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Abstract
Non-linear reduced MHD modelling of the toroidally rotating plasma response to resonant magnetic perturbations
(RMPs) is presented for DIII-D and ITER-like typical parameter and RMP coils. The non-linear cylindrical reduced
MHD code was adapted to take into account toroidal rotation and plasma braking mechanisms such as resonant
one (∼j × B) and the neoclassical toroidal viscosity (NTV) calculated for low collisionality regimes (‘1/ν’ and
‘ν’). Counter toroidal rotation by NTV is predicted for ITER with the proposed RMP coils in 1/ν-limit. Resonant
braking is localized near resonant surfaces and is weak compared with NTV in the 1/ν regime for typical DIII-D
and ITER parameters. Toroidal rotation leads to the effective screening of RMPs that is larger for stronger rotation
and lower resistivity, resulting mainly in central islands screening. Non-resonant helical harmonics (q �= m/n) in
RMP spectrum are not influenced by plasma rotation, and hence penetrate and are important in NTV mechanism.

PACS numbers: 52.55Fa, 52.65Kj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the recent design review of ITER, Type I edge localized
mode (ELM) control was identified as a high priority task
[1]. One of the promising methods to control Type I ELMs
is the installation of dedicated coils that achieve this goal
by modifying the edge magnetic field, so-called resonant
magnetic perturbation (RMP) coils. RMPs have been shown
to be effective in eliminating Type I ELMs in DIII-D [2] or
significantly mitigating them [3] in JET. At present, ELM
control by RMP is recommended for ITER since it could
increase the lifetime of the ITER divertor by reducing heat
and particle fluxes due to Type I ELMs and hence reducing

surface erosion [1]. Present day experiments on ELM control
by RMP are not completely understood. The extrapolations to
ITER are mainly based on an empirical criterion and ‘vacuum’
field modelling, suggesting that ELMs are suppressed when
the edge plasma is ergodized in the pedestal region for r/a ∼√

ψpol > 0.9, where ψpol is a poloidal magnetic flux. This
criterion is also used for the design of the RMP coils for
ITER [4, 5]. However, depending on the plasma parameters
and the RMP spectrum, the actual RMP field could be very
different, especially in rotating plasmas where the generation
of the current perturbations near rational surfaces could prevent
reconnections, leading to the effective screening of RMPs
[6–8]. On the other hand, it is known from experiment
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that helical magnetic perturbations can significantly influence
the toroidal rotation itself [2, 3, 7–10]. In most experimental
cases slowing down of the global plasma rotation is observed,
potentially leading, in particular in the cases with low n

toroidal symmetry (n = 1–2), to core MHD mode locking and
disruptions [3, 8–10]. However, the physics of toroidal plasma
rotation with RMPs is more complicated: in some experiments
a local increase in the toroidal rotation at the pedestal was
observed [2] and, moreover, at weak co- and counter rotation
acceleration in the counter direction was demonstrated [10].
The neoclassical toroidal viscosity (NTV), resulting from the
toroidal drag force experienced by the plasma particles moving
along field lines distorted by helical magnetic perturbations
[11–14], was proposed as a possible mechanism for the global
plasma braking. However, many open questions remain in
the experimental confirmation [8–10] of NTV mechanism,
since the theoretically estimated NTV force [11–14] depends
strongly on plasma parameters and, in particular, on the plasma
collisionality and rotation which can change significantly the
RMP spectrum in plasma compared with the vacuum fields.
The helical perturbations can appear due to the intrinsic MHD
activity (resistive wall modes, tearing modes, etc) or external
magnetic perturbations such as RMPs. NTV is produced
due to any helical magnetic perturbation, including both the
resonant (q = m/n) and non-resonant parts (q �= m/n)
of the perturbation spectrum [8–14]. The understanding of
the rotating plasma response on RMPs is important in the
optimization of the RMP coil spectrum. The loss of the plasma
co-rotation due to NTV can be important in ITER, where the
expected toroidal rotation is already slow (∼1 kHz) compared
with the existing experiments (∼10 kHz) [2–4, 10]. However,
as predicted by neoclassical theory [13], strong NTV does
not slow plasma rotation down to zero, but to a so-called
offset rotation in the counter direction and on the order of
the ion diamagnetic frequency, as was seen experimentally on
DIII-D [10].

This paper describes recent results based on the non-
linear reduced MHD modelling of RMPs in rotating plasmas
for DIII-D and ITER parameters. In section 2 the reduced
MHD (RMHD) model with toroidal plasma rotation and
different plasma braking mechanisms is introduced for
cylindrical geometry. In section 3 the NTV models for
low collisionality regimes are presented. The corresponding
numerical estimations for DIII-D and ITER typical parameters
and RMP coils (I-coils for DIII-D [2] and ITER ELM control
coils [1, 4, 5]) are given. Section 4 describes main results
on rotating plasma response to RMPs calculated by the code
RMHD. In the appendix the recipe for calculation of the
magnetic perturbation spectrum in the Hamada coordinates
needed for NTV theory application is given.

2. Reduced MHD model with RMPs

The non-linear cylindrical RMHD code [15] was adapted to
take into account toroidal plasma rotation, resonant braking
[6–8] and NTV [11–14]. More details about the derivation,
ordering and conservation laws for this four-field non-linear
RMHD model with parallel flows are given in [16]. The

equations solved here, normalized as in [15], are

∂ψ

∂t
+ vz

∂ψ

∂z
+ ∇‖� = −ηj, (2.1)

∂W

∂t
+ vz

∂W

∂z
+ ∇‖j + [�, W ] = ν0,⊥∇2W, (2.2)

∂vz

∂t
+ vz

∂vz

∂z
+ [�, vz] + �∇‖p = Sv + ν0,‖∇2vz + FRB + FNTV,

(2.3)
∂p

∂t
+ vz

∂p

∂z
+ [�, p] = k⊥∇2p + Sp. (2.4)

Here ψ = ψ0 + ψ̃ is the poloidal flux. Identifying equilibrium
values with ‘eq’ and perturbations with ‘∼’, the total magnetic
field is represented as follows:

�B = �Beq + �̃
B, �̃B =

(
1

r

∂ψ̃

∂θ
; −∂ψ̃

∂r
; 0

)
,

�Beq ≈ B0(0, bθ,0(r), bz,0), bz,0 ≈ b0 = 1,

bθ,0(r) = − 1

B0

∂ψ0

∂r
.

