# A multi-machine scaling of halo current rotation

#### Clayton E. Myers<sup>1</sup>

N. W. Eidietis,<sup>2</sup> S. N. Gerasimov,<sup>3</sup> S. P. Gerhardt,<sup>1</sup> R. S. Granetz,<sup>4</sup> T. C. Hender,<sup>3</sup> G. Pautasso,<sup>5</sup> and ITPA MDC WG-6

<sup>1</sup> Princeton Plasma Physics Laboratory (NSTX-U)

<sup>2</sup> General Atomics (DIII-D)

<sup>3</sup> Culham Centre for Fusion Energy (JET)

<sup>4</sup> Massachusetts Institute of Technology (Alcator C-Mod)

<sup>5</sup> Max-Planck-Institut für Plasmaphysik (ASDEX Upgrade)



**ITPA MDC Workshop** Chengdu, China (remote) March 22-24, 2017











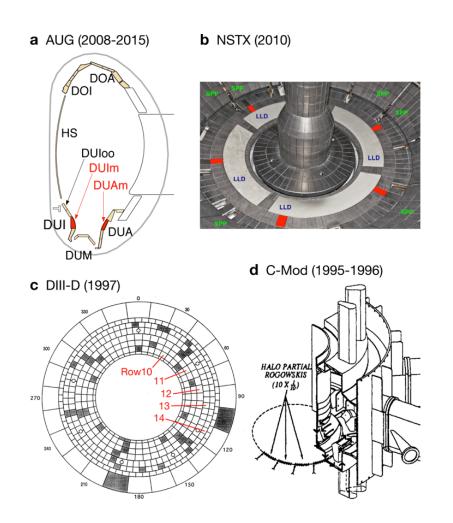
Max-Planck-Institut für Plasmaphysik

### Motivation: The rotating halo current problem

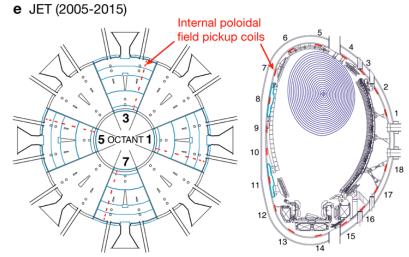
- Substantial halo current rotation observed in a number of devices:
  - JET Noll 1996, Riccardo 2004 & 2009, Gerasimov 2014 & 2015
  - C-Mod Granetz et al. Nucl. Fusion 36, 545 (1996)
  - DIII-D Evans et al. J. Nucl. Mater. 241-243, 606 (1997)
  - AUG Pautasso et al. *Nucl. Fusion* **51**, 043010 (2011)
  - NSTX Gerhardt Nucl. Fusion 53, 023005 (2013)
- The concern for ITER:
  - Forces are dynamically amplified if  $N_{\rm rot}$  > 2-3
  - Critical mechanical resonances in the 3-8 Hz range [Schioler FED 2011]
  - Overall response is broader (10-20 Hz) [Bachmann FED 2011 & Lehnen]
- Critical question:
  - Are halo currents in ITER likely to complete 2-3 full rotations at frequencies below 20 Hz?

### **Key quantities: Rotation duration and frequency**

- Are halo currents in ITER likely to complete 2-3 full rotations at frequencies below 20 Hz?
- Deconstruct  $N_{rot}$  into rotation duration and rotation frequency:


$$N_{\rm rot} = \langle f_{\rm h} \rangle \cdot t_{\rm rot} = \frac{\langle v_{\rm h} \rangle}{2\pi R} \cdot t_{\rm rot}$$

- $N_{\rm rot}$  = number of rotations
- $\langle f_{\rm h} \rangle$  = rotation frequency
  - $t_{\rm rot}$  = rotation duration
- $\langle v_h \rangle$  = rotation velocity (toroidal)
  - R = major radius
- Construct a new ITPA halo current rotation database to develop empirical scalings for  $\langle f_h \rangle$  and  $t_{rot}$


#### **Presentation outline**

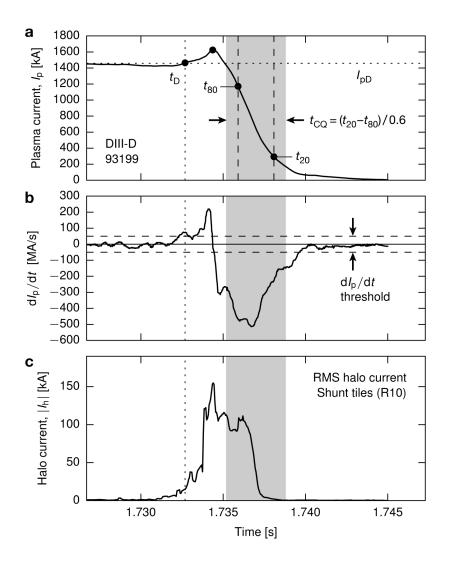
- The ITPA halo current rotation database
- Current quench analysis and scalings
- The halo current rotation analysis procedure
- Development of rotation scalings
  - Halo current rotation duration,  $t_{rot}$
  - Halo current rotation frequency,  $\langle f_{\rm h} \rangle$
- Projection to ITER
  - Projected ITER behavior is marginal w.r.t. ITER resonances
  - $N_{\rm rot} > 3$  at  $\langle f_{\rm h} \rangle > 20$  Hz is likely
  - $N_{\rm rot}$  ~ 3 at  $\langle f_{\rm h} \rangle$  ~ 10–20 Hz is possible

