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It is shown that a number of features of an instability with the frequency comparable to the ion
gyrofrequency observed in the National Spherical Torus Experiment �E. D. Fredrickson et al.,
“Observation of hole-clump pair generation by global or compressional Alfvén eigenmodes,”
Contributed Papers, 33rd European Physical Society Conference on Plasma Physics, Rome, 2006,
Europhysics Conference Abstracts �European Physical Society, Petit-Lancy, 2006�, Report P5.058
�unpublished�� is consistent with the features of the Alfvén instability with large, about the inverse,
Larmor radius of the energetic ions ��b

−1� longitudinal wavenumbers. The conclusions drawn are
based on an analysis of the resonant interaction of the energetic circulating ions and the waves, as
well as on the calculation of the instability growth rate taking into account effects of the finite
Larmor radius, �b. © 2006 American Institute of Physics. �DOI: 10.1063/1.2402129�

I. INTRODUCTION

In a pioneer work on Alfvén instabilities driven by the
energetic ions, an instability with the wavenumbers along
and across the magnetic field �k� and k�� comparable to the
inverse fast ion gyroradius, �b

−1, was predicted.1,2 Later,
energetic-ion driven Alfvén instabilities were observed in
many experiments on tokamaks, spherical tori, and stellara-
tors; see, e.g., overviews in Refs. 3 and 4. However, in con-
trast to the instability considered in Ref. 1, all the reported
shear Alfvén instabilities observed experimentally had very
small longitudinal wavenumbers, k���b

−1, and the frequen-
cies which were much, by several orders, less than the ion
gyrofrequency, �B. An exception is the instabilities of
Alfvénic type with higher frequencies, which were observed
in the National Spherical Torus Experiment �NSTX�.5,6 It is
natural to assume that the mechanism of destabilization of
these waves differs from that of the conventional Alfvén in-
stabilities by involving the cyclotron wave-particle interac-
tion. This possibility is investigated below for the instabili-
ties reported in Ref. 6. An Alfvén instability with the
frequency about the energetic ion gyrofrequency is consid-
ered taking into account both effects of the finite Larmor
radius of the energetic ions and the particle drift motion in-
duced by the toroidicity. A comparison is made of the fea-
tures of this instability and the features of the experimentally
observed waves.

The structure of the work is as follows. In Sec. II we
carry out a qualitative analysis of a possible resonant wave-
particle interaction in an NSTX experiment. In Sec. III an
expression for the instability growth rate is derived; it is used
to evaluate the magnitude of the instability growth rate in the
experiment and analyze the role of the anisotropy and the
spatial distribution of the energetic ions.

II. QUALITATIVE ANALYSIS OF THE DESTABILIZATION
OF HIGH-FREQUENCY ALFVÉN WAVES

We consider the case when the energetic ions are pro-
duced by the tangential neutral beam injection in the direc-
tion of the magnetic field, so that the energetic ion popula-
tion consists of circulating particles with

0 � v� � vb, �1�

where v� is the longitudinal velocity of the energetic ions and
vb is their birth velocity. These particles can lead to Alfvén
instabilities through the resonant interaction with the waves.
Typically, the destabilized waves have small longitudinal
wavenumbers, k� �1/qR �R is the major radius of the torus,
q is the safety factor�, and wave frequencies, �, negligible in
comparison with the ion cyclotron frequency, �B. However,
we are interested in waves with � comparable to �B. In this
case k�qR�1 and, therefore, the conventional sideband reso-
nance, �= �k� ±1/ �qR��v�, responsible for instabilities with
k�qR�1, leads to the resonant velocity v�

res��kvA, with
�k=k� / �k�� and vA the Alfvén velocity �we assume without
loss of generality that ��0�. However, the efficiency of this
resonance is rather low in systems with weak magnetic field
because of the low ratio vA /vb �in the NSTX experiment
considered in this work vA /vb�1/3�. Moreover, this reso-
nance does not work for the waves propagating in the
counter direction with respect to the beam, which was the
case in the NSTX experiment. Therefore, we have to assume
that the instability is associated with a resonance involving
the gyrofrequency. The corresponding resonance condition
can be written as

� = ks	v�
 + l	�B
 , �2�

where ks=k� +s / �qR�, s and l are integers, 	¯
= �dt�¯� /�b,
and �b is the particle transit time. For Alfvén waves, the
longitudinal wavenumber is k� ��k� /vA. Taking this into ac-
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count and assuming v�
res�vA, we obtain from Eqs. �1� and

�2� that the considered injected ions and waves can be in the
resonance provided that the wave frequency is not less than a
certain magnitude, �min, taking place for l=1 and given by

�min =
�BIs

vb/vA − �k
, �3�

where Is=1− �s ��b / �qR�, �b=vb /�B. Note that Eq. �3� was
obtained with the assumption that it is mainly low-s reso-
nances with �s � �qR /�b that contribute to the destabilization
of the waves. For vb�vA and Is�1, it follows from Eq. �3�
that the longitudinal wavenumber of the waves interacting
resonantly with the particles is k� ��b

−1.
Equation �3� shows that the minimum frequency of the

counterpropagating waves �k� �0� is smaller than that of the
copropagating waves. In particular, for the NSTX experiment
with vb /vA=3.5, R=100 cm, q=2, vb=3�108 cm s−1,
�B=1.4�107 s−1, we obtain �min�450 kHz for k� �0 and
�min�800 kHz for k� �0. These magnitudes take place
when s=−1.

