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• Introduction 

• Why spherical tori / tokamaks (STs) 

• NSTX-U initial results, long-term directions 

• Summary 

 

 

Outline 
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Why fusion? 

D: deuterium 

T: tritium 

n: neutron 

α: helium 

E = mc2 

“D-T” fusion reaction: 
• High energy gain ≈ 1000 × 

• No runaway reactions 

• Abundant fuel supply  

• Waste short-lived, low-level 

• No CO2 production 
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Fusion requires very high temperatures 

• Fusion is easiest here at 200 million ᵒC (!!) (350 million ᵒF) 
–Requires lowest pressure nT and energy confinement time τE 

–Minimum fusion “triple-product” value:  8 atmosphere-seconds 

Fusion 
difficulty 
(pressure × 

confinement) 
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Magnetic fusion has already achieved  
the necessary very high temperatures! 

~250 million C 

TFTR at PPPL (1990’s) 

core boundary 
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Magnetic fusion is arguably closest  
to ultimate goal of electricity generation 

Ryan Hamerly (Stanford) 

• Gravitational confinement 
fusion requires large device 
– Need 7-8% of mass of our sun 
– Approximately 10× diameter of Earth 

 
 

• Laser fusion ala NIF at best 
has Efusion / Eelectrical ~ 5% 
– So far, 0.006% efficient 

 

• Magnetic fusion in ITER:  
– Goal: 500MW fusion power for  
    ≤ 600MW electrical input for 400s 
Industrial levels of fusion power 

~25kJ fusion 
yield achieved 
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Tokamaks and stellarators are the  
leading configurations in magnetic fusion 

• Stellarator advantages: 
– No plasma current drive necessary 
– More stable, steady-state 

• Disadvantages: 
– More complex coils and exhaust 
– Confinement < tokamaks (so far…) 

Superconducting tokamak Superconducting stellarator 

• Tokamak advantages: 
– Best confinement, closest to “breakeven” 
– Simpler planar coils and power/particle exhaust 

• Disadvantages: 
– Must drive multi-mega-ampere plasma current 
– More prone to rapid loss of plasma = “disruption” 

• Potential show-stopper for tokamak power-plant  

KSTAR (South Korea) W7-X (Germany) – 1st run campaign in 2016 
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ITER will be first device to access “burning plasma” 

• Burning plasma: majority of plasma heating power 
comes from fusion alpha particles from DT reactions 
 

 DT reaction energy split:  1/5 in alphas, 4/5 in neutrons 
 

• ITER goal Q = Pfusion / Pexternal heating = 10 
 

• Q = 10  Palpha / Pexternal = 2 
 

• Palpha / Palpha + external = 2 / 3 > 50% 
A=3.1, R=6.2m, BT=5.3T, IP=15MA 

ITER under construction in Cadarache, France 
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ITER magnets will be largest ever built 

• 18 toroidal field magnets 

• 12 Tesla at coil 

• Weight: 6500 tons 
• 80,000 km of Nb3Sn 

superconducting strand 
in total length 

Toroidal field current 
165 million amps 

Plasma current: 
15 million amps 

These 
are large 
numbers 
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Perspective 

• Studying burning plasmas is essential to 
fusion development, and ITER is 
presently the best approach 
 

• But as we look beyond plasma self-
heating toward economical electricity 
production, how might we improve? 
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• Fusion power density ∝ (plasma pressure)2 

• β ≡ plasma pressure / magnetic pressure = p/(B2/2µ0)  

• Maximum β limited by MHD instabilities 

• B limited by magnet stress, cooling, quench 

• Fusion power density ∝   β2 B4 

Assuming cost ∝ size  need higher fusion  
power / volume = high fusion power density 

Maximize / optimize this product 
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Aspect ratio is important free parameter  

Spherical torus/tokamak (ST) has A = 1.1-2 
Conventional tokamak typically A = 2.5-4 

Aspect ratio A = R / a 

a R 

R = major radius      a = minor radius 



13 PPPL Colloquium – January 11, 2017 (J. Menard) 

STs have higher natural elongation 

Higher elongation improves stability, confinement 

Elongation κ = b / a 
b = vertical ½ height      a = minor radius 

a 

b 
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A ~ 2.5-4  
κ = 1.5-2  
βT = 3-10%  