### Halo current sensor arrays in the ITPA database



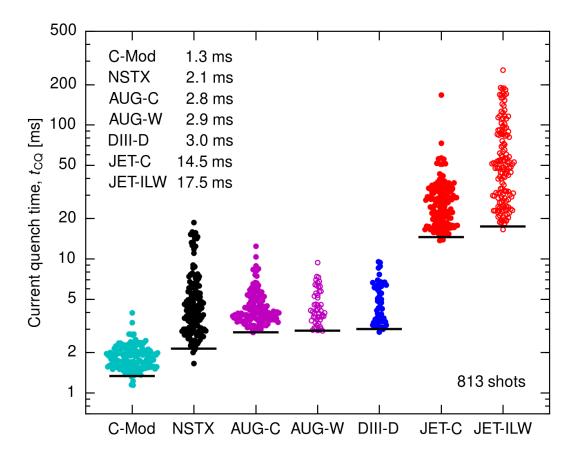
- The DIII-D, AUG, and NSTX sensors are shunt tile arrays
- The C-Mod sensors are partial toroidal rogowski coils
- In JET, poloidal field sensor arrays provide I<sub>p</sub> asymmetry measurements




### The ITPA halo current rotation database

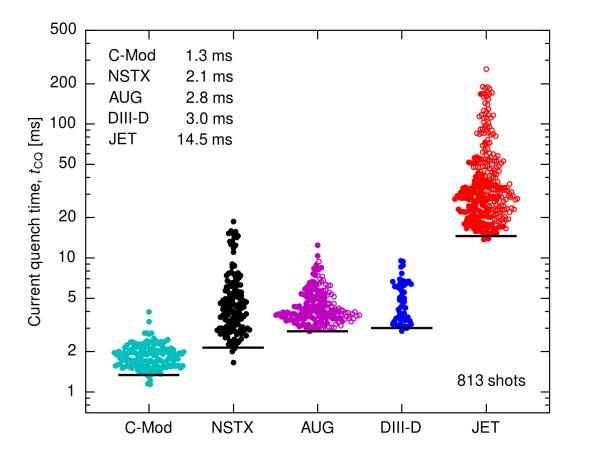
- One 'data unit' per shot:
  - Halo current vs. toroidal angle (one or more sensor arrays)
  - At least four toroidal locations per sensor array
  - Auxiliary data ( $I_p$ ,  $B_T$ ,  $\kappa$ ,  $Z_p$ ,  $W_{MHD}$ , MGI, ...)
- Contents of the database (~850 total shots):

| - C-Mod   | Partial rogowskis               | Moly      | 148 shots × 1+ poloidal location | S |
|-----------|---------------------------------|-----------|----------------------------------|---|
| – NSTX    | Shunt tiles                     | Carbon    | 141 shots × 1+ poloidal location | S |
| – AUG-C   | Shunt tiles                     | Carbon    | 158 shots × 2+ poloidal location | S |
| – AUG-W   | Shunt tiles                     | Tungsten  | 51 shots × 2+ poloidal location  | S |
| – DIII-D  | Shunt tiles                     | Carbon    | 55 shots × 4+ poloidal location  | S |
| – JET-C   | <i>I</i> <sub>p</sub> asymmetry | Carbon    | 146 shots × 4 toroidal octants   |   |
| – JET-ILW | <i>I</i> <sub>p</sub> asymmetry | ITER-like | 150 shots × 4 toroidal octants   |   |


• All disruptions in the database are unmitigated

#### **Analysis procedure: current quench**




- Use standard  $t_{CQ} = (t_{20} t_{80}) / 0.6$ current quench analysis
- Disruption time,  $t_{\rm D}$ , determined with thresholds on  $dI_{\rm p}/dt$
- For JET, use Gerasimov algorithm for  $t_D \rightarrow$  includes loop voltage
- $t_{20}$  and  $t_{80}$  mark when  $I_p/I_{pD}$  is 80% and 20%, respectively
- The RMS halo current, |*I*<sub>h</sub>|, is shown for a single shunt tile array (DIII-D Row 10)

