

Progress and plans for Research on NSTX Upgrade

Jonathan Menard (PPPL) On behalf of the NSTX-U Research Team

MIT Plasma Science and Fusion Center December 9, 2016

Outline

- NSTX-U mission
- Research highlights
- Progress on next-step ST concepts
- Goals for next run
- Summary

NSTX-U Mission Elements:

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop solutions for plasmamaterial interface (PMI)

• Advance ST as Fusion Nuclear Science Facility and Pilot Plant

Snowflake/X

Liquid metals / Li

ST-FNSF /

Pilot-Plant

NSTX-U will access new physics with 2 major new tools:

2. Tangential 2nd Neutral Beam

<u>Higher T, low v^* from low to high β </u> \rightarrow Unique regime, study new transport and stability physics Full non-inductive current drive
 → Not demonstrated in ST at high-β_T Essential for any future steady-state ST

NSTX-U will have major boost in performance

>2× toroidal field (0.5 → 1T)
>2× plasma current (1 → 2MA)
>5× longer pulse (1 → 5s)

>2× heating power (5 → 10MW)
Tangential NBI → 2× current drive efficiency
>4× divertor heat flux (→ ITER levels)
>Up to 10× higher nTτ_E (~MJ plasmas)

NSTX-U had scientifically productive 1st year

- Achieved H-mode on 8th day of 10 weeks of operation
- Surpassed magnetic field and pulse-duration of NSTX
- Matched best NSTX H-mode performance at ~1MA
- Identified and corrected dominant error fields
- Commissioned all magnetic and kinetic profile diagnostics
- New 2nd NBI suppresses Global Alfven Eigenmodes (GAE)
- Implemented techniques for controlled plasma shut down, disruption detection, commissioned new tools for mitigation
- 2016 run ended prematurely due to fault in divertor PF coil
 - Coil + other issues \rightarrow major reviews of design, fab, procedures
 - Coil forensics complete, prep for new coil fab underway
 - Aim to resume plasma operation during CY2018

NSTX-U Mission Elements:

• Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond

Topical science areas:

- Scenario Development
- Macroscopic Stability
- Transport and Turbulence
- Energetic Particles

NSTX-U Mission Elements:

• Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond

Topical science areas:

- Scenario Development
- Macroscopic Stability
- Transport and Turbulence
- Energetic Particles

NSTX-U has surpassed maximum pulse duration and magnetic field of NSTX

Compare similar NSTX / NSTX-U Boronized L-modes, P_{NBI}=1MW

n=1 error field correction (EFC) optimized to maximize pulse length, discharge performance

• L-modes used to identify optimal correction amplitude, phase

Recovered ~1MA H-modes with weak/no core MHD

NSTX-U

MIT Seminar – December 9, 2016 (Menard)

Accessed low I_i and high κ using progressively earlier H-mode and heating + optimized EFC

- NSTX-U: Additional sensors improve estimation of Z, dZ/dt
- Goals for next run:

- Access $I_i = 0.5-0.7$, $\kappa = 2.4-2.7$, $B_T = 0.75-1T$, $I_P = 1.5-2MA$

NSTX-U experiments are using a significantly expanded plasma shutdown scheme

- NSTX PCS: No means of detecting a disruption, or ramping down the plasma current based on events.
- NSTX-U PCS: State machine orchestrates the shutdown.

"State-machine"-based automated ramp-down now used routinely during operations

- Plasma control system detects loss of control
 - OH solenoid near maximum current
 - Vertical oscillations exceed threshold
 - $-ABS (I_p I_{p request})$ too large
- Feedback control switches to new "states" that attempt to gently end the discharge

Shutdown handler used for well-controlled disruption-free L-mode ramp-down

- Three morning fiducials
- One operator waveform used to start ramp-down at t=1.5s
- Ramp-down is innerwall limited, power and current slowly ramped off

L-mode Rampdowns Triggered By a Single Switch

NSTX-U Mission Elements:

• Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond

Topical science areas:

- Scenario Development
- Macroscopic Stability
- Transport and Turbulence
- Energetic Particles