A ~ 1.3-2 
κ = 2-3 
βT = 10-40%  

Tokamak ST 

Favorable average curvature improves stability 

Toroidal beta βT = 〈p〉 / (BT0
2/2µ0) Aspect Ratio A = R /a Elongation κ = b/a 

Plasma 
spends 
less time 
in unstable 
curvature 
region 
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STs can access very wide range of βT 

120 

100 

80 

40 
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β T
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) 

60 

10 5 0 
IN = IP / aBT 

15 

βT for sustained, low-ℓi, high-κ, LHI-driven plasmas 

Pegasus ST recently accessed βt ~ 50-100% 

D.J. Schlossberg, APS-DPP 2016, 9/10 
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• Potentially attractive for electricity production 
–Requires accompanying magnet innovations 
 

• High neutron wall loading in small device 
–Well suited for fusion nuclear component R&D 
 

• Improve toroidal physics predictive capability 
–High β and high temperature at low collisionality 
–Understand confinement, fast-ion physics for ITER 

Why explore spherical torus/tokamak? 
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How would magnetic fusion make electricity? 

Spin turbines, 
generate electricity 

Steam or hot helium 

Magnets 
(-270 - 100ᵒC) 

Heat 

Blanket 
(350 - 1000ᵒC) 

helium and deuterium 
exhaust 

Tritium bred from 
lithium in blanket 

External 
heating 

(10’s of MW) 

Plasma 
(100 million ᵒC) 

α self 
heating 

Neutrons 
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Electricity gain Qeng determined primarily by  
engineering efficiencies and fusion gain 
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• Mn = 1.1, Ppump = 0.03×Pth 
• Psub + Pcontrol = 0.04×Pth 
• ηaux = 0.3  
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Gain is very strong function of confinement: 
QDT ∝ H25 from low  high gain  

Fix current, field, density, geometry, auxiliary power, αP = 0.7: 
QDT  ≤1  QDT ≈ Q*DT ∝ H2      QDT >>1  QDT ∝ Q*DT

2.5 ∝ H5 

ε ≡ A-1 



21 PPPL Colloquium – January 11, 2017 (J. Menard) 

• Steady-state tokamaks: current-driven kink limit less relevant 
• Normalized β (βN) and “bootstrap” fraction (fBS) more important 
• Relevant variables are βN / fBS and normalized density fgw  

Gain vs. physics & engineering constraints 

Exponent 98y2 Petty-08
Cβ 2.68 2.14

CB 2.98 2.74

Cgw 0.82 0.64

CP -0.38 0.06

CR 1.98 2.04
Cκ 5.92 5.04
Cε 1.54 1.61

Use electrostatic gyro-Bohm τE scaling 
with no β degradation (NSTX, JET, DIII-D)  

C. Petty, et al., Phys. Plasmas 15 (2008) 080501 

External current drive fraction 
Need to optimize this product vs. aspect ratio 
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High temperature superconductors (HTS) could 
substantially expand fusion magnet performance 

HTS 

Applied Magnetic Field (T) http://magnet.fsu.edu/~lee/plot/plot.htm  

LTS 

Current 
Density 

ITER CS 

ARC (MIT) 
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Cables formed from HTS tapes achieving  
high winding pack current density at high B  

10 mm 

10 mm 

7 kA CORC (4.2K, 19 T) cable  

Base cable: 50 tapes YBCO  Tapes with 38 mm substrate (Van Der Laan, HTS4Fusion, 2015) 

Higher Jcable HTS 
cable concepts 

under development: 

Base Conductor 
He Gas Cooled 

8kA,  
JWP ~ 160MA/m2 

7 mm 

SS conductor 
jacket for strength 

7 mm 

Copper 

Conductor on Round 
Core Cables (CORC)  
JWP ~ 70MA/m2 19T 
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High current density HTS cable motivates  
consideration of lower-A tokamak pilot plants 

• ITER-like TF magnets: 
–JWP=20MA/m2, Bmax ≤ 12T 
–Pfusion ≤ 130MW, Pnet < -90MW 

 