Other variables are � is the electrostatic potential, W =
−∇2� is the vorticity, p is the pressure, �v = �v⊥ + �v‖ is the
total velocity where the component parallel to the equilibrium
magnetic field is approximated as �v‖ = �beq(�v, �beq), �beq =
�Beq/Beq, vz ≈ Vϕ is the toroidal velocity and the poloidal
velocity is approximated as �v⊥ ≈ −( �∇� × �ez), k⊥ is the
diffusion coefficient, ν0,⊥, ν0,‖ are perpendicular and parallel
viscosities, j = −∇2ψ is toroidal current, and B0 = 1 is the
normalized magnetic field on the axis. To derive the induction
equation (2.1) we used the projection on the equilibrium field:

(−∇�−(∂ψ �ez/∂t)−η �J )· �beq ≈ −
(
�v⊥ × �B + �v‖ × �̃B

)
· �beq;

note that (
b0,θ v‖,z/r

)
(∂ψ/∂θ) = −v‖,z (∂ψ/∂z) ,

where the cylindrical safety factor is

q(r) = rbz,0

R0bθ,0
, bz,0 = 1 and 1/R0∂ϕ . . . = ∂z . . . .

The equilibrium flow is given by �v0 = (0, vθ,0, vz,0), vθ,0 �
vz,0. Sp,v represents sources that are adjusted to keep initial
equilibrium profiles in the case without RMPs. The initial
toroidal rotation profile is parabolic with zero value at the
boundary: Vz(t, r = 1) = 0. In the present modelling
the pressure terms were neglected by setting the normalized
pressure small: p ∼ 10−6. Curvature and diamagnetic effects
are also not included in this version of the cylindrical code.
The reason for this limit is that ballooning modes are always
unstable in cylindrical geometry and hence the realistic toroidal
geometry is essential. The present cylindrical approximation
allows a description of the forced reconnections and current
instabilities (tearing and kink modes triggering). As far as
possible amplification of RMPs is concerned, only current
profile instabilities (however, not observed in the present
modelling with the current profiles used here) can be modelled
in this approximation. The cylindrical code RMHD represents
an advantage that low experimental-like resistivity plasmas
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(Lindquist number up to Smax ∼ 109) and more realistic
toroidal rotation evolution can be modelled compared with
our previous work [17], where non-linear modelling of RMPs
in a torus with rigid body rotation was done, but at Smax ∼
106. However, note that this RMHD model does not allow
resistive ballooning mode destabilization and, hence, possible
amplification of RMPs [20] by this mechanism, which will be
a subject of our future work.

The parallel gradient is ∇‖.. = ∂../∂z + [.., ψ] and the
brackets are defined as [�, ψ] = �ez ·∇⊥�×∇⊥ψ . Identifying
physical parameters by superscript (ph), the normalized
parameters used in the code are defined as follows:

Bph = B0,zB ≡ B0B; ψph = aB0ψ; rph = ar;
R

ph
0 = aR0; ρph = ρ0ρ = ρ0 = const

vph = VAv = B0√
µ0ρ0

v; tph = τAt; (2.5)

τA = a

VA
; �ph = aB2

0√
µ0ρ0

�;

pph = B2
0

µ0
p; ηph = aB0

√
µ0√

ρ0
η; ν

ph
0,(‖,⊥) = a2

τA
ν0,(‖,⊥).

All variables are represented in Fourier series, for example
poloidal flux ψ = ∑

m,n=±∞
ψnmeimθ+inz/R0 + c.c., and the

harmonic n = 0, m = 0 is the equilibrium value. The
boundary conditions at r = 1 are zero for all perturbations
except for the magnetic flux harmonic amplitudes, ψnm|r=1 ≈
ψvac

nm,sep, which are approximated by the vacuum amplitudes
calculated in the toroidal geometry [4]. Note, however, that
because of the much stronger magnetic shear in toroidal
geometry, the amplitudes of the cylindrical harmonics at
the edge were adjusted to satisfy edge islands overlapping
(Chirikov parameter > 1) for r > 0.9 for the zero rotation
case to correspond in this respect with the vacuum modelling
in a torus [4]. Here for estimations we take r ≈ √

ψpol. The

resonant braking term due to �j × �B forces in (2.3) is taken into
account only for the mean flow (n = 0, m = 0) as in [7, 8]:

F 00
RB = −1

2qR0
Im

∑
m,n�=0

m

[
jnmψ∗

nm

−�nm

(
∂�2

nm

∂r2
− 1

r

∂�nm

∂r

)∗]
. (2.6)

However, let us note already that, for the typical RMP
amplitudes modelled here, the resonant braking (2.6) typically
localized near the resonant surfaces [6–8] is very small (see
section 4).

3. Modelling of NTV in DIII-D and ITER

The expression for the neoclassical toroidal viscous force
[11–14] is taken from [13]:

FNTV = −ν
‖
effb

2
eff

(
Vϕ − V NC

ϕ

) ≈ −αNTV(r)
(
Vϕ − V NC

ϕ

)
.

(3.1)

Here ν
‖
eff is the effective frequency, b2

eff is the square of
the effective magnetic perturbation calculated in the Hamada
coordinates in a specific way depending on the collisionality

Figure 1. Sketch of two rows of six I-coils in DIII-D with schematic
view of plasma flux surfaces.

Figure 2. DIII-D shot #127744 profiles used for NTV estimations.

regime [11–14], Vϕ is the toroidal velocity and V NC
ϕ is the

neoclassical toroidal velocity in a helically perturbed magnetic
field introduced in [13]. Since the realistic toroidal geometry is
very important for the NTV estimations [7–9], we stepped out
from the self-consistency in RMHD modelling with NTV and
used flux-averaged αNTV(r) calculated in toroidal geometry as
an input without changing it in time. In this paper the magnetic
perturbation in the NTV calculations was taken in vacuum as
a starting hypothesis neglecting plasma response.

For DIII-D I-coils (figure 1), the DIII-D #127744
discharge profiles of figure 2 were used with B0 = 1.9 T,
R0 = 1.8 m, a = 0.6 m, n = 3, Icoil = 4.65 kAt and odd
parity phasing, corresponding to the anti-symmetric current
signs in the upper and lower rows of I-coils.

For the ITER cases the geometry of the latest design of
9 × 3-rows in-vessel RMP coils [1] (figure 3) were modelled
by zero-thickness equally spaced frames with ∼26◦ toroidal
width. The corner coordinates (R, Z) in (m) for the top coil
are (7.71; 3.35);(8.53; 1.87); mid: (8.73; 1.75); (8.73; −0.5);
bottom coil: (8.55; −0.62);(7.45; −2.49). The dominant
toroidal number in the ITER coils spectrum was n = 4,
produced by currents (in kAt) approximating n = 4 sinusoids
in the top row: (−49.9; 45.675; −35.95; 21.9; −5.225; −12.1;
27.95; −40.45; 48.05); the mid-row: (50; −47; 38.3; −25;
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Figure 3. Sketch of three rows of nine ITER RMP in-vessel coils
with plasma flux surfaces.