#### **Characteristic current quench timescales**

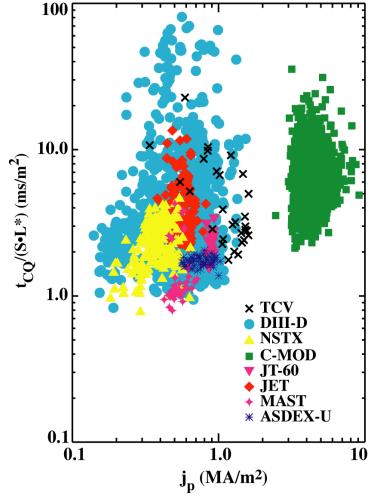


- Denote the shot-specific current quench time as t<sub>CQ</sub>
- Each device has a characteristic minimum current quench time, τ<sub>CQ</sub>
- Define  $\tau_{CQ}$  as the fastest quench time for each machine excepting outliers
- Conclude that CQ timing for asymmetric VDEs unaffected by wall material

#### **Combine JET-C and JET-ILW data**

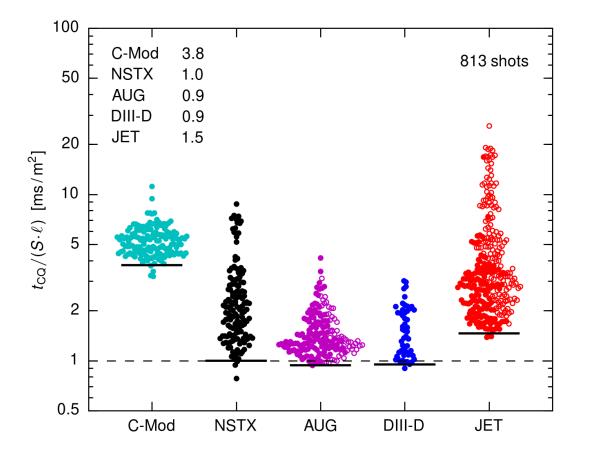


- Denote the shot-specific current quench time as t<sub>CQ</sub>
- Each device has a characteristic minimum current quench time, τ<sub>CQ</sub>
- Define  $\tau_{CQ}$  as the fastest quench time for each machine excepting outliers
- Conclude that CQ timing for asymmetric VDEs unaffected by wall material
- Combine AUG-C, AUG-W and JET-C, JET-ILW


### The Wesley $\tau_{CQ} \sim L/R$ current quench scaling

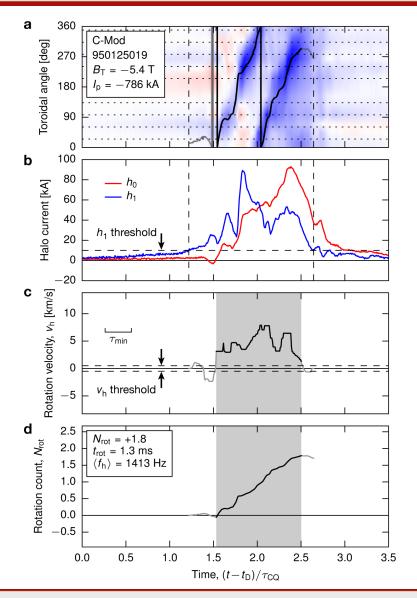
• Conjecture that the characteristic fast current quench time,  $\tau_{CQ}$ , is set by the plasma *L/R* time:

$$\mathcal{L} = \mu_0 R \ell, \text{ where } \ell = \ln\left(\frac{8R}{a}\right) - 2 + \frac{\ell_i}{2}$$
$$\mathcal{R} = \eta\left(\frac{2\pi R}{S}\right), \text{ where } S \simeq \pi \kappa a^2$$
$$\mathcal{L}/\mathcal{R} = \frac{\mu_0}{2\pi n} \left(S \cdot \ell\right) = C(\eta^{-1}) S \ell$$


- Note that C-Mod does not fit the scaling:
  - Higher current density leads to ohmic reheating during the CQ [Granetz]
- Assuming  $\ell_i = 0.5$ , the 'Wesley time' is given by:

$$\tau_{\mathsf{CQ}}(\boldsymbol{R}, \boldsymbol{a}, \kappa, \eta) = \boldsymbol{C}(\eta^{-1}) \cdot \boldsymbol{S}(\boldsymbol{a}, \kappa) \cdot \boldsymbol{\ell}(\boldsymbol{R}, \boldsymbol{a})$$



