - Connect to DIII-D observations

Summary: We measured pedestal turbulence quantities and identified parametric dependencies in ELM-free, MHD quiescent H-mode plasmas

- ST edge parameters are among the most challenging regimes for simulations
- The BES system on NSTX can measure poloidal correlation length, wavenumber, and decorrelation time of pedestal turbulence
- Regression models identify parametric scalings that point to a variety of turbulence mechanisms
 - Enhanced turbulence structures at higher ∇n_e and $1/L_{Te}$
 - ∇v_t scalings point to E×B turbulence suppression
 - Collisionality scalings for L_c and k_θ are consistent with zonal flows
 - Pedestal height increases at longer L_c and τ_d
- Other observations
 - Initial experiment/theory comparison for inter-ELM measurements
 - Reduced turbulence at LH transition
 - Post-ELM harmonic oscillations
 - TAE and GAE mode structure