Figure 4. ITER H-mode profiles from [24] used for NTV
estimations.

8.7; 8.7; −25; 38.3; −47) and the bottom row: (−42.4; 48.9;
−49.5; 44.15; 33.45; 18.75; −1.75; −15.45; 30.8). The
ITER standard H-mode scenario parameters (B0 = 5.29 T,
R0 = 6.2 m, a = 1.98 m, q95 ∼ 3) are the same as used
in [4, 5]. The corresponding plasma profiles are presented
in figure 4. The low collisionality ‘1/ν’ NTV regime is
applicable according to [13] when qωE < νi/ε <

√
εωti. Here

ε = r/R0, ωE ≈ Er/(rBϕ) is the poloidal drift frequency,
ωti = Vti/(R0q) is the ion transit frequency and Vti is the ion
thermal velocity, as introduced in [13]. To estimate the radial
electric field, the force balance equation was used:

Er = ∇rPi/ (eZini) + VϕBθ − VθBϕ, (3.2)

where the poloidal velocity is taken as neoclassical: Vθ =
V neo

θ ≈ 1.17/(ZiBϕ)dTi/dr and νi = 15.2/
√

A ln n(1019 m−3)

T
−3/2

i(keV) [13]. Note, however, the limits of the simplified
formula for the equilibrium radial electric field which could
be different especially in the pedestal region where the
direct ion-orbit losses are important for the self-consistent
estimations of Er [18].

In the 1/ν regime [13]

FNTV = −ν
‖
1/νb

2
1/ν(Vϕ − V NC

1/ν ),

V NC
1/ν(m s−1)

= 3.5/(ZiBθ)(dTi,keV/dr),

ν
‖
1/ν = ω2

ti/νi,

b2
1/ν ≈ 1.74q2ε3/2 ∑

n>0

∑
m,m′=±∞

n2

×(bnmcbnm′c + bnmsbnm′s)WLnmm′ ,

(3.3)

where bnmc,s are the harmonic amplitudes of the field

perturbation strength: b ≈ ( �Beq · �̃B)/B2
0 in the Hamada

coordinates, normalized to the magnetic field on the axis
(B0). The total magnetic field strength [11–14] is defined as

B = ( �Beq + �̃B, �Beq + �̃B)1/2 ≈ Beq +B0b. Introducing the label
of the magnetic line, ζ 0 = qθH−ζ H, where (θH, ζ H) are angles
in the Hamada coordinates (V H, θH, ζ H) introduced in [11, 12]
and in the appendix of this paper, one can represent

b =
∑

n=±∞

∑
m=±∞

bH
nme−inζ H+imθH

=
∑
n>0

An cos
(
nζ 0

)
+ Bn sin

(
nζ 0

)
, (3.4)

where

An =
∑

m=±∞
bnmc cos(θH(m − nq)) + bnms sin(θH(m − nq));

Bn =
∑

m=±∞
bnms cos(θH(m − nq)) − bnmc sin(θH(m − nq))

bnmc =
{

2Re(bH
nm), m �= 0,

Re(bH
nm), m = 0,

bmns =
{

−2Im(bH
nm), m �= 0,

−Im(bH
nm), m = 0.

(3.5)

Note that usually in vacuum modelling for RMP coils
[4, 5] another magnetic flux coordinate system with straight

magnetic lines was used, where the toroidal angle is the
geometrical one, and hence this system is not the Hamada
coordinate system. Note also that here in section 3 the
convention for resonant harmonics is taken from [11–13]
n > 0, m > 0, qres = m/n > 0, which is different from the
RMHD code [15] and section 2 where qres = −m/n > 0, m >

0, n < 0. However, since the results of section 3 are used
as an average over flux surfaces and sums over all harmonic
expressions in RMHD, we kept the different conventions as
in the original papers for RMHD [15] and for NTV [11–13].
The definitions and all details of the procedure of changing
of coordinates system and coefficients (3.5) calculation in the
Hamada coordinates are presented in the appendix of this
paper. The expressions for the weighting functions in the 1/ν

regime are

Wnmm′ =
∫ 1

0

FnmcFnm′cdk2

E(k) − (1 − k2)K(k)
,

Fmnc(k) = 2
∫ 2 arcsin k

0

√
k2 − sin2(θ/2) cos(θ(m − nq))dθ.

(3.6)
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Figure 5. Weighting coefficients for the 1/ν regime calculated using (3.6) for DIII-D #124477 parameters for resonant harmonics (left) and
non-resonant harmonics (right) for q = 3, n = 3.

The complete elliptic integrals of the first and second kind are
defined as

E(k) =
∫ π/2

0
(1 − k2 sin2 θ)1/2dθ,

K(k) =
∫ π/2

0
(1 − k2 sin2 θ)−1/2dθ.

The typical view of the weighting coefficients for resonant
and non-resonant harmonics Wnmm′ in the 1/ν regime is shown
in figure 5 for DIII-D coils and plasma parameters. The
perturbation spectrum |bH

nm| (3.5) in the Hamada coordinates
for DIII-D and ITER parameters and coils is presented in
figure 6. The characteristic frequencies for ions and electrons
for DIII-D and ITER plasma parameters are presented in
figure 7. Here we used parameters A = 2; Zi = 1; ln  = 17.
Note that for electrons (figure 7), qωE < νe/ε <

√
εωte but

apart from plasma edge, qωE > νi/ε both for DIII-D and ITER
parameters, and hence the ‘ν’ regime is expected [13] at least
in the central plasma region.

For the ν regime we used the expressions introduced
in [14] with corrections due to the special treatment of the
boundary between trapped and passing particles compared
with the previous studies [11–13]:

FNTV = −ν‖
ν b

2
ν

(
Vϕ − V NC

ν

)
, (3.7)

ν‖
ν = νiω

2
ti/ω

2
E,

V NC
ν(m s−1)

= 0.92/ (ZiBθ)
(
dTi,keV/dr

)
, (3.8)

b2
ν =

∑
n>0,m,m′=±∞

(bnmcbnm′c + bnmsbnm′s)W
(1)
nmm′ .

The corresponding weighting coefficients,

W
(1)
nmm′ = 0.045ε−1/2

∫ 1

0
dk2[E(k) − (1 − k2)K(k)]

×
(

∂L(1)
nm

∂k2

∂L
(1)
nm′

∂k2
+

∂L(2)
nm

∂k2

∂L
(2)
nm′

∂k2

)
, (3.9)

are presented in figure 8.