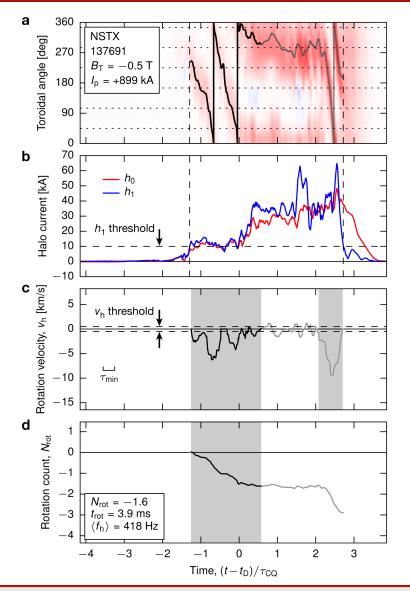

Wesley et al., IAEA FEC 2006, IT/P1-21

### Comparison to the Wesley $\tau_{CQ} \sim L/R$ scaling



- NSTX, AUG, and DIII-D normalize to C ~ 1, in agreement with Wesley
- As expected, C-Mod does not fit the scaling (C = 3.8)
- JET has modestly larger normalization (C = 1.5)
- Assume that ITER will lie between JET and C-Mod:
   → τ<sub>CQ</sub> ~ 50–130 ms

#### Analysis procedure: halo current rotation




 Fit n=0,1 profile to each toroidal array at each time point:

 $I_h(\phi) = h_0 + h_1 \sin(\phi - h_2)$ 

- Identify 'asymmetry interval' using h<sub>1</sub> > 10 kA threshold
- Identify 'rotation interval' using  $|v_h| > 0.5$  km/s threshold
- Enforce minimum dwell time,  $\tau_{\rm min}$  > 0.3  $\tau_{\rm CQ}$
- Record  $N_{\rm rot}$ ,  $t_{\rm rot}$ ,  $\langle f_{\rm h} \rangle = N_{\rm rot} / t_{\rm rot}$

### Account for rotation locking or reversal

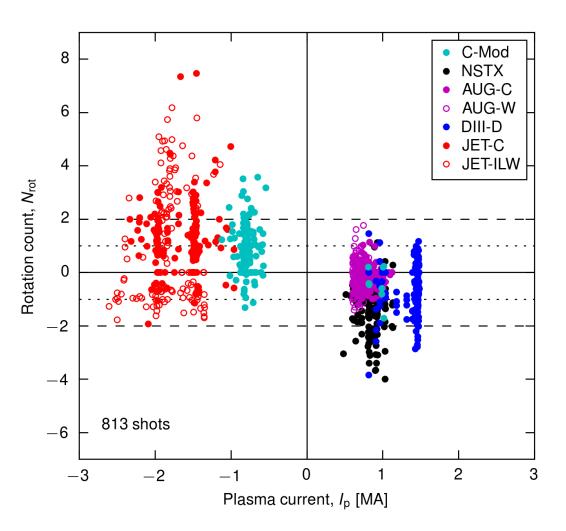


 Fit n=0,1 profile to each toroidal array at each time point:

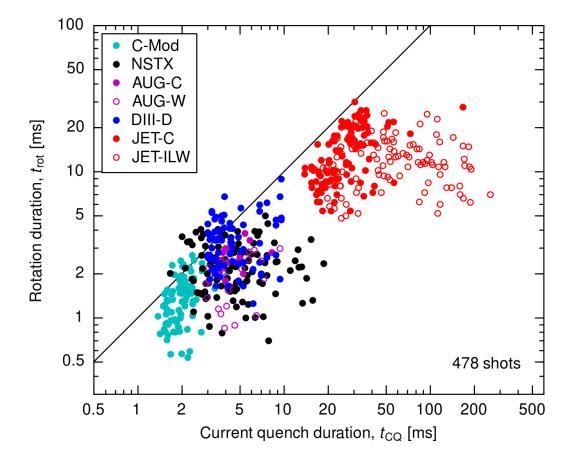
 $I_h(\phi) = h_0 + h_1 \sin(\phi - h_2)$ 

- Identify 'asymmetry interval' using h<sub>1</sub> > 10 kA threshold
- Identify 'rotation interval' using  $|v_h| > 0.5$  km/s threshold
- Enforce minimum dwell time,  $\tau_{\rm min}$  > 0.3  $\tau_{\rm CQ}$
- Record  $N_{\rm rot}$ ,  $t_{\rm rot}$ ,  $\langle f_{\rm h} \rangle = N_{\rm rot} / t_{\rm rot}$
- In cases with multiple rotation intervals, select the longest