• JWP ~ 30MA/m2, Bmax ≤ 19T 
–Pfusion ~ 400MW 
–Small Pnet at A=2.2-3.5 
 

• JWP ≥ 70MA/m2,Bmax ≤ 19T 
–Pfusion ~500-600MW 
–Pnet = 80-100MW at A=1.9-2.3 

A ~ 2 attractive at high JWP 

-150

-100

-50

0
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Aspect Ratio A 
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Fix plasma major radius R0=3m, heating power PNNBI=50MW 
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A = 1.8-2.3 maximizes TF magnet utilization, 
and TF will be significant fraction of core cost  

0.3m 
0.4m 
0.5m 
0.6m 
0.7m 

Eff. shield 
thickness: 

JWP = 70MA/m2 

A=4 utilization 
~1/3-1/2 of max 

at low A 

Optimal range 
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A ≥ 3 maximizes blanket volume utilization 

JWP = 70MA/m2 

0.3m 
0.4m 
0.5m 
0.6m 
0.7m 

Eff. shield 
thickness: 

Which components - magnets, blankets, ... dominate cost ? 
Costing of these (never-been-built) objects has large uncertainty 
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A=2, R0 = 3m HTS-TF FNSF / Pilot Plant 
BT = 4T, IP = 12.5MA 
κ = 2.5, δ = 0.55 
βN = 4.2, βT = 9% 
H98 = 1.8, HPetty-08 = 1.3 
fgw = 0.80, fBS = 0.76 
 
 

Startup IP (OH) ~ 2MA 
JWP = 70MA/m2 

BT-max = 17.5T 
No joints in TF 
Vertical maintenance 
 

Pfusion = 520 MW 
PNBI = 50 MW, ENBI = 0.5MeV 
QDT = 10.4 
Qeng = 1.35 
Pnet = 73 MW 
 

〈Wn〉 = 1.3 MW/m2 

Peak n-flux = 2.4 MW/m2 
Peak n-fluence = 7 MWy/m2 Cryostat volume ~ 1/3 of ITER 
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• Potentially attractive for electricity production 
–Requires accompanying magnet innovations 
 

• High neutron wall loading in small device 
–Well suited for fusion nuclear component R&D 
 

• Improve toroidal physics predictive capability 
–High β and high temperature at low collisionality 
–Understand confinement, fast-ion physics for ITER 

Why explore spherical torus/tokamak? 
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Fusion technology development is major challenge 
Fusion Nuclear Science Facility (FNSF) could aid development 

• Without R&D, fusion components could fail 
prematurely, requiring long repair/down time.   

• This would cripple power plant operation 
• FNSF can help develop reliable fusion components 
• Such FNSF facilities must be:  modest cost, low T, reliable 

Need to develop reliable and qualified      
nuclear components unique to fusion: 
• Divertor and plasma facing components 
• Blanket and first wall  
• Vacuum vessel and shielding 
• Tritium fuel cycle  
• Remote maintenance 
  

ST-FNSF 
Y.-K.M. Peng (ORNL) 



30 PPPL Colloquium – January 11, 2017 (J. Menard) 

Design studies show ST potentially 
attractive as FNSF 

• Projected to access high neutron 
wall loading at moderate R, Pfusion  
– Wn ~ 1-2 MW/m2  
– Pfus ~ 50-200MW 
– R ~ 0.8-1.8m 

• Modular design, maintenance  
 

• Tritium breeding ratio (TBR) near 1 
– Requires sufficiently large R 
– Careful layout / design 

PPPL ST-FNSF concept 
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R ≥ 1.7m necessary for net breeding at A=1.7 

R=1.7m:  TBR ≥ 1 R=1.0m:  TBR < 1 (≈ 0.9) 
TBM 

NBI 

MTM 

TBM 

MTM 

NBI 

• Need to purchase Tritium 
from outside sources:  
–$12-55M / full power year (FPY) 
 

TBM = Test Blanket Module 
MTM = Materials Testing Module 
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NSTX Upgrade Device and Test Cell – Aerial View 
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NSTX Upgrade will access new physics 
with 2 major new tools: 

Higher T, low ν* from low to high β 
 Unique regime, study new  

transport and stability physics 

Full non-inductive current drive 
 Not demonstrated in ST at high-βT 

Essential for any future steady-state ST 

2. Tangential 2nd Neutral Beam 1. New Central Magnet 



35 PPPL Colloquium – January 11, 2017 (J. Menard) 

Normalized electron collisionality νe* ∝ ne / Te
2 

ITER-like 
scaling 

ST-FNSF  
 

? 

 constant q, β, ρ∗ 

NSTX 
Upgrade 

NSTX 
Favorable 

confinement results 
could lead to more 

compact ST reactors 

NSTX / MAST confinement increased at higher Te (!) 
Will confinement trend continue, or look like conventional A? 