Here

L(1)
nm = Dnm

(1 − e−σ(1−k2)) cos(σ (1 − k2))

K(k)
,

L(2)
nm = Dnm

e−σ(1−k2) sin(σ (1 − k2))

K(k)
, (3.10)

Dnm = −2

{∫ π/2

0

cos [(m − nq)θ(u)] du√
1 − k2 sin2(u)

}
,

θ(u) = 2 arcsin(k sin(u)), σ ≈ √
n

(
νd

ln(16/
√

νd)

)−1/2

,

νd ≈ 4νi

εωEq
.

The NTV damping time as tdam ≈ Vϕ/(ν
‖
effb

2
eff [Vϕ − V NC

∗ ]) is
presented in figure 9 showing that the experimentally measured
damping time is closer to the 1/ν regime in DIII-D, and
NTV damping time in the ν regime is at least two orders of
magnitude larger. Note, however, that vacuum fields were
used here and plasma response such as RMP amplification
or screening were not taken into account. In [19] the NTV
estimations were done taking into account 3D ideal plasma
response that showed effective amplification of RMP by a
factor of 10 compared with the vacuum fields [19]. However,
at present the question of the self-consistent NTV modelling
with plasma response remains unresolved. For example
ideal plasma response to RMPs described in [19] does not
include island formation, rotation and diamagnetic effects,
which could be important [20]. Resistive MHD modelling
suggests RMP screening by toroidal rotation [17, 20] and also
RMP screening by drift effects [20], leading generally to
the smaller amplitudes of the resonant harmonics if plasma
response with rotation is included. However, for the moment
resistive MHD modelling in toroidal geometry was done for
Lindquist numbers S = 106–107, which is too small compared
with the experimental values. More self-consistent modelling
of the MHD plasma response to RMPs including toroidal
geometry, island formation, plasma rotation and self-consistent
and kinetic modelling of NTV, together with further dedicated

5



Nucl. Fusion 49 (2009) 085011 M. Bécoulet et al

(a) (b)

Figure 6. Perturbation strength spectrum in the Hamada coordinates for DIII-D I-coils and equilibrium for #124477 (a) and ITER RMP
coils and H-mode scenario equilibrium (b).

(a) (b)

Figure 7. Characteristic transit (dotted–dashed line), collision (dashed line) and toroidal drift frequency (solid line) for ions (a) and
electrons (b) for ITER (in bold) and DIII-D parameters presented in figures 2 and 4.

Figure 8. Weighting functions (3.9) in the ν regime for DIII-D #127744 parameters for q = 3, n = 3; left—W(1) for m > 0, right—W(1)

for m < 0.

experiments on different tokamaks, are still needed for more
reliable predictions for ITER and hopefully it will be done in
the future. The strategy adopted in this paper was to consider
the most pessimistic case with very strong NTV in the 1/ν
regime estimated for vacuum fields for ITER.

The flux-averaged profiles of the normalized coefficient
αNTV(r) in (3.1) used in the RMHD code are presented in
figure 10. For comparison the typical normalized values
of intrinsic perpendicular viscosity were ν⊥,0 = 0.01,
corresponding to the strong damping of the mean poloidal flow

6
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Figure 9. Damping time due to NTVtdam ≈ Vϕ/

(ν
‖
effb

2
eff [Vϕ − V NC

∗ ]) in DIII-D 127744 and ITER (bold);
Dashed–dotted: ν regime, solid: 1/ν regime.

Figure 10. Normalized coefficient due to NTV in (3.1) used in the
RMHD code estimated for vacuum fields. For comparison the
normalized natural parallel viscosity in modelling was taken as
ν‖,0,DIII-D = 4.4 × 10−7, ν‖,0,ITER7.7 × 10−8, corresponding to the
physical value of ∼1m2 s−1.

[6–8], and ν‖,0,DIII-D = 4.4 × 10−7, ν‖,0,ITER = 7.7 × 10−8

corresponding to the physical natural parallel viscosity of
∼1 m2 s−1 which is a typical experimental value.

4. RMHD modelling results

The first step in this study was to estimate numerically
the single resonant harmonic penetration without rotation.
The resulting flux perturbation |ψn=−3,m=9| on the surface
q(r=0.9) = |m/n| versus time is presented in figure 11(a) for
different plasma resistivities (here is a constant). The time
dependence of the resonance harmonic amplitude |ψn=−3,m=9|
can be fitted by ψ

pl
nm ≈ ψvac

nm (1 − 0.99e−t/τ ). At the boundary
magnetic flux perturbation is set to the vacuum value and

constant in time: ψvac
nm (t, r = 1) = 2 × 10−4. The dependence

of penetration time τ on the normalized resistivity is presented
in figure 11(b). The fit τ/τA ∼ 1.6 × 10−3/η is indicated
in figure 11(b) by stars. Here the normalized resistivity
η = τA/τres ≡ S−1, τres = µ0a

2/ηph is the resistive time and
ηph = 1.65 × 10−9 ln ZeffT

−3/2
e,keV . According to this scaling

for the top of the pedestal of ITER the penetration time for
RMP can be roughly estimated as τ ∼ 1500 ms (Te = 4 keV,
τA = a

√
µ0ρ0/B0 ∼ 3.10−7 s, Zeff = 1.5) and τ ∼ 50 ms for

DIII-D parameters (Te = 2 keV, τA ∼ 1.58 × 10−7 s, Zeff =
1.5).

In the following modelling more realistic resistivity profile
was used: η = ηplηvac/(ηpl + ηvac), ηvac = 0.1, ηpl =
η0(p/p0)

−3/2 which mimics the ∼ T
−3/2

e dependence. Usually
with such a profile penetration time roughly decreases by a
factor of ∼2 compared with figure 11(b) estimations, since
the edge resistivity is higher compared with the constant value
taken for figure 11, but the scaling trend remains. The pressure
profile was typical for the H-mode scenario with edge transport
barrier for r > 0.9. The rotation profile is parabolic with
a central value Vz(r = 0) = V0 and zero value at the edge,
Vz(r = 1) = 0.

The scans of rotation and resistivity showed that screening
of magnetic island due to the rotation is stronger at stronger
rotation (figure 12) and lower resistivity (figure 13) as
it was expected from theory [6, 7, 17]. These results
(figures 12 and 13) confirm at least for single harmonics
the predictions from [6] for the visco-resistive linear regime:
ψ

pl
mn/ψ

vac
mn |res ∼ η5/6/V0. Note that in practice with non-

constant resistivity profile and strong non-linearity with many
harmonics especially in the ergodic zone, this simple scaling
is not valid anymore [21], but this trend remains. Note in
figure 14 that RMP is screened mainly after resonance surface
ψ

pl
mn ≈ 0 for r < rres. The corresponding current perturbation

profiles with and without rotation are presented in figure 15.
These results are very similar to those published in [7, 17]. The
physical reason for screening is the current layer formation
in the narrow region near the resonant surface preventing
reconnection and island formation. However, this is valid up
to a certain threshold RMP amplitude for reconnection [6].