Leading studies of rotating halo currents through ITPA multi-machine analysis and M3D-C1 numerical simulations

MIT Seminar – December 9, 2016 (Menard)

Disruption characterization and forecasting capability started for NSTX-U as part of disruption avoidance plan

New DECAF (Disruption Event Characterization And Forecasting) code written

- Identify disruption event chains and elements
 - ex: vertical displacement, pressure peaking, tearing modes...
- Predict events in disruption chains
- Cues disruption avoidance system

COLUMBIA UNIVERSITY

Example: Reduced kinetic resistive wall mode (RWM) model developed for calculating growth rate vs. time

- Initial tests on NSTX RWM database
 - 86% of RWM shots are predicted unstable
- Possible to predict growth rate in real time

J.W. Berkery et al., Poster EX/P4-34, Wednesday afternoon

Continuing analysis of rotating MHD for DECAF includes accurate analysis of mode "status"

Odd-n magnetic signal / analysis (mode locking / unlocking)

NSTX-U: Long-lived stationary sawtoothing discharges generated with core rotation f~15kHz

Previously very difficult to achieve in NSTX due to limited flat-top

Real-Time Velocity (RTV) is a fast (up to 5kHz) system based on active spectroscopy

- System based on active chargeexchange spectroscopy (NB1 line)
- Monitor C VI, n=8-7 line @ 5291nm
- RTV views interleaved with CHERS views at midplane
- 4 views available
- R=112, 125, 132, 140cm

M. Podestá

Sawteeth redistribute momentum, core v_{ϕ} decreases by ~20%

MHD, sawteeth compete in v_{ϕ} redistribution; different time scales, high f_{samp} or RTV enables separation

- Complex scenario
 - MHD n=1,2 modes act on ~10ms time scale
 - Sawteeth act on ~1ms time scale
- High f_{samp} of RTV allows to differentiate time scales
- Complements high spatial resolution CHERS profiles

M. Podestá

Resistive DCON Solves Reliable Outer Region Δ' and Indicates Δ' is Destabilized by Plasma Pressure

Resistive DCON reproduces Δ ' behavior in Furth, Rutherford and Selberg, Phys. Fluids 16, 1054(1973).

50 $\mu_0 p_0 = 4.5 \times 10^{-3}$ m=2 PEAKED MODEL 20 $\mu_0 p_0 = 2.25 \times 10^{-2}$ 20 40 В n=1 m=2 $\mu_0 p_0 = 6.75 \times 10^{-2}$ 15 m=2 30 r₀ ∆' $\mu_0 p_0 = 9.00 \times 10^{-2}$ _0 10 ∕⊃°_20 10 n=1 m=3 5 10 m ≠ 3 Δ' at q=2 0 0 STABLE Xn = 1.33 -5 0.2 0.4 0.6 0.8 0 0.6 r_/r₀ 0.4 0.8 ×s r_{s}/r_{0}

Resistive DCON solves Δ' in full toroidal geometry.

Higher $\beta \rightarrow$ Increase Δ' at q=2,3 \rightarrow More unstable tearing mode

First resistive DCON paper has been published. Glasser, Wang and Park, Phys. Plasmas 23, 112506 (2016)

Z. Wang

1

Preliminary result: Resistive DCON and MARS-F predict unstable n=1 tearing mode as observed in NSTX-U experiments

- Unstable n=1 tearing mode is observed in L mode NSTX-U discharge (204718).
- Resistive DCON and MARS-F predict unstable n=1 tearing modes at $q \ge 3$ singular surfaces.

NSTX-U

RDCON: Δ' Optimization of NSTX-U L-Mode discharge to stabilize n=1 tearing mode ($q_0 \downarrow$ and $\beta_N/l_i \uparrow \rightarrow \Delta' \downarrow$)

Resistive DCON is applied to optimize NSTX-U equilibrium to avoid tearing instability (varying equilibrium parameters to minimize Δ').

A sequence of equilibria are generated by scanning current and pressure profiles with CHEASE code, where plasma boundary of discharge 204718 is used.