Low ν*  need higher plasma current, toroidal field, heating power, density control 
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NSTX achieved 70% “transformer-less” current drive 
Will NSTX-U achieve 100% as predicted by simulations? 

Steady-state operation required for ST, tokamak, or stellarator FNSF 

Normalized Density (Greenwald fraction)

100%

No
rm
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ed
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em
en

t -
H 9

8y
,2 High non-inductive fractionTRANSP Contours of Non-Inductive Fraction 

IP=1 MA, BT=1.0 T, PNBI=12.6 MW 

 
 

H98y2 
 

ITER H-mode 
confinement 

scaling 
multiplier 
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NBI-heated STs excellent testbed for α-particle physics 

• NSTX-U: large fast-ion 
dynamic range spanning 
ST and conventional A 
– Toroidal field 2× NSTX  

Vfast < VA  stabilize modes 
– Tangential 2nd NBI  very 

flexible fast-ion distribution 
 Vary pitch angle, pressure profile 

 

• Can we find TAE-quiescent, high-performance regimes in NSTX-U? 
• And predict fast-ion confinement for ITER scenarios? 
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All modern tokamaks / STs use a “divertor” to  
control where power and particles are exhausted 

Power / particles contact target plates here 

Power exhaust width outside main 
plasma can be very narrow (few mm) 
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Tokamak + ST data: power exhaust width varies as 1 / Bpoloidal 

Will previous ST trend continue at 2× IP , BP , BT, power? 

ST data breaks aspect ratio 
degeneracy of data set 

Wider heat-flux width may offset smaller R  maybe better than tokamak 

Issue: If peak heat 
flux in divertor region 
exceeds ~10 MW/m2 
 material damage  
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NSTX-U will have major boost in performance 

2× toroidal field (0.5  1T) 
2× plasma current (1  2MA) 
5× longer pulse (1  5s) 

2× heating power (5  10MW) 
• Tangential NBI  2× current drive efficiency 
4× divertor heat flux ( ITER levels) 
Up to 10× higher nTτE (~MJ plasmas) 

2. Tangential 2nd Neutral Beam 1. New Central Magnet 

Performance goals: 
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• Introduction 

• Why spherical tori / tokamaks (STs) 

• NSTX-U initial results, long-term directions 

• Summary 

 

 

Outline 
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NSTX-U had scientifically productive 1st year 

• Achieved H-mode on 8th day of 10 weeks of operation 
• Surpassed magnetic field and pulse-duration of NSTX 
• Matched best NSTX H-mode performance at ~1MA 
• Identified and corrected dominant error fields  
• Commissioned all magnetic and kinetic profile diagnostics 
• Injected up to 12MW NBI power into armor by end of run 
• Discovered new 2nd NBI modifies several fast-ion modes 
• Implemented techniques for controlled plasma shut down, 

disruption detection, commissioned new tools for mitigation 
 

• 2016 run ended prematurely due to fault in divertor PF coil 
– Coil forensics, Extent of Condition  new coil fab, other repairs 
– Aim to resume plasma operation during 2018 – but timing still TBD 
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NSTX-U has surpassed maximum  
pulse duration and magnetic field of NSTX 

Compare similar NSTX / NSTX-U Boronized L-modes, PNBI=1MW 

NSTX-U L-mode duration  
exceeds longest NSTX H-mode 

4x longer 

NSTX-U BT > highest NSTX BT  
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Accessed high elongation κ using progressively 
earlier H-mode and heating + optimized EFC 

L-mode flattop 

H-mode flattop 

NSTX-U (5 run weeks) 
NSTX (10 years) 