When the plasma rotates toroidally in the beam direction
and sgn�k��=sgn�k�� �� is the toroidal angle�, the Doppler
effect decreases the frequency of counterpropagating waves
and increases the frequency of copropagating waves in the
laboratory frame ��lab=�+k ·u, with u the velocity of the
plasma rotation�. As a result, the difference between �min of
copropagating waves and �min of counterpropagating waves
increases. To evaluate this effect in the NSTX experiment,
we take the toroidal mode number n=5 and u=107 cm·s−1.
Then k�=−n /R=−0.05 cm−1 �we take perturbations in the
form 	exp�−i�t+ im
− in��, where 
 is the poloidal
angle, m and n are the poloidal and toroidal mode numbers,
respectively�, and the Doppler shift is 80 kHz. This leads to
�min

lab =370 kHz for the counterpropagating waves and

�min
lab =880 kHz for the copropagating waves.

This simple analysis enables us to conclude the follow-
ing. First, the resonance �2� is consistent with the frequencies
of the destabilized waves in the NSTX experiment �in par-
ticular, the frequencies at the beginning of the instability
bursts were about 400 kHz in shot #114147 and 500 kHz in
shot #114154�. Second, only counterpropagating waves can
be destabilized in the frequency range relevant to the experi-
ment. Third, the resonance condition imposes restrictions on
the instability mode numbers. They are n�0 and m�nq,
which follows from two conditions, k�=−n /R�0 found ex-
perimentally, and k� = �m−nq� / �qR��0 required for the fre-
quency of �400–500 kHz to satisfy the resonance condition.
The obtained restriction on the poloidal mode numbers is
valuable because it may help to select the mode among those
which can be found by numerical simulation �the poloidal
mode numbers are not available from experimental measure-
ments�. The restriction on n is also important in connection
with the following.

Note that the resonance condition given by Eq. �2� de-
scribes the wave-particle interaction not only in the consid-
ered case of the shear Alfvén waves, but also when fast mag-
netoacoustic waves �FMW� are destabilized. However,
probably, the FMW were not destabilized in the considered

NSTX experiment. At least, Eq. �2� cannot explain why co-
propagating waves were not observed and why waves with
the frequencies below several hundred kilohertz were not
destabilized �whereas these facts are explained for the Alfvén
waves�. The matter is that in the case of the FMW ��=kvA,
where k=�k�

2+k�
2 �, Eq. �2� can be satisfied for any sign of k�

and does not lead to a restriction on the possible frequencies,
���min, like that given by Eq. �3�.

The fulfillment of the resonance condition is not suffi-
cient for the instability to arise. The factors which can lead to
the destabilization of the waves are spatial inhomogeneity of
the energetic ions and their velocity anisotropy. The spatial
inhomogeneity drives the instability when n dnb /dr�0 �nb is
the beam density�. Because n�0, the beam particles with
monotonically decreasing radial profile have a stabilizing
�rather than destabilizing� influence on the waves in the case
of counter-rotating modes. However, calculations show that
in the NSTX case the beam radial distribution has an off-axis
maximum, which suggests that the beam spatial inhomoge-
neity tends to destabilize modes localized in the core region.
A more detailed analysis is required to clarify the role of the
velocity anisotropy. This will be done in the next section.

III. CALCULATION OF THE INSTABILITY GROWTH
RATE

In order to evaluate the instability growth rate ���, we
use the local approximation. Neglecting the wave damping
caused by the bulk plasma, we can write

�

�
= −

vA
2

2c21, �4�

where 1 is the fast ion dielectric permeability tensor com-
ponent calculated in Ref. 7. We take into account that
F=F�r ,E ,� ,�v�, where F is the unperturbed distribution
function of the energetic ions, d3vF=nb, E is the particle
energy, �=�B0 /E, � is the particle magnetic moment, B0 is
the magnetic field at the magnetic axis, �v=sgn�v��. Using
the resonance condition given by Eq. �2�, we calculate the
integral over the energy in the expression for 1. Then we
obtain