### Rotating halo current examples from each machine


360 NSTX C-Mod Toroidal angle [deg] 139617 950125019 270  $B_{\rm T} = -5.4 \, {\rm T}$  $B_{\rm T} = -0.5 \, {\rm T}$  $I_{\rm p} = -786 \, \rm kA$  $I_{\rm p} = +900 \, \rm kA$ C-Mod **NSTX** 180  $N_{\rm rot} = +1.8$  $N_{\rm rot} = -3.7$  $\langle f_{\rm h} \rangle = 1413 \ {\rm Hz}$  $\langle f_{\rm h} \rangle = 985 \, {\rm Hz}$ 90 0 360 AUG-C AUG-W Foroidal angle [deg] 32656 (DUIm) 25232 (DUAm) 270  $B_{\rm T} = -2.2 \, {\rm T}$  $B_{\rm T} = -2.5 \, {\rm T}$  $I_{p} = +982 \text{ kA}$  $I_{\rm p} = +605 \, \rm kA$ AUG-C AUG-W 180  $N_{\rm rot} = -1.0$  $N_{\rm rot} = -0.9$  $\langle f_{\rm h} \rangle = 428 \, {\rm Hz}$  $\langle f_{\rm h} \rangle = 363 \, {\rm Hz}$ 90 AL..... 0 360 DIII-D JET-C Toroidal angle [deg] 93221 (R11) 70236 270  $B_{\rm T} = -1.8 \, {\rm T}$  $B_{\rm T} = -1.4 \, {\rm T}$  $I_{\rm p} = +1430 \, \rm kA$  $I_{\rm p} = -1503 \, \rm kA$ DIII-D **JET-C** 180  $N_{\rm rot} = -2.9$  $N_{\rm rot} = +2.6$  $\langle f_{\rm h} \rangle = 621 \ {\rm Hz}$  $\langle f_{\rm h} \rangle = 149 \, {\rm Hz}$ 90 0 360 JET-ILW JET-ILW Toroidal angle [deg] 80827 88520 270  $B_{\rm T} = -2.0 \, {\rm T}$  $B_{\rm T} = -2.5 \, {\rm T}$ **JET-ILW**  $I_{\rm p} = -1987 \, \rm kA$  $I_{\rm p} = -1451 \, \rm kA$ **JET-ILW** 180  $N_{\rm rot} = -1.0$  $N_{\rm rot} = +5.8$  $\langle f_{\rm h} \rangle = 68 \, {\rm Hz}$  $\langle f_{\rm h} \rangle = 500 \, {\rm Hz}$ 90 0 2.0 2.5 0.0 0.5 1.0 1.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Time,  $(t-t_{ref})/\tau_{CQ}$ Time,  $(t-t_{ref})/\tau_{CQ}$ 

**NSTX-U** 


Clayton E. Myers – ITPA MDC Workshop – Chengdu, China (remote) – March 22–24, 2017

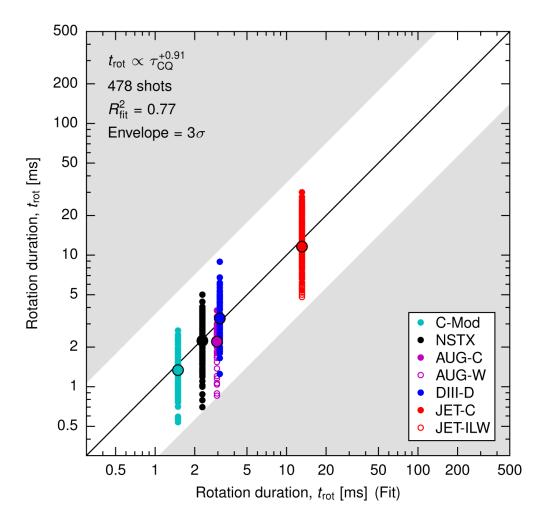
### The rotation is predominantly counter-*I*<sub>p</sub>

- Many discharges with low rotation dither incoherently
- All discharges with |N<sub>rot</sub>| > 2 rotate counter-I<sub>p</sub>
- This effect is independent of the polarity of B<sub>T</sub>
  - There are reversed  $B_{\rm T}$ points from both DIII-D and C-Mod in the database
- The worst JET-ILW cases are no worse than the worst JET-C cases



