

Supported by

Scientific Opportunities and Challenges on the National Spherical Torus eXperiment Upgrade (NSTX-U)

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Jon Menard NSTX-U Program Director

Graduate Student Seminar PPPL theory conference room February 2, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Talk Outline

- Introduction to Spherical Tokamaks/Tori (STs)
- Description of NSTX Upgrade
- Unique physics characteristics of ST and research opportunities
 - Macroscopic Stability
 - Transport and Turbulence
 - Boundary Physics
 - Energetic Particles
 - Non-inductive start-up, ramp-up, sustainment
- Summary

2

ST is a low aspect ratio tokamak with A < 2

Natural elongation makes its spherical appearance

Aspect Ratio A = R /a

Elongation $\kappa = b/a$

"natural" = "without active shaping"

Camera image from START

A. Sykes, et al., Nucl. Fusion (1999).

Note: ST differs from FRC, spheromak due to B_{TF}

Y-K.M. Peng, D.J. Strickler, NF (1986)

A spherical tokamak (ST) is a high beta tokamak Favorable average curvature improves stability at high beta

Graduate Student Seminar – NSTX-U (Menard)

ST can be compact, high beta, and high confinement Higher elongation κ and low A lead to higher I_p, β_T and τ_E

Aspect Ratio A = R /a Elongation κ =

Elongation $\kappa = b/a$ Toroidal Beta $\beta_T = \langle p \rangle / (B_{T0}^2 / 2\mu_0)$

• ST has high Ip due to high κ and low A

$$I_p \sim I_{TF} (1 + \kappa^2) / (2 A^2 q^*)$$

S. Jardin et al., FS&T (2003)

• Ip increases tokamak performance

$$\tau_{\mathsf{E}} \propto \mathbf{I}_{\mathsf{p}}$$
$$\beta_{\mathsf{T}} [\%] \equiv \beta_{\mathsf{N}} \ \mathbf{I}_{\mathsf{p}} / (\mathsf{aB}_{\mathsf{T0}})$$

• ST can achieve high performance cost effectively

High $\kappa \sim 3.0$ equilibrium in NSTX.

5

New physics regimes are accessed at low aspect ratio, enhancing the understanding of toroidal confinement physics

- Lower A \rightarrow increased toroidicity \rightarrow higher β , strong shaping
- Higher $\beta \rightarrow$ electromagnetic effects in turbulence, energeticparticle modes, RF heating and CD (over-dense plasmas)
- Higher fraction of trapped particles (low A), increased normalized orbit size (high β), and flow shear (due to low B, low A)→ broad range of effects on transport and stability
- Increased normalized fast-ion speed (high β) → simulate fast-ion transport/losses of ITER
- Compact geometry (small R) → high power/particle/neutron flux relevant to ITER, reactors

6

Unique ST properties support and accelerate a range of development paths toward fusion energy

Extend Predictive Capability for ITER and Toroidal Science

- High β physics, rotation, shaping for MHD, transport
- Non-linear Alfvén modes, fast-ion dynamics, Electron gyro-scale turbulence at low v*

Burning Plasma Physics - ITER

Fusion needs FNSF(s) (modest cost, low T, and reliable) to Test and Qualify Fusion Components

Fusion needs to develop reliable/qualified components which are unique to fusion:

- Divertor / PFC
- Blanket and Integral First Wall
- Vacuum Vessel and Shield
- Tritium Fuel Cycle
- Remote Maintenance Components

FNSFs

- Without R&D, fusion components could fail prematurely which often requires long repair/down time. This would cripple the DEMO operation.
- FNSF can help develop reliable fusion components.
- Such FNSF facilities must be modest cost, low T, and reliable.

If the cost of volume neutron source (FNSF) facility is "modest" << ITER, DEMO, it becomes highly attractive development step in fusion energy research. M.A. Abdou, et al., FTS (1996)

8

There have been several studies of ST-FNSF showing the potential attractiveness of this approach

Projected to access high neutron wall loading at moderate R₀, P_{fusion}

 $-W_n \sim 1-2 \text{ MW/m}^2$, $P_{fus} \sim 50-200 \text{MW}$, $R_0 \sim 0.8-1.8 \text{m}$

- Modular, simplified maintenance
- Tritium breeding ratio (TBR) near 1

- Requires sufficiently large R₀, careful design

R&D Needs for an ST-FNSF

- Non-inductive start-up, ramp-up, sustainment
 - Low-A \rightarrow minimal inboard shield \rightarrow no/small transformer
- Confinement scaling (especially electrons)
- Stability and steady-state control
- Divertor solutions for high heat flux
- Radiation-tolerant magnets, design

Example ST-FNSF concepts

UT Austin

NSTX-U to provide data base to support ST-FNSF design, ITER operations, boundary solutions

TF OD = 20cm **TF OD = 40cm**

- New CS provides higher 2x TF (improves stability), 3-5s needed for J(r) equilibration
- More tangential injection provides 3-4x higher CD at low I_P:
 - 2x higher absorption (40 \rightarrow 80%) at low I_P
 - 1.5-2x higher current drive efficiency