NSTX-U Mission Elements:

• Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond

Topical science areas:

- Scenario Development
- Macroscopic Stability
- Transport and Turbulence
- Energetic Particles

NSTX: Using global non-linear GTS gyrokinetic code to study multiple low-k turbulent transport mechanisms

Ion Temperature Gradient, Kelvin-Helmholtz modes + neoclassical, treat larger p*~0.01 of NSTX

- Low-k turbulence contributes significantly for R > 135 cm
 - Turbulence later suppressed by ExB shear
- Total ion energy flux from GTS in agreement with experiment

- GTS electron energy flux from only significant at R > 135 cm, and much smaller than experiment
- Electron Temperature Gradient (ETG), electromagnetic effects important?

Linear and non-linear gyrokinetic simulations of Electron Temperature Gradient (ETG) modes show ∇n_e can be stabilizing

Measured $\delta n/n$, linear growth rates, non-linear Q_e all reduced by higher ∇n_e

Non-linear GYRO under-predicts Q_e by 70-100% – need multi-scale GK?

NSTX-U: Bimodal turbulence seen in some L-modes using upgraded 48 channel Beam Emission Spectroscopy (BES) system

- Modes propagate in opposite directions
 - Similar spectra seen with DIII-D and TFTR BES
 - Potential link to grad B direction?
 - Gyro-kinetic modelling underway

*GYRO (Candy, Waltz, 2003)

At ion scales ($k_{\theta}\rho_{s}$ <1), linear GYRO* simulations predict unstable spectra of ITG and microtearing modes (MTM)

- ITG unstable R>135 cm, propagates in ion direction
 - Propagation direction consistent with BES ion mode (need to consider Doppler shift, although also in ion direction)
- MTM also unstable R>127 cm, propagates in electron direction
 - Surprised to find MTM unstable ⇒ sufficient beta (4.1%) and large collisionality enhances MTM

Strong variation in turbulence, stability and E×B shear over \leq 30 $\rho_s \Rightarrow$ *motivates the need for global simulations*

- Strong *local* E×B shearing rates ($\gamma_E > \gamma_{ITG}$, γ_{MTM} at R=135 cm) – BES amplitudes increasing where $\gamma_{ITG} > \gamma_E$
- Significant variation over ~30 ρ_s ($\rho_* = \rho_s/a \sim 1/120$, $\rho_s/L_T \sim 1/35$)
- ⇒ Motivates the need for global simulations

Same NSTX-U L-modes: Nonlinear ETG simulations give significant transport (R=129-140 cm, r/a=0.47-0.67)

- Q_{e,etg} large enough to account for Q_{e,exp} if Z_{eff}=Z_{eff,c}≈1.2
 – Larger Z_{eff} (VB Z_{eff}≤2) → lower Q_{e,etg}
- New high-k microwave scattering diagnostic (for 2018 run) will be ideal for probing region of ETG turbulence
- May require multiscale simulations for validation

NSTX-U

NSTX-U Mission Elements:

• Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond

Topical science areas:

- Scenario Development
- Macroscopic Stability
- Transport and Turbulence
- Energetic Particles

Explored fast-ion behavior with original and new NBI via beam blips with different NBI energies

Exploring possible causes, including NBI source energy split

Agreement improved for $E_{inj} = 65 \text{keV}$ using small anomalous fast-ion diffusion

 TRANSP decay time gets reasonable agreement with data when a small anomalous fast ion diffusivity (D_{af}=0.3m²/s) is used

 → Beam ion behavior is still close to classical theory

NSTX-U: Most tangential NBI generates counterpropagating Toroidal Alfvén Eigenmodes (TAEs)

- TRANSP: As current builds up beam fast-ion beta profile predicted to become hollow
- 1st evidence of off-axis NBI in NSTX-U

 Counter-propagating TAE predicted for hollow fast-ion profiles

H.V. Wong, H. Berk, Phys. Lett. A **251** (1999) 126.