�

�
= � �2�B

4

k�
2 ni�

2 �
l,s,�v

l2

�ks�
� d�

1 − �
EJl

2���Js
2����̂F�

vres

, �5�

where ni is the bulk ion density, vres= ��− l�B� / �ks
�1−��

is the resonant velocity, Jl��� and Js��� are the Bessel func-

tions, �=k����, �= �q /�1−���k�
2 �2�1−0.5��2 /�2+ l2r2 /�2,

�=v /�B, k� is the transverse wavenumber, � is the plasma
elongation,

�̂ = �
�

�E + �l�B − ���
1

E
�

��
+

nq

�BM

1

r

�

�r
. �6�

Equation �5� takes into account effects of finite transverse
Larmor radius of the energetic ions ���=����. Moreover,
the growth rate is considerable only when k��� is not small.
Note that the growth rates of shear Alfvén instabilities with
the wavenumbers comparable to the reciprocal of the Larmor
radius of the energetic ions were obtained in a number of
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works, in particular, in Refs. 1 and 5. However, the expres-
sions for the growth rate in these works neglected the drive
due to spatial inhomogeneity of the energetic ions and the
effects of the particle drift motion.

Equation �5� can be used to calculate the growth rate
numerically. We, however, restrict ourselves to an analytical
evaluation of �. With this purpose we approximate the dis-
tribution function of the energetic ions as follows:

F = nbfEf� ��vb − v����v� , �7�

with fE=C /E3/2, C−1=M−3/2��2�d�f� /�1−� is a constant
found from the equation d3vfE=1, �=ln vb /vc with
vc��Mi /Me�1/3, f�= f����, f�d�=1, ��x�=−�

x ��x�dx. For
the considered waves the first term in Eq. �6� can be ne-
glected. The term associated with the velocity anisotropy
�proportional to the � derivative in Eq. �6�� can be trans-
formed by integrating by parts. Assuming that particles with
small � dominate in the energetic-ion population, we neglect
for simplicity the terms proportional to �Js��� /�� and use the
approximation d��vres� /d�=�res / �2��. Then we obtain

�

�
=

�

�

nb

ni

�B
2

�2�� d�f�

�1 − �
�−1

� �
l,s

l2

�l − �/�B� � d�f�

�1 − �
Js

2���

��−
l

�

�Jl
2���
��

+ Jl
2���

nq

k�
2 r

� ln nb

�r
�

vres
. �8�

In the case relevant to the NSTX experiment, only the
l= +1 harmonic contribute �there are no resonant particles
for other l�. Therefore, the velocity anisotropy of the ener-
getic ion distribution is a destabilizing factor only when the
particle Larmor radius is sufficiently large to lead to a
negative derivative of Jl

2���. One can see that this condition
is satisfied even for a low-m instability when the mode is
well localized. For f�	���−�0� the term associated with the
anisotropy dominates, unless � is about a point where
dJl

2 /d�=0.
Let us evaluate the growth rate in the NSTX shot

#114147. We take nb /ni�1/20, �B /�=4.7, ��10, ��2,
and Jn

2�x����x�−1. Then we obtain � /������2�−1, which
leads to � /��10−2 for ��2 and ��10. Numerical calcula-
tions using Eq. �5� give a smaller growth rate because in
reality the beam distribution function is not peaked at very
small �.

Thus, the driving part of the instability growth rate is
rather small. Therefore, the perturbative approach is justified
in spite of the fact that the beam pressure was comparable to
the plasma pressure in the core region in the considered
NSTX shot.

IV. SUMMARY AND CONCLUSIONS

Our analysis shows that the destabilized waves with the
frequencies ���B /5 observed in NSTX in shots #114147

and #114154 during neutral beam injection can be identified
as the high-frequency Alfvén instability with the k��b�1.
This instability arises due to the cyclotron resonant interac-
tion of Alfvén waves and the beam particles. The following
facts support this conclusion. First, the wave frequencies de-
termined by the resonance condition are close to the ob-
served frequencies. Second, our analysis predicts that only
counterpropagating �with respect to the beam direction�
waves can be destabilized, in agreement with the experiment.
Third, the resonance condition leads to the toroidal mode
number n�0, again in agreement with the experiment. In
addition, it imposes a restriction on the poloidal mode num-
ber, m�nq. The considered instability arises mainly because
of the velocity anisotropy of the injected ions, although the
spatial inhomogeneity—the hollow radial distribution of the
energetic ions—contributes to the destabilization of the
waves with n�0. The instability growth rate �the driving
part� is relatively small, which justifies the use of the pertur-
bative approach in the analysis.

Note that the most striking feature of the modes de-
scribed in Ref. 6 and considered in this work is the fact that
they simultaneously chirp up and down in frequency. Such
chirping must be due to a nonlinear process, such as that
described in Ref. 8. The first stage in understanding this phe-
nomenon consists in identifying the instability and calculat-
ing its linear growth rate. This is what is done in the present
work. At the next stage, a nonlinear theory of Alfvén modes
is to be developed, which should take into account the real-
istic structure of the mode and all three degrees of freedom
of the energetic ions.
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