The ‘screening’ by rotation applies only to the resonant
harmonics (q = |m/n|), producing in principle magnetic
islands on the resonant surfaces. The non-resonant harmonics
(not producing islands since q �= |m/n|) are not affected by
rotation. Their amplitude remains the same as in the vacuum
case with and without rotation (figure 16). As one can see from
figures 16(a) and (b), the non-resonant harmonic amplitude
(here n = −3, m = 2, ψmn(t, r = 1) = 2 × 10−4 oscillates
during a few hundred Alfvén times due to Alfvén waves,
which are then damped depending on the resistivity (stronger
damping for higher resistivity—figures 16(a) and (b)). Note
from the Poincaré plot in figure 16(c) that no central islands
(possible seed islands that trigger NTMs) are produced by non-
resonant harmonics, but being a helical perturbation of the
equilibrium field they still produce NTV and should be taken
into account in rotation profile predictions with RMP coils.

The magnetic topologies from the field line integration [4]
done after the run of RMHD code with and without rotation
and without NTV (FNTV = 0) are presented in figure 17.
Here the RMP spectrum applied at the boundary (r = 1)

7
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Figure 11. (a) Time dependence of resonant harmonic m = 9, n = −3 flux perturbation amplitude resonant at r ∼ 0.9 for different
resistivities (here constant); fit ψpl

nm ≈ ψvac
nm (1 − 0.99e−t/τ ) is indicated by diamonds. (b) Normalized RMP penetration time to the top of the

pedestal (r ∼0.9) of the harmonic m/n = 9/3 as a function of S = η (squares); the fit τ/τA ∼ 1.6 × 10−3/η is indicated by stars.

Figure 12. Time dependence of single harmonic amplitude
|ψn=−3,m=9| on the resonance surface rres = 0.9 in the rotation V0

(normalized to VA) scan.

was ψn,m=5 : 11(r = 1) = [9m=5; 8m=6; . . . 3m=11] × 10−5,
n = −3. Note that without rotation the edge region is ergodic
approximately for r > 0.9 and V0 = 3 × 10−2 (∼10 kHz),
η0 = 10−8 corresponding to the ‘DIII-D-like’ and V0 =
0.56×10−2 (∼1 kHz) η0 = 10−9 corresponding to the ‘ITER-
like’ parameters [24]. One can see that in both cases the central
islands are screened, but still overlap for r > 0.9. Finally, the
RMHD code runs were done for DIII-D and ITER parameters
with NTV calculated in realistic geometry and realistic RMP
coils in section 3. It is clear that effect produced by RMPs
on the toroidal rotation depends on the relative value of NTV
compared with the intrinsic toroidal viscosity αNTV/ν‖,0 and
source of rotation itself, for example NBI. Typically in the
RMHD modelling we used intrinsic normalized viscosities:
ν⊥,0 = 0.01, ν‖,0,DIII-D = 4.4×10−7 and ν‖,0,ITER = 7.7×10−8

(see section 3). The NTV in the ν regime (figure 10) does
not produce any noticeable rotation braking in the RMHD
modelling at this level of natural viscosity and hence these

Figure 13. Time dependence of |ψn=−3,m=9| on rres = 0.9 in the
resistivity scan at V0 = 10−2VA.

results are not presented here. In contrast, in the 1/ν regime
NTV is rather strong compared with the natural viscosity
and will be the dominant mechanism defining the plasma
rotation profile, especially in ITER, because of much lower
collisionality and lower intrinsic toroidal rotation compared
with the present day machines [24]. According to theory
[11–14] and experiment [10], the consequence of strong NTV
combined with relatively slow or zero toroidal rotation is a
counter toroidal rotation with a velocity of Vϕ ≈ V NC

∗ . In
contrast, at strong co- or counter rotation global plasma braking
is expected as it was observed on DIII-D [10]. This suggests
that the resulting value and the direction of the toroidal rotation
depend on the interplay between rotation source, the value of
NTV and the natural parallel viscosity.

Full RMHD modelling of toroidal rotation profile
evolution with 1/ν NTV regime in ITER (n = −4, m =
8 : 14, ψnm(r = 1) = 3.5 × 10−5, η(0) = 10−9, ν0,‖ =
7.7×10−8, αNTV,max = 3.7×10−5) is presented in figure 18(a).
Note that in 1/ν regime NTV is strong in ITER with RMPs:

8
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Figure 14. Resonant harmonic n = −3, m = 9 amplitude profile of
the poloidal magnetic flux perturbation at zero rotation V0 = 0 and
with rotation V0 = 10−2VA.

Figure 15. Similar to figure 14, but for the parallel current
perturbation harmonic amplitude.

αNTV,max/ν||,0 � 1 (figure 10). For comparison rotation profile
with only resonant braking is presented in figure 18(a) showing
very small braking near the resonant surfaces in the ergodic
region at the edge. Since NTV is the dominant mechanism
here, the simplified equation for toroidal rotation velocity could
help to capture the general trend of toroidal rotation behaviour
with NTV:

∂vz/∂t ≈ δ ·Sv +ν‖,0∇2vz −αNTV,maxf (r)(vz − V NC
1/ν ). (4.1)

For the general case we introduced in (4.1) a parameter δ

which indicates the direction of the intrinsic rotation and f (r)

which represents the form of the NTV profile normalized to
the maximum value calculated in section 3 and presented
in figure 10: αNTV(r) = αNTV,max · f (r). For the standard
case with the co-neutral beam injection δ = 1. Solving the
simplified equation (4.1) for strong NTV permits reducing

significantly the time consuming numerical solution (2.1)–
(2.4) with a typical time step of ∼0.1τA until the stationary
rotation profile is reached (∼2×106τA). The profile evolution
resulting from (4.1) and RMHD modelling (2.1)–(2.4) with
strong NTV (αNTV,max/ν||,0 � 1) is very close (figure 18(a))
especially in the region of maximum of FNTV. Note that the
stationary rotation with NTV in the 1/ν regime for ITER-like
parameters presented in figure 18(b) is in the counter direction
(here negative) and close to the neoclassical value where NTV
profile has a maximum, as predicted in [11–13]. The magnetic
topology resulting from the full RMHD modelling with NTV
due to ITER RMP coils (figure 3) is presented in figure 19 at
different times (in τA) One can see that screening of RMPs is
independent of the direction of the rotation (co- or counter)
(figure 19); however, the central islands can grow when
locally Vϕ ∼ 0.