NSTX-U tangential 2nd neutral beam suppresses Global Alfven Eigenmode (GAE) – consistent with HYM code

Future modelling and experiments: Explore impact on fast-ion and thermal electron transport

NSTX-U Mission Elements:

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop solutions for plasmamaterial interface (PMI)

 Advance ST as Fusion Nuclear **Science Facility and Pilot Plant**

Liquid metals / Li

Snowflake/X

Improving understanding of SOL heat flux width trends in NSTX using XGC1 simulations

• Experiment shows contraction of SOL heat flux width at midplane with I_p as well as influence of Li conditioning

XGC-1:

- Full-f, global PIC, kinetic ions and electrons
- NSTX data and XGC-1: $\lambda_q \sim 1/I_P^{1.5}$
- Simulations for ITER presented at IAEA-FEC 2016 (C.-S. Chang) indicate turbulence can play significant role in setting heat-flux width
 - Will SOL turbulence become important in NSTX-U at high current?

XGC1 w/ collisions \rightarrow similar trends

NSTX-U: First systematic simulations of advanced divertors combined with 3D fields using EMC3-EIRENE

- Divertor heat-flux trends:
 - Peaked heat loads in Near Exact Snowflake
 - Lowest heat loads found for X-divertor-like configurations
 - RMP fields do not significantly impact toroidal average heat-flux

Throughput-optimized camera and high-X-point L-modes enabled <u>near-separatrix</u> turbulence imaging in NSTX-U

- Divertor turbulence imaging through different species/charge states provides information at different spatial locations
- Throughput-optimized setup enabled turbulence imaging via C III (up to 140kHz)
 - Filaments along divertor legs (vs. filament footprint on floor via Li I or $D\alpha$)

Reconstructed view + separatrix

Time delayed cross correlation shows opposite toroidal rotation for inner/outer leg filaments

- Time-delayed cross correlation of single pixel with rest of image to show average filament propagation
- Apparent poloidal motion for both inner and outer leg filaments towards X-point (also in C-Mod, J. Terry, JNME 2016)
 - Or equivalently opposite toroidal directions
 - Inconsistent with flux tube rigid rotation (as in J. Terry JNME 2016)
- Poloidal velocity ~1km/s

0.0 0.5 1.0 1.5 R (m)

INSTX-U

MIT Seminar – December 9, 2016 (Menard)

Material Analysis & Particle Probe (MAPP) providing new measurements of surface evolution in NSTX-U

NSTX-U

NSTX-U Mission Elements:

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop solutions for plasmamaterial interface (PMI)

 Advance ST as Fusion Nuclear Science Facility and Pilot Plant

ST-FNSF / **Pilot-Plant**

Recent design studies show ST potentially attractive as Fusion Nuclear Science Facility (FNSF) and Pilot Plant

FNSF: Provide neutron fluence for material/component R&D (+ T self-sufficiency?) **Pilot Plant**: Electrical self-sufficiency: $Q_{eng} = P_{elec} / P_{consumed} \ge 1$ (+ FNSF mission?)

FNSF with copper TF coils A=1.7, $R_0 = 1.7m$, $\kappa_x = 2.7$, $B_T=3T$ Fluence = 6MWy/m², TBR ~ 1

FNSF / Pilot Plant with HTS TF coils

A=2, R₀ = 3m, κ_x = 2.5, B_T = 4T 6MWy/m², TBR ~ 1, Q_{eng} ~ 1

Designs integrate ST higher κ , β_N and advanced divertors (+ HTS TF for Pilot Plant)

J.E. Menard, et al., Nucl. Fusion 56 (2016) 106023

High current density HTS cable motivates consideration of lower-A tokamak pilot plants

- ITER-like TF constraints: $-J_{WP}=20MA/m^2$, $B_{max} \le 12T$ $-P_{fusion} \le 130MW$, $P_{net} < -90MW$
- $J_{WP} \sim 30MA/m^2$, $B_{max} \leq 19T$ - $P_{fusion} \sim 400MW$ -Small P_{net} at A=2.2-3.5
- $J_{WP} \ge 70MA/m^2, B_{max} \le 19T$ - $P_{fusion} \sim 500-600MW$
 - $-P_{net} = 80-100MW$ at A=1.9-2.3

A ~ 2 attractive at high J_{WP}

A = 1.8-2.3 maximizes TF magnet utilization, and TF will be significant fraction of core cost

A ≥ 3 maximizes blanket volume utilization

Is blanket volume vs. TF volume a good relative cost metric for liquid metal blankets?