~ 5-10x increase in $nT\tau$ from NSTX

NSTX-U average plasma pressure ~ Tokamaks

Key NSTX-U research topics for FNSF and ITER

- Stability and steady-state control at high β
- Confinement scaling (esp. electron transport)
- Non-inductive start-up, ramp-up, sustainment
- Divertor solutions for mitigating high heat flux

J. Menard, et al., NF (2012)

NSTX Upgrade Project nearing completion First plasma expected Mar/Apr 2015, research in May/June

New Center-Stack Installed In NSTX-U Vacuum pump-down achieved last month (January)

Talk Outline

- Introduction to Spherical Tokamaks/Tori (STs)
 Description of NSTX Upgrade
- Unique physics characteristics of ST and research opportunities
 - Macroscopic Stability
 - Transport and Turbulence
 - Boundary Physics
 - Energetic Particles
 - Non-inductive start-up, ramp-up, sustainment
- Summary

Higher β_T enables higher fusion power and compact FNSF for required neutron wall loading

 $W_n \propto \beta_T^2 B_{T0}^4$ a (not strongly size dependent)

 $W_n \sim 1 \text{ MW/m}^2$ with R $\sim 1 \text{ m FNSF}$ feasible!

Record β_N and β_N / I_i accessed in NSTX using resistive wall mode stabilization

High β_N regime is important for bootstrap current generation.
 High β_N/l_i regime important since high f_{BS} regime

has low l_i.

S.A. Sabbagh PRL(2006)

- J. W. Berkery, PRL (2011)
 - W. Zhu, PRL (2006)
 - S.A. Sabbagh at this APS

Major mission of NSTX-U is to achieve fully non-inductive operations at high β

Research opportunities

- How do RWM stability and rotation damping from neoclassical toroidal viscosity (NTV) change at the lower (ultimately up to 10x lower) collisionality values of NSTX-U?
 - Enhanced kinetic damping for RWM?
 - Enhanced rotation damping in 1/v regimes?
- What are leading causes of disruptions in ST? and what are implications for next steps?
 - NSTX-U will implement advanced profile and instability controls – how much does this reduce disruptivity?
 - NSTX-U will perform in-depth study/diagnosis of "halo/hiro" currents, i.e. edge plasma and wall currents and forces induced by disruptions

Favorable Confinement Trend with Collisionality and β found Important implications for future STs and Demo with much lower ν_*

Very promising ST scaling to reactor condition, if continues on NSTX-U/MAST-U

Microtearing-driven (MT) transport may explain ST collisionality scaling

Microtearing-driven χ_e vs. v_{ei} using the GYRO code.

- MT growth rate decreases with reduced collisionality in qualitative agreement with the NSTX experiment.
- Further electron confinement improvement expected due to reduced collisionality.

W. Guttenfelder, et al., PoP(2012)

ETGs measured for the first time with high-k scattering High β_e or larger $\rho_e \propto \beta_e^{0.5}$ of ST plasma enabled measurement of ETGs.

H.Y. Yuh et al., PoP (2009) J.L. Peterson, et al., PoP(2011).

19

Research opportunities

- What are the leading causes of anomalous electron transport in the ST, and tokamaks generally?
 - –Will electrostatic turbulence (ETG, TEM) dominate over micro-tearing ($\chi_e \sim v$) at lower collisionality values of NSTX-U?
- Will ion thermal and impurity transport remain predominantly neoclassical?

–Neoclassical diffusivities also scale ~ ν

H-mode / ELM physics: High Priority Research Goal Unmitigated ELMs could cause PFC damage in reactors

Video images of MAST plasmas showing a filamentary ELM structure.

ST is in strongly shaped ELM regimes

P.B. Snyder et al., PoP (2002). MAST Pegasus (Type I) **NSTX, PEGASUS** NSTX¹ (Type I) Strong shaping MAST^{2,3} 10 P_{LH}/P_{ITPA08} AUG^{2,3} IFT^{2,3} Peeling CMOD^{2,3} unstable Jped ▲ JT60-U^{2,5} — ITPA08 Ballooning Conventional Tokamaks Weak shaping unstable 1.0 1.5 2.0 2.5 3.5 3.0 Stable Aspect Ratio K.E. Thome et al., EPR (2014) N. Ben Ayed et al., PPCF p'ped (2009).