Future goal 

• Goal:  Internal inductance li = 0.5-0.7  κ = 2.4-2.7 



45 PPPL Colloquium – January 11, 2017 (J. Menard) 

Recovered ~1MA H-modes with performance 
comparable to best NSTX plasmas at similar current  

H98 ≥ 1, βN ~ 3.5-4 ≥ n=1 no-wall limit 202946 – no EFC   204112 – EFC v2 
203679 – EFC v1   204118 – EFC v2 
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H-mode confinement > ITER scaling, consistent 
with ST scaling (so far) – need higher IP, BT to test 
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Fast-ion confinement measured to be at / near 
predicted values at low total NBI power ~1-2MW 

• Good agreement between neutron 
measurement and TRANSP prediction 

• Need small anomalous fast ion 
diffusivity (Daf=0.3m2/s) for agreement 

Neutron rate 

ENBI = 85keV ENBI = 65keV 
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• Counter-propagating 
TAE predicted for 
hollow fast-ion profiles 

H.V. Wong, H. Berk, Phys. Lett. A 251 (1999) 126. 

New: Most tangential NBI generates counter-
propagating Toroidal Alfvén Eigenmodes (TAEs) 

• TRANSP:  As current builds up 
beam fast-ion beta profile 
predicted to become hollow 

• 1st evidence of off-axis NBI in NSTX-U 
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New: Tangential 2nd neutral beam suppresses Global 
Alfven Eigenmode (GAE) – consistent with simulation 

t ωci 

HYM code simulation of  #204707, n=10 
|δBn |2 

t=0.44s 

t=0.47s 

New 2nd NBI already powerful tool for fast-ion mode physics 

• HYM code: growth of n=10 counter-GAE from 1st NBI 
• HYM: suppression of n=10 counter-GAE by 2nd NBI 
• Most unstable n-number, mode ω consistent with HYM 
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• Increase field to 0.8-1T, current to 1.6-2MA, 
extend flat-top duration (H-mode) to 2-5s 
 

• Assess global stability, energy confinement, 
pedestal height/structure, edge heat-flux width  
 

• Characterize 2nd beam: heating, current drive, 
torque / rotation profiles, fast-ion instabilities 
 

• Push toward full non-inductive current drive 
 

• Test advanced divertor heat flux mitigation 
 

Goals for future NSTX-U operation 
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STs leading advanced divertor development 
NSTX-U / MAST-U will collaborate on 1st plasma, scenarios, divertors 

MAST-U will test range of divertors: 
–Conventional, snowflake (not shown) 
–Long-leg “Super-X” with variable flaring 

E. Havlickova, et al., Plasma Phys. Control. Fusion 56 (2014) 075008 

NSTX-U:  Flared divertor using 
“snowflake/X” + radiation 

New PF coils in NSTX-U central magnet 
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STs investigating lithium (solid and liquid) walls 
to significantly increase energy confinement 

NSTX (wider  higher pedestals) 

D.P. Boyle, et al., J. Nucl. Mater. 438 (2013) S979    

H98~1 

H = 2-4 × ITER98P(y,2) 

J.C. Schmitt, et al., Phys. Plasmas 22 (2015) 056112    

LTX (flatter  higher T profiles) 

H = 0.8  1.4 × ITER98P(y,2) 
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• 5 year: Integrate high confinement + βT  + full non-inductive 
• 10 year: Assess compatibility with high-Z & liquid Li PFCs 

NSTX-U long-term goals 

B+C  
BN 
Li  

High-Z 

High-Z tile row 

Flowing LM module? + 
heatable (?) high-Z walls 

Possible progression of in-vessel / plasma-facing components: 

C walls + Li coatings 
on bottom ½ of wall 

Add divertor cryo-pump 
+ full-wall Li coatings 

Heatable C high-Z  
for liquid Li divertor 

or 

LTX-like Lower ν* Near-term 
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• STs broaden our understanding of toroidal physics 
and enhance predictive capability for ITER & beyond 
 

• ST potentially attractive as FNSF and Pilot Plant 
 

• NSTX-U designed to be highest performance ST in 
world program - this is why the project is challenging 
 

• Team is working very hard to ensure NSTX-U can run 
reliably at high performance & get back into operation! 

Summary 
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Any questions? 

Thank you! 
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