Similar to these numerical results, a spin-up in the
counter direction was experimentally observed on DIII-D
with the I-coils at slow intrinsic co- or counter rotation
obtained by changing the ratio between co- and counter neutral
beam injected power [10]. To test this fact, the simplified
equation (4.1) was solved numerically with NTV calculated
for DIII-D #124477 shot (figure 10) in the 1/ν regime for
vacuum fields with parameters ν0,‖ = 7.7×10−7, αNTV,max =
5.5 × 10−7, and parabolic initial rotation profile with central
value for δ = 1 of V0 = 4 × 10−2VA, VA ∼ 3.8 × 106 m s−1,
which is close to the experimental conditions of [10]. The time
dependence of the toroidal rotation at fixed radius (r = 0.7)
is presented in figure 20 for different fractions of co- (δ > 0)

and counter rotation (δ < 0) and is qualitatively similar to the
experimental measurements presented in figure 1 in [10].

5. Conclusions and discussion

The MHD toroidally rotating plasma response to RMPs was
estimated. The effective screening of the central magnetic
islands by plasma rotation and the pedestal region ergodization
are predicted for DIII-D and ITER parameters and the
corresponding RMP coils.

Resonant (q = m/n) harmonic penetration time at zero
rotation increases for lower resistivity and is estimated for
a single island (n = 3, m = 9, resonant at r ∼ 0.9)
to be ∼50 ms for DIII-D and ∼1500 ms for ITER pedestal
parameters. The non-resonant helical harmonics (q �= m/n)

in the RMP spectrum are not influenced by plasma rotation and
they play an essential role in the NTV mechanism.

If the 1/ν NTV low collisionality regime [11–13] is
dominant in ITER, counter rotation close to the neoclassical
estimations [13] is predicted for ITER similar to DIII-D
observations at slow intrinsic rotation reported in [10].
Both co- and counter toroidal rotations result in central
islands screening. Further experimental validation and
NTV modelling including MHD rotating plasma response is
certainly needed for more reliable predictions of the rotation
profile in ITER with RMP coils. Resonant toroidal rotation
braking is localized near resonant surfaces similar to [7, 8] and
is predicted to be small compared with the 1/ν NTV mechanism
for typical DIII-D and ITER parameters used here.

Further development of the model should include
diamagnetic effects that represent another important factor

9
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Figure 16. Penetration of non-resonant harmonic n = −3, m = 2, ψmn(1) = 2 × 10−4(q(0) > 2/3) for comparison with figures 11–13.
Time dependence of the magnetic flux perturbation at r = 0.5 without rotation for η = 10−6 = const (a) and η = 10−7 (b). One can note the
oscillations due to Alfvén waves. (c) Poincaré plot of the same with (presented here) and without rotation. No islands are formed since
q �= m/n. (d)ψmn(r) profiles at different times for η = 10−7 without rotation before stationary vacuum-like solution is reached at ∼600τA

(in bold); (e) profiles ψmn(r) with and without rotation for non-resonant harmonic are similar.

Figure 17. Magnetic topology by field line integration after RMP
penetration with RMP spectrum at the boundary
ψn=3,m=5:11(r = 1) = [9m=5; 8m=6; . . . 3m=11] × 10−5 without
rotation (top), with DIII-D-like (middle) and ITER-like (bottom)
resistivity and rotation profiles (here without NTV).

for the additional screening of RMP at the edge [20, 22],
realistic toroidal geometry and resistive ballooning modes [20],
permitting modelling non-linear behaviour ELMs in the
presence of RMPs, which was impossible in the cylindrical

MHD code, since only current instabilities could be
modelled here.

Appendix. Calculation of RMP spectrum in the
Hamada coordinates

The magnetic flux coordinates system usually used for RMPs
spectrum calculations in [4] was (s, θ, ϕ) where s ≡ (ψN

pol)
1/2,

ϕ is the geometrical toroidal angle and θ is such that, along
a field line ϕ − qθ = cte. Equilibrium field is �Beq =
I∇ϕ + ∇ψ × ∇ϕ. Note that in this system for equilibrium
field ( �Beq, ∇s) = 0 and the magnetic lines are straight on the
magnetic surface:

B
(3)
eq

B
(2)
eq

=
(

�Beq, ∇ϕ
)

(
Beq, ∇θ

) = q(s),
(

�Beq, ∇ϕ
)

= I

R2
. (A.1)

To use [11–14] for NTV calculations one needs to calculate the
RMP magnetic perturbation strength spectrum in the Hamada
coordinates. This procedure is given here.

Let us introduce the Hamada coordinates (V H, θH, ζ H)

[22], where V H is the volume within the flux surface, θH is
the poloidal-like angle and ζ H is the toroidal coordinate. By
definition [23]

∇V H × ∇θH · ∇ςH = 1. (A.2)

10
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(a) (b)

Figure 18. Rotation profile evolution in time due to RMP coils in ITER n = 4, 50 kAt. (a) Comparison between RMHD code resonant
braking only (circles), NTV braking modelled by simplified equation (4.1) (dashed) and RMHD code with NTV (dashed–dotted).
(b) Toroidal rotation profile evolution from co- to counter direction due to NTV obtained using (4.1) model. Stationary profile is reached
at t ∼ 4 × 106τA; here fneo = V NC

1/ν /(2πR0).

Figure 19. Magnetic topology from RMHD code with NTV
estimated in the 1/ν regime for ITER RMP coils at n = 4, and
maximum current 50 kAt without rotation (top) and with ITER-like
rotation at different times (in τA) . One can note that both co- and
counter rotations screen central islands, and that the islands can
increase their size if toroidal rotation is locally close to zero (for
example islands on q = m/n =11/4 surface at t = 104τA).

The equilibrium field in the Hamada coordinates is
expressed as

�Beq = ∇V H × (
ψH∇θH − χH∇ζ H

)
, ψH = �Beq · ∇θH,

χH = �Beq · ∇ζ H. (A.3)

Note that in the Hamada coordinates (V H, θH, ζ H), as also in
the (s, θ, ϕ) system, the magnetic lines are straight and the
‘radial’ (perpendicular to the flux surface) component is zero:(

�Beq, ∇ζ H
)

(
Beq, ∇θH

) = q
(
V H

) ≡ q(s),
(

�Beq, ∇V H
)

= 0.