### The rotation duration, $t_{rot}$ , correlates with $\tau_{CQ}$ not $t_{CQ}$



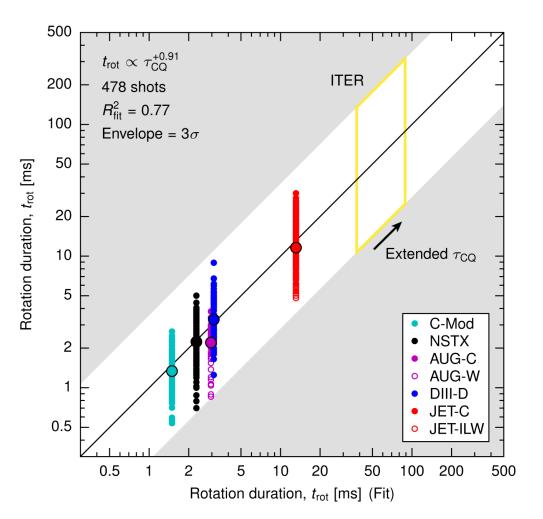

- Down-select to include only shots with  $|N_{rot}| > 0.75$
- One might expect that t<sub>rot</sub> scales with shot-specific t<sub>CQ</sub>
- Instead, t<sub>rot</sub> scales from device to device rather than shot-to-shot
- The minimum quench time,  $\tau_{\rm CQ}$ , captures the device-todevice scaling
- Use  $\tau_{CQ}$  in  $t_{rot}$  regression

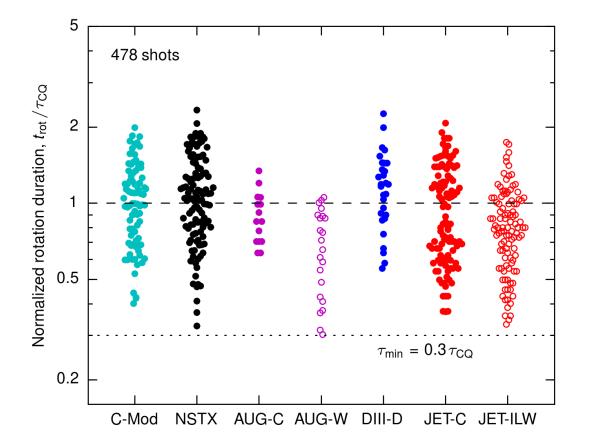
### Empirical scaling of the rotation duration, *t*<sub>rot</sub>

- Down-select to include only shots with  $|N_{rot}| > 0.75$
- Carry out regression using one machine-specific parameter:
  - $\rightarrow \tau_{CQ}$
- Additional parameters do not improve the regression:

 $\rightarrow$  R, a, I<sub>p</sub>, B<sub>T</sub>, t<sub>CQ</sub>

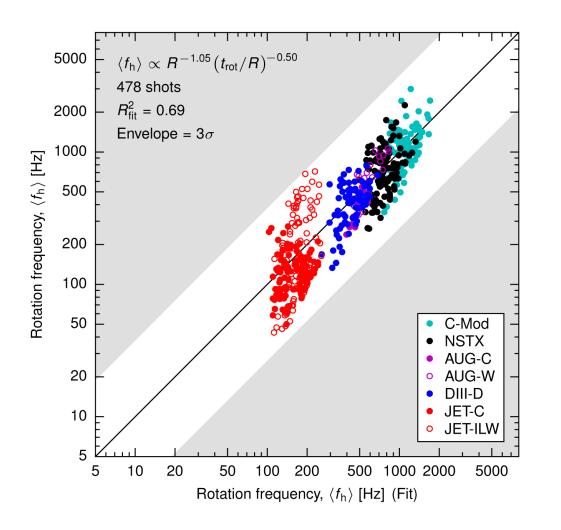
 Hidden variables not available in the database may explain intra-machine variability





### **Project the rotation duration scaling to ITER**

- Down-select to include only shots with  $|N_{rot}| > 0.75$
- Carry out regression using one machine-specific parameter:
  - $\rightarrow \tau_{CQ}$
- Additional parameters do not improve the regression:

 $\rightarrow$  R, a, I<sub>p</sub>, B<sub>T</sub>, t<sub>CQ</sub>


- Hidden variables not available in the database may explain intra-machine variability
- Projecting to ITER gives upper bound of t<sub>rot</sub> = 135–320 ms



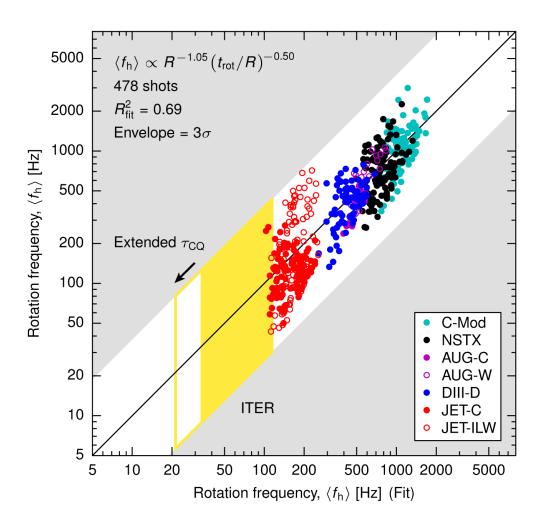


- As regression indicates,  $t_{\rm rot}$  is roughly prop. to  $\tau_{\rm CQ}$
- Most data points fall with a factor of two of  $\tau_{\rm CQ}$
- Metal wall machines have comparable or even shorter rotation durations than their carbon counterparts
- Unable to determine what role the wall time might play since all wall times in the database are ~10 ms