Outline

•NSTX-U mission

Research highlights

Progress on next-step ST concepts

Goals for next run

• Summary

Goals for next NSTX-U run campaign Only a subset, and will decide as a team via next Research Forum

- Increase field to 0.8-1T, current to 1.6-2MA
- Develop early H-mode / low-l_i / high- κ scenarios
- Assess H-mode energy confinement, pedestal, and SOL characteristics with higher B_T, I_P, P_{NBI}
- Complete assessment of effects of NBI parameters on fast ion distribution, neutral beam driven current profile
 - Expand upon new physics already observed w/ tangential NBI
 - Increase NBI current drive, non-inductive fraction
- Key physics, operational tools for high-performance
 - Developed shape & vertical control, new inboard gap control, EFC, HFS & LFS fueling under PCS, automated shutdown
 - Need to commission: n=1 dynamic EFC, RWM control
 - Test Impurity Granule Injector (IGI), MGI, Li evaporation

Expanding collaborations for outage period Building upon and informing NSTX-U research

- DIII-D: National Campaign 2-3 weeks in multitude of research areas
- EAST: Edge physics, plasma material interactions (high-Z, Li)
 - Maingi + collaborators leading experiments this month / early next year
- JET: Energetic particle studies and plasma ramp-down scenario development and modelling
 - Podesta, Darrow, Poli
- KSTAR: Core MHD and rotation physics, plasma control
 - Sabbagh (Columbia) + group, J-K Park, J-W Ahn (ORNL)
- MAST-U: Control, scenario modelling supporting 1st plasma
 - Battaglia (+Boyer) tentatively planning visits/stays summer/fall 2017
- W7-X: 3D confinement and stability
 - Lunsford alternate wall conditioning using boron powder dropper
- WEST: start-up, RF physics, high-Z PMI, real-time wall protection
 - Mueller going in spring, Reinke (ORNL) in fall, possibly PPPL RF physicists
- LAPD at UCLA RF coupling and heating physics, cavity modes
 - R. Perkins leading RF development efforts
- HL2A in China offering significant run-time
 - Y. Ren will present capabilities/opportunities on 12/12

NSTX-U Program wants and needs MIT collaborator input on the upcoming 5 year plan

- May have only 10 run weeks (mostly commissioning) for FY14-18 5YP
- FY19-23 plan due spring 2018, peer-reviewed summer 2018
- Begin brainstorming early 2017, then writing in summer / fall
- Need to generate research goals, prioritize facility enhancements

Mission Elements and Present 5 Year Plan 5 Highest Priorities

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
 - 1. Study energetic particle physics prototypical of ITER/FNSF burning plasmas
 - 2. Understand energy confinement and MHD stability at high normalized pressure
- Develop solutions for PMI challenge
 - 3. Dissipate high edge heat loads using expanded magnetic fields + radiation
 - 4. Compare performance of solid vs. liquid metal plasma facing components
- Advance ST as possible FNSF / DEMO

5. Form and sustain plasma current without transformer for steady-state ST

Are these still the best missions and priorities for the next 5 year plan?

NSTX-U strongly supporting advancing predictive capability, ITER, PMI solutions, and next-step STs

- Productive first year of operations on NSTX-U
 - Rapid H-mode access, scenario development, error field correction
 - Surpassed NSTX maximum magnetic field and pulse-duration
 - New fast-ion physics with 2nd NBI GAE stabilization, counter TAE
 - Commissioned new advanced PMI diagnostics MAPP
- Developing advanced predictive capability
 - New models for tearing stability, reduced models for RWM
 - Global ion-scale turbulence (GTS), ∇n ETG stabilization
 - GAE stabilization from 2nd NBI consistent with simulation
 - Exploring SOL widths, advanced divertor interactions with 3D fields
- Developed attractive Cu, HTS ST-FNSF, Pilot concepts
- In 2017 will emphasize collaborations, 5YP prep
- Aim to resume NSTX-U physics operation in CY2018