(A.4)
The volume enclosed by a flux surface V H can be expressed
as V H(s) = 2π

∫ s

s=0

∫ 2π

θ=0 RdS, where dS is the appropriate
surface element. Since V H is the volume within a flux surface;

Figure 20. The time evolution of toroidal velocity at r = 0.75 from
numerical solution of equation (4.1) with DIII-D-like parameters
and parabolic initial rotation profile with a central value
V0 = 3 × 10−2VA, VA ∼ 3.8 × 106 m s−1 and αNTV(r) form shown
in figure 10 for DIII-D #124477 shot and for different fractions of
co- (δ > 0) and counter rotation (δ < 0). Here normalized values
are ν0,‖ = 4.4 × 10−7, αNTV,max = 5.5 × 10−7.

in the following we use ‘s’ still as a label of the flux surface.
For the poloidal Hamada angle we can chose the following
expression:

θH =
∫ θ

0 dθ/
(

�B · �∇θ
)

∫ 2π

0 dθ/
(

�B · �∇θ
) . (A.5)

The second Hamada angle can be constructed according to

ζ H = ϕ

2π
+

I

2π

∫ θ

0


dθ/ �B · �∇θ︸ ︷︷ ︸

=B(2)


 ·

(〈
1

R2

〉
− 1

R2

)

= ϕ

2π
+

1

2π

∫ θ

0
dθ

(〈
B(3)

〉 − B(3)
)

B(2)

= ϕ

2π
+

〈
B(3)

〉
2π

(∫ θ

0

dθ

B(2)

)
− 1

2π

(∫ θ

0

B(3)

B(2)
dθ

)
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(a) (b)

Figure 21. (a) Hamada toroidal angle ζ H = ζH(s, θ, ϕ = 0) and (b) Hamada poloidal angle θH = θH(s, θ, ϕ = 0) for DIII-D #127744 shot
equilibrium at zero toroidal geometrical angle.

= ϕ

2π
+

1

2π

∫ 2π

0
B(3)

B(2) dθ∫ 2π

0
1

B(2) dθ

(∫ θ

0

dθ

B(2)

)
− q

θ

2π

= ϕ

2π
+ q

(∫ θ

0
dθ
B(2)

)
∫ 2π

0
1

B(2) dθ
− q

θ

2π
= 1

2π
ϕ

+ q

(
θH − 1

2π
θ

)
. (A.6)

Here we used the definition of flux averaging as

〈
I

R2

〉
= 〈

B(3)
〉 =

∫ 2π

0 B(3) ·
(

dθ/ �B · �∇θ
)

∫ 2π

0 dθ/ �B · �∇θ
. (A.7)

The final expression linking our flux coordinates (s, θ, ϕ) with
Hamada is

ζH (s, θ, ϕ) − qθH (s, θ) = 1

2π
(ϕ − qθ) .

We chose θ = 0, θH|θ=0 = 0 on the low field side (LFS)
mid-plane. The Hamada angles ζ H = ζH(s, θ, ϕ = 0) and
θH = θH(s, θ, ϕ = 0) on the equilibrium mesh are illustrated
in figure 21.

For convenience of Fourier spectrum calculations, the
Hamada angles were normalized as follows, assuming that

θ̃H = 2πθH (s, θ) , ζ̃ H = 2πζ H (s, θ, ϕ) . (A.8)

We now want to calculate the coefficients An(θ̃
H), Bn(θ̃

H) in
expression (6) of [11, 12]. Consider that in the first order the
magnetic field strength on the field line is

B = ( �Beq + δ �B, �Beq + δ �B)1/2 ≈ 1

Beq
( �Beq, �Beq + δ �B)

≈ Beq(V
H, θH) +

1

Beq
( �Beq(V

H, θH) · δ �B(V H, θH, ζ H))

(A.9)

and approximately as in [11, 12]:

B = Beq

(
1 +

1

Beq

�Beq · δ �B
)

≈ Beq + B0

( �Beq · δ �B
BeqB0

)
≡ Beq + B0b, (A.10)

where

b =
�Beq · δ �B

B0
≈ 1

B0

(
BR

eqδB
R

B0
+

BZ
eqδB

Z

B0
+

B
ϕ
eqδB

ϕ

B0

)
.

Introducing the label of the magnetic line on the magnetic
surface ζ 0 = qθ̃H − ζ̃ H note that �B∇ζ 0 = 0. The
Fourier transform of magnetic strength perturbation along the
unperturbed field line in the Hamada coordinates can be written
in the form

b =
∑

n=±∞,n�=0

∑
m=±∞

bH
nm

(
s, θ̃H

)
e−inζ̃ H+imθ̃H

=
∑

n=±∞,n�=0

∑
m=±∞

bH
nm

(
s, θ̃H

)
eiθ̃H(m−nq)einζ 0

≡
∑

n=±∞,n�=0

Cneinζ 0
. (A.11)

Since b is a real number C−n = C∗
n and b can be

represented as

b=
∑
n>0

Ancos
(
nζ 0

)
+Bnsin

(
nζ 0

)
An =2Real(Cn), Bn =−2Im(Cn),

An =Real


bH

m=0,neiθ̃Hnq +2
∑

m=±∞,m�=0

bH
mneiθ̃H(m−nq)




=Real
(
bH

0n

)
cos

(
θ̃Hnq

)
−Im

(
bH

0n

)
sin

(
θ̃Hnq

)
+2

∑
m=±∞

Real
(
bH

mn

)
cos

(
θ̃H(m−nq)

)
−Im

(
bH

mn

)
×sin

(
θ̃H(m−nq)

)
=

∑
m=±∞

bmnccos
(
θ̃H(m−nq)

)
+bmns sin

(
θ̃H(m−nq)

)
,

bmnc =
{

2Real
(
bH

mn

)
,m �=0,

Real
(
bH

mn

)
,m=0,

bmns =
{−2Im

(
bH

mn

)
,m �=0,

−Im
(
bH

mn

)
,m=0,

Bn =−Im


bH

m=0,neiθ̃Hnq +2
∑

m=±∞,m�=0

bH
mne

iθ̃H(m−nq)




=−Im
(
bH

0n

)
cos

(
θ̃Hnq

)
−Real

(
bH

0n

)
sin

(
θ̃Hnq

)
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−2
∑

m=±∞,m�=0

Im
(
bH

mn

)
cos

(
θ̃H(m−nq)

)
−Real

(
bH

mn

)
sin

(
θ̃H(m−nq)

)
=

∑
m=±∞

bmns cos
(
θ̃H(m−nq)

)
−bmnc sin

(
θ̃H(m−nq)

)
;

(A.12)

So for calculating An and Bn one should know a spectrum in
the Hamada coordinates:

b
(
s, θ̃H, ζ̃ H

)
=

∑
n=±∞,n�=0

∑
m=±∞

bH
mn

(
s, θ̃H

)
e−inζ̃ H+imθ̃H

,

bH
mn = 1

4π2

∫ 2π

0

∫ 2π

0
b

(
s, θ̃H, ζ̃ H

)
ei(nζ̃ H−mθ̃H)dζ̃ Hdθ̃H.