## Empirical scaling of the rotation frequency, $\langle f_{\rm h} \rangle$



- Define the average rotation frequency as  $\langle f_h \rangle = N_{rot} / t_{rot}$
- Carry out regression using two parameters:


 $\rightarrow$  R,  $t_{\rm rot}$ 

• Additional parameters do not improve the regression:

 $\rightarrow$  a,  $I_{\rm p}$ ,  $B_{\rm T}$ ,  $t_{\rm CQ}$ 

 Hidden variables not available in the database may explain intra-machine variability

### **Project the rotation frequency scaling to ITER**



- Define the average rotation frequency as  $\langle f_h \rangle = N_{rot} / t_{rot}$
- Carry out regression using two parameters:

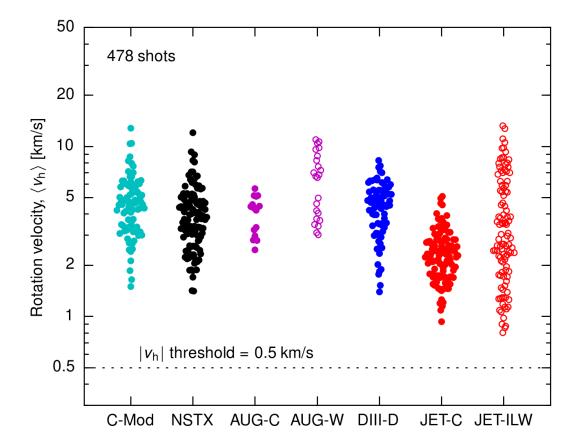
 $\rightarrow$  R,  $t_{\rm rot}$ 

• Additional parameters do not improve the regression:

 $\rightarrow$  a,  $I_{\rm p}$ ,  $B_{\rm T}$ ,  $t_{\rm CQ}$ 

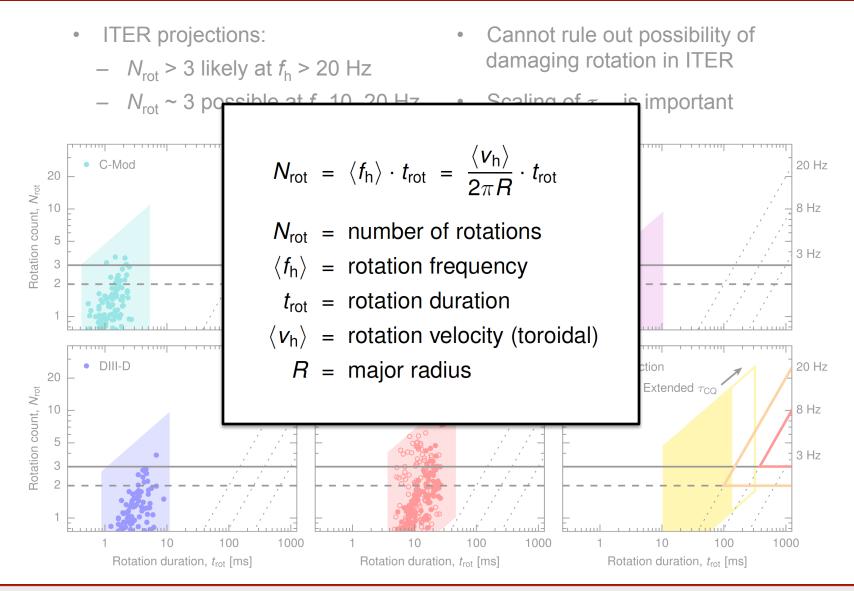
- Hidden variables not available in the database may explain intra-machine variability
- Projecting to ITER indicates that halo current rotation below 20 Hz is probable

#### Further analysis of the rotation scalings


Decomposition of the various rotation scalings:

$$t_{\rm rot} \propto \tau_{\rm CQ}^{+0.91} \qquad \langle f_{\rm h} \rangle \propto R^{-1.05} \left( t_{\rm rot}/R \right)^{-0.50}$$
$$\langle v_{\rm h} \rangle = 2\pi R \cdot \langle f_{\rm h} \rangle \propto R^{-0.05} \left( t_{\rm rot}/R \right)^{-0.50} \sim \left( \tau_{\rm CQ}/R \right)^{-0.5}$$
$$N_{\rm rot} = \langle f_{\rm h} \rangle \cdot t_{\rm rot} \propto R^{-0.05} \left( t_{\rm rot}/R \right)^{+0.50} \sim R^{-0.1} \left( \tau_{\rm CQ}/R \right)^{+0.5}$$