- NSTX/MAST/PEGASUS accessed H-mode at very low heating power < 1 MW and also in ohmic plasmas
- NSTX-U and MAST-U will provide H-mode access scaling for FNSF

L-H power threshold

scaling extended for

low A

ELM Stabilization and Mitigation Through application of lithium and 3-D fields

ELMs stabilized with edge pressure modification with Li in NSTX

ELM mitigation with n=3 3-D fields (ELM Coils) in MAST

Research opportunities

- At higher aspect ratio and lower collisionality of NSTX-U, will ELMs remain predominantly J_{II}-driven?
- H-mode pedestal profiles determine overall fusion performance.... But what are dominant transport mechanism(s) in the H-mode pedestal region?
 - Neoclassical, kinetic ballooning, electron ∇T (ETG), other?
 - Ahmed Diallo's Early Career Award with "burst" Thomson Scattering will help determine fast time evolution, transport
- Lithium coatings substantially increased NSTX global confinement (1.4x ITER H) – important for next-steps
 - How high can we make energy confinement in NSTX-U?
 - 2x ITER H-mode scaling? What sets the limit?

Divertor heat flux in Low-A regime

ST power flux width clearly shows 1/B_{poloidal} variation

STs data breaks A degeneracy of power flux width study.

Heuristic model by R.J. Goldston, NF (2012).

- * Unfavorable for large size, Ip devices such as ITER and Demo
- "P B / R" as the new heat flux metric which is favorable for STs

Most divertor power arrives at outboard side in MAST and NSTX!

Ratio of outboard power flux vs. inboard in MAST

Divertor flux expansion of ~ 50 achieved with Snow Flake Divertor with large heat flux reduction in NSTX

WNSTX-U

Research opportunities

- What sets the heat flux width in the open field line region?
 - Mostly drifts + collisions (i.e. neoclassical) or does turbulence play a role?
- How does divertor geometry (such as snowflake) influence the plasma edge properties?
- How do Li and high-Z PFCs modify the edge region, and also the core performance?
 - NSTX-U will study "vapor shielding" regime to improve understanding of Li evaporation + radiation and impact on power exhaust / heat-flux mitigation / core performance

NBI heated ST plasmas provide an excellent testbed for α -particle physics Alfvenic modes readily accessed due to high V_{α} > V_{Alf}

- α -particles couples to Alfven-type mode strongly when $V_{\alpha} > V_{Alf} \sim \beta^{-0.5}$ Cs
- $V_{\alpha} > V_{Alf}$ in ITER and reactors
- In STs, the condition is easily satisfied due to high beta
- A prominent instabilities driven by fast particles are global and called toroidal Alfven eigenmodes (TAE).
- NSTX-U will also explore $V_{\alpha} < V_{Alf}$ regime giving more flexibility

"TAE avalanche" shown to cause energetic particle loss Uncontrolled α -particle loss could cause reactor first wall damage

Graduate Student Seminar – NSTX-U (Menard)

- Will reduced drive for fast-ion instabilities in NSTX-U reduce anomalous fast-ion transport?
- How will NSTX-U plasmas respond to more tangential neutral-beam / fast-ion injection?

- Are current and momentum drive consistent with theory?

- What is role of high-f fast-ion instabilities (GAE/CAE) in core electron transport?
 - Is this physics unique to high-beta/ST?

I_P Start-up/Ramp-up Critical Issue for ST-FNSF/Demo

 Two novel techniques for solenoid-free start-up and ramp-up will be investigated

- **RF: ECH/EBW and HHFW**
- **Helicity Injection**

~ 1-2 MA of solenoid-

free start-up current

needed for FNSF

Time

Helicity Injection Is an Efficient Method for Current Initiation Coaxial Helicity Injection (CHI) Concepts Being Developed

Graduate Student Seminar – NSTX-U (Menard)

Current Ramp-Up and Profile Control Crucial for FNSF Major Research Topics for NSTX-U

32

NSTX has accessed A, β_N , κ needed for ST-based FNSF Requires $f_{BS} \ge 50\%$ for plasma sustainment

 $f_{BS} \equiv I_{BS} / I_{p} = C_{BS} \beta_{p} / A^{0.5} = (C_{BS}/20) A^{0.5} q^{*} \beta_{N} \propto A^{-0.5} (1+\kappa^{2}) \beta_{N}^{2} / \beta_{T}$

S.P. Gerhardt et al., NF (2011)

- NSTX achieved f_{BS} ~ 50% and f_{NI} ~ 65-70% with beams
- NSTX-U expects to achieve f_{NI} ~100% with the more tangential NBI (~ 1.5- 2x higher current drive efficiency)

- Can NSTX-U really sustain all of its current without a transformer? If so, at what performance level?
- If NSTX-U succeeds at non-inductive sustainment, what level of non-inductive start-up and ramp-up is achievable?
 - Is it really possible to have a tokamak with NO solenoid?
- Can we develop simple yet powerful enough models to simulate all this accurately?
 - Complex combination of current drive, transport, stability (TRANSP, TSC, + other models)

Summary

- NSTX-U will provide many opportunities to study toroidal confinement physics in new regimes:
 - Low aspect ratio, strong shaping, high β , low collisionality
 - Access to strong fast-ion instability drive, high rotation
 - Advanced divertors, lithium walls, high-Z PFCs
- The opportunities described here are just a small fraction of the research possibilities available!
- Please see next slide for people to contact for more

Contacts for 1st/2nd year projects, thesis ideas