(A.13)

Since ζ̃ H (s, θ, ϕ) = ζ̃ H (s, θ, 0) + ϕ, one can write

bH
mn = 1

2π

∫ 2π

0

(
1

2π

∫ 2π

0
bn·einϕdϕ

)
· ei(nζ̃ H

0 −mθ̃H)dθ̃H

= 1

2π

∫ 2π

0
b∗

n · einζ̃ H
0 −imθ̃H

dθ̃H, (A.14)

where ζ̃ H
0 (s, θ) = ζ̃ H(s, θ, ϕ = 0) and bn = (1/2π)×∫ 2π

0 b(s, θ̃H, ϕ)e−inϕdϕ designate the traditional Fourier
transform with respect to ϕ for each θ̃H = const . Note
that according to our definition of angles here, b∗

n(s, θ
H) =

(1/2π)
∫ 2π

0 b(s, θH, ϕ)einϕdϕ. Finally,

bH
mn = 1

2π

∫ 2π

0
b∗

n · einq(θ̃H−θ)−imθ̃H)dθ̃H

= 1

2π

∫ 2π

0
b∗

neiθ̃H(−m+nq)e−inqθ

(
∂θ̃H

∂θ

)
dθ. (A.15)

Hence the poloidal harmonic amplitude in the Hamada
coordinates at each flux surface is calculated as a traditional
poloidal Fourier harmonic, but for the phase shifted function
(b∗

n · einq(θ̃H−θ)):

bH
mn = 1

2π

∫ 2π

0
e−imθ̃H

(
b∗

n · einq(θ̃H−θ)
)

dθ̃H. (A.16)

Acknowledgments

The authors would like to thank many colleagues who were
involved in the combined theoretical, modelling, experimental

and engineering efforts in RMP ELM control coils design
for ITER and, in particular, R. Hawryluk, P. Thomas,
A. Loarte, V. Chuyanov, D. Campbell, U. Gribov, G.
Janeschitz, J.-J. Cordier, D. Losser, Y. Liang, J. Menard,
S. Sabbagh, J. Callen. A very special thanks to B. Scott
for recommendations for the magnetic perturbation spectrum
calculations in the Hamada coordinates that were used here,
and to A. Polevoi [24] who provided the expected profiles
for ITER standard H-mode scenario used already in [4, 5] and
also here.

This work, supported by the European Communities under
the contract of Association between EURATOM and CEA,
was carried out within the framework of the European Fusion
Development Agreement. The views and opinions expressed
herein do not necessarily reflect those of the European
Commission.

References

[1] Hawryluk R.J. et al 2009 Nucl. Fusion 49 065012
[2] Evans T. et al 2008 Nucl. Fusion 48 024002
[3] Liang Y. et al 2007 Phys. Rev. Lett. 98 265004
[4] Becoulet M. et al 2008 Nucl. Fusion 48 024003
[5] Schaffer M. et al 2008 Nucl. Fusion 48 024004
[6] Fitzpatrick R. 1998 Phys. Plasmas 5 3325
[7] Kikuchi Y. et al 2006 Plasma Phys. Control. Fusion

48 169
[8] Lazzaro E. et al 2002 Phys. Plasmas 9 3906
[9] Zhu W. et al 2006 Phys. Rev. Lett. 96 225002

[10] Garofalo A. et al 2008 Phys. Rev. Lett. 101 195005
[11] Shaing K. 2003 Phys. Plasmas 10 1443
[12] Shaing K 2007 Phys. Plasmas 14 049903 (erratum)
[13] Cole A. et al 2008 Phys. Plasmas 15 056102
[14] Shaing K. et al 2008 Phys. Plasmas 15 082506
[15] Huysmans G. 2001 Phys. Rev. Lett. 87 245002
[16] Helzeltine R.D. et al 1985 Phys. Fluids 28 2466
[17] Nardon E. et al 2007 Phys. Plasmas 14 092501
[18] Chang C.S. et al 2004 Phys. Plasmas 11 2649
[19] Park J.-K. et al 2008 Proc. 22nd Int. Conf. on Fusion Energy

2008 (Geneva, Switzerland, 2008) (Vienna: IAEA)
CD-ROM file EX/5-3Rb and http://www-naweb.iaea.org/
napc/physics/FEC/FEC2008/html/index.htm

[20] Strauss H.R. et al 2009 Nucl. Fusion 49 055025
[21] Izzo V.A. et al 2008 Proc. 22nd Int. Conf. on Fusion Energy

2008 (Geneva, Switzerland, 2008) (Vienna: IAEA)
CD-ROM file TH/P4-19 and http://www-naweb.iaea.org/
napc/physics/FEC/FEC2008/html/index.htm

[22] Heyn M.F. et al 2008 Nucl. Fusion 48 024005
[23] Hamada S. 1962 Nucl. Fusion 2 23
[24] Polevoi A. et al 2002 ITER confinement and stability

modelling J. Plasma Fusion Res. Ser. 5 82–7

13

http://dx.doi.org/10.1088/0029-5515/49/6/065012
http://dx.doi.org/10.1088/0029-5515/48/2/024002
http://dx.doi.org/10.1103/PhysRevLett.98.265004
http://dx.doi.org/10.1088/0029-5515/48/2/024003
http://dx.doi.org/10.1088/0029-5515/48/2/024004
http://dx.doi.org/10.1063/1.873000
http://dx.doi.org/10.1088/0741-3335/48/2/001
http://dx.doi.org/10.1063/1.1499495
http://dx.doi.org/10.1103/PhysRevLett.96.225002
http://dx.doi.org/10.1103/PhysRevLett.101.195005
http://dx.doi.org/10.1063/1.2838241
http://dx.doi.org/10.1063/1.2969434
http://dx.doi.org/10.1103/PhysRevLett.87.245002
http://dx.doi.org/10.1063/1.865255
http://dx.doi.org/10.1063/1.2759889
http://dx.doi.org/10.1063/1.1707024
http://www-naweb.iaea.org/napc/physics/FEC/FEC2008/html/index.htm
http://www-naweb.iaea.org/napc/physics/FEC/FEC2008/html/index.htm
http://dx.doi.org/10.1088/0029-5515/49/5/055025
http://www-naweb.iaea.org/napc/physics/FEC/FEC2008/html/index.htm
http://www-naweb.iaea.org/napc/physics/FEC/FEC2008/html/index.htm
http://dx.doi.org/10.1088/0029-5515/48/2/024005

	1. Introduction
	2. Reduced MHD model with RMPs
	3. Modelling of NTV in DIII-D and ITER
	4. RMHD modelling results
	5. Conclusions and discussion
	 Appendix. Calculation of RMP spectrum in the Hamada coordinates
	 Acknowledgments
	 References