The quantity  $\tau_{CQ}/R$  grows weakly with machine size:

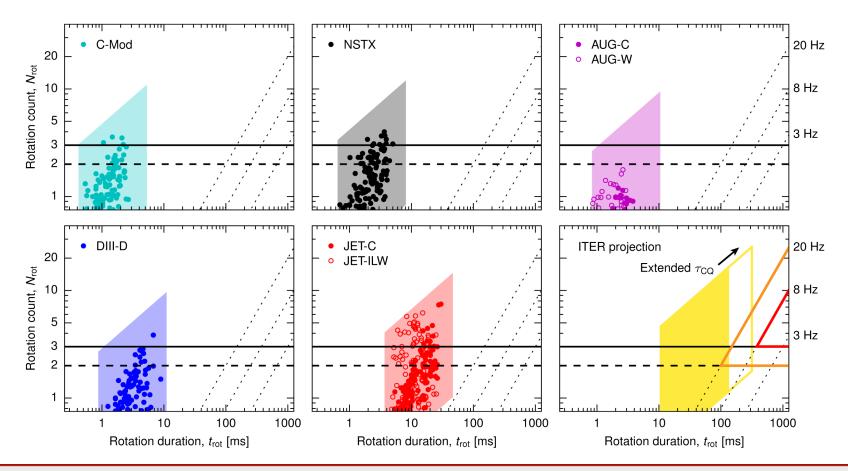

| Machine | <i>R</i> [m] | $S \cdot \ell \left[m^2\right]$ | $C(\eta^{-1}) \left[\mathrm{ms}\cdot\mathrm{m}^{-2} ight]$ | $	au_{\rm CQ}$ [ms] | $	au_{\mathrm{CQ}}/R \left[\mathrm{ms}\cdot\mathrm{m}^{-1} ight]$ | $\langle v_{\rm h} \rangle  \left[ {\rm km} \cdot {\rm s}^{-1} \right]$ |
|---------|--------------|---------------------------------|------------------------------------------------------------|---------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|
| C-Mod   | 0.68         | 0.35                            | 3.8                                                        | 1.3                 | 2.0                                                               | 4.8                                                                     |
| NSTX    | 0.85         | 2.1                             | 1.0                                                        | 2.1                 | 2.5                                                               | 4.3                                                                     |
| AUG     | 1.65         | 3.0                             | 0.9                                                        | 2.8                 | 1.7                                                               | 4.6                                                                     |
| DIII-D  | 1.67         | 3.2                             | 0.9                                                        | 3.0                 | 1.8                                                               | 4.5                                                                     |
| JET     | 2.96         | 9.9                             | 1.5                                                        | 14.5                | 4.9                                                               | 3.0                                                                     |
| ITER    | 6.20         | 33                              | 1.5-4                                                      | 50-130              | 8–20                                                              | 1.6–2.5                                                                 |
|         |              |                                 |                                                            |                     |                                                                   |                                                                         |

### The rotation velocity is also remarkably consistent



- As regression indicates, the rotation velocity should be relatively consistent
- All data points fall within a 0.7–17 km/s envelope
- Metal machines span the carbon space and add some faster points
- Any theory that explains halo current rotation must explain velocity invariance w.r.t. B<sub>T</sub>, I<sub>p</sub>, etc.

### Projection to ITER $\rightarrow$ marginal w.r.t. damaging rotation




**NSTX-U** 

Clayton E. Myers – ITPA MDC Workshop – Chengdu, China (remote) – March 22–24, 2017

### Projection to ITER $\rightarrow$ marginal w.r.t. damaging rotation

- ITER projections:
  - $N_{\rm rot}$  > 3 likely at  $f_{\rm h}$  > 20 Hz
  - $N_{\rm rot} \sim 3$  possible at  $f_{\rm h}$  10–20 Hz
- Cannot rule out possibility of damaging rotation in ITER
- Scaling of  $\tau_{CQ}$  is important



Clayton E. Myers – ITPA MDC Workshop – Chengdu, China (remote) – March 22–24, 2017

### **Summary and future plans**

- Empirical scalings for the rotation duration and frequency:
  - Duration scales with minimum current quench time
  - Frequency scales with major radius (to first order)
  - Range of rotation velocities largely consistent across devices
    - $\rightarrow$  Requires physical mechanism independent of most parameters
- Projection to ITER:
  - $N_{rot}$  > 3 likely above 20 Hz and possible down to 10 Hz
  - Therefore cannot rule out the possibility of damaging rotation in ITER
  - The scaling of  $\tau_{\rm CQ}$  to ITER is key
- Path forward:
  - In final stages of preparing Nucl. Fusion manuscript
  - Will issue ITPA WG-6 report and then recommend closing the WG