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The resistive wall mode instability in tokamak plasmas has a complex frequency which can be

determined by a dispersion relation that is cubic, in general, leading to three distinct roots. A

simplified model of the dispersion relation, including kinetic effects, is presented and used to

explore the behavior of these roots. By changing the plasma rotation frequency, it is shown that

one root has a slow mode rotation frequency (less than the inverse wall time) while the other two

rotate more quickly, one leading and one lagging the plasma rotation frequency. When realistic

experimental parameters from the National Spherical Torus Experiment [M. Ono et al., Nucl.

Fusion 40, 557 (2000)] are used, however, only one slow rotating, near-marginal stability root is

found, consistent with present experiments and more detailed calculations with the MISK code [B.

Hu et al., Phys. Plasmas 12, 057301 (2005)]. Electron collisionality acts to stabilize one of the

rotating roots, while ion collisionality can stabilize the other. In devices with low rotation and low

collisionality, these two rotating roots may manifest themselves, but they are likely to remain

stable. VC 2011 American Institute of Physics. [doi:10.1063/1.3604948]

I. INTRODUCTION

The resistive wall mode (RWM) in a tokamak fusion

plasma is a mode of instability related to an MHD kink-bal-

looning mode, but slowed considerably to grow on a time

scale of the penetration of magnetic perturbations through a

close-by resistive wall, sw (Ref. 1). Passive or active control

of the RWM growth must be employed to avoid unfavorable

results in tokamaks, such as disruption of the plasma current

and termination of the discharge.2

Theoretically, the RWM non-axisymmetrically perturbs

the equilibrium position of the plasma according to n ¼ ~ne�ixt.

A dispersion relation can be written for the RWM that relates

the mode frequency to other parameters. The complex mode

frequency is written explicitly here as x¼xrþ ic, so that xr

is the real mode rotation frequency and c is the growth rate.

When c> 0, the mode grows exponentially. When c< 0, the

mode is said to be present but stable, as its growth is damped.

Theoretical RWM stability models leading to a cubic

dispersion relation have been previously studied.3–5 In Fitz-

patrick and Aydemir’s model,4 the cubic order results from

the inclusion of finite inertia, and xr and c were parameter-

ized vs. edge plasma rotation and radial wall location. It was

found that one root was always stable. The other two were

designated the resistive wall mode or the external kink mode

based upon both the time scale of their growth rates (wall

time or Alfvén time, respectively) and of their mode rotation

frequencies, with the RWM always close to zero rotation and

the external kink often with mode rotation close to the

plasma rotation. There existed a region of wall radius where

one root transitioned to the other, the RWM always remain-

ing identified with the slowly rotating root, which could

jump from stable to unstable in the transition region.

Kinetic effects were subsequently added to the stability

models: first through bounce frequency resonances6 and later

by extension to the lower frequency precession drift reso-

nance.7 Liu et al. recognized that RWM stability models

with kinetic effects have a dispersion relation which is still

cubic in nature even without finite inertial effects.8–10 There

should therefore exist three separate possible modes of insta-

bility. These three roots are to be distinguished from the sep-

arate possibility of “multiple modes” which can also

simultaneously exist with separate mode numbers (and there-

fore separate dispersion relations).11 The possible resulting

confluence of modes from multiple roots could be detrimen-

tal to the performance of active feedback systems that are

designed to respond to only a single mode.

In the full perturbative calculation of the MISK code12

for experimental equilibria from the National Spherical Torus

Experiment (NSTX) (Ref. 13), only one root is found. A sim-

plified model is used here in order to calculate the growth rate

of the three roots and to gain tractable insight into their nature.

Examination of the physical meaning of these roots, including

kinetic effects, their rotation, and stability dependence on vari-

ous important parameters, and whether they are actually im-

portant in more than a mathematical sense (i.e., whether they

can actually be manifested in a tokamak experiment), is the

purpose of the present study.

In Sec. II, an expression for the general RWM disper-

sion relation is presented as well as certain simplifying

assumptions that lead to a more tractable model. In Sec. III,

both the full MISK calculation and a simplified model with

realistic parameters for NSTX are shown to lead to only one

root, with near-zero natural mode rotation and near-marginal

stability. The two other, more highly rotating, roots are

recovered by relaxing certain parameters away from present
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experimental values. The parametric dependencies of the

simplified dispersion relation on plasma rotation and colli-

sionality, and how they affect the nature of the three roots,

are then explored in Sec. IV.

II. RWM DISPERSION RELATION

The dispersion relation of the RWM can be written7 in

terms of the changes to the potential energy of the plasma

with no wall, dW1, with a resistive wall at location b, dWb,

and due to kinetic effects, dWK, when the equilibrium is per-

turbed by a small displacement, n

c� ixrð Þsw ¼ �
dW1 þ dWK

dWb þ dWK
¼ 1� C

ĉ�1
f þ C

: (1)

Following Refs. 8 and 9, we have defined the normalized

growth rate in the absence of kinetic effects,

ĉf ¼ �dW1=dWb, and C¼ (dWK)=(�dW1). The dispersion

relation can be written in such a way that roots are found for

values of (xr, c) that cause jDj ¼ 0, where

D ¼ ĉ� ix̂rð Þ ĉ�1
f þ C

� �
� 1þ C; (2)

x̂r ¼ xrsw and ĉ ¼ csw.

It is through dWK that Eq. (1) becomes non-linear, as

dWK itself depends on xr and c. This kinetic term can be cal-

culated in full using codes such as MISK, MARS-K,8 and

HAGIS.14 Such a calculation will be performed in Sec. III

with MISK for NSTX.

A. Simplified model with energy dependence

In order to make the problem tractable enough that some

insight can be gained into the nature of the roots, we will see

that it will become necessary to make some simplifying

assumptions. We will make an effort, however, to keep the

simplifications to a minimum, in order to best represent a re-

alistic scenario. We will consider only trapped thermal par-

ticles, and will neglect the bounce frequency, thereby

effectively only considering particles with l¼ 0 bounce har-

monic. Energetic particles (EPs) are also important to RWM

stability.15–18 If their effects are dominant over thermal par-

ticles, they may alter the nature of the roots.10 However for

NSTX, it has been shown that EPs change RWM stability

through a force that resists flux compression, so dWK from

EPs is mostly independent of plasma rotation17 and EP colli-

sionality.19 In this case, the effects of EPs would be like a

constant additive to C, which does not affect the characteris-

tic nature of the roots, and will therefore be neglected in this

discussion.

We now consider simplifications to the thermal particle

profiles and related frequencies that will also preserve the

characteristics of the roots, yet allow a tractable analysis. Let

us first assume ni¼ ne and Ti¼Te. Also, let us consider all

frequencies to be constant with respect to magnetic flux

coordinate or radius. Later, this will be shown to be a reason-

able assumption in the region where the RWM eigenfunction

is large. This assumption effectively places the radial de-

pendence of our model on the RWM eigenfunction, rather

than the fact that the plasma rotation is stronger in the core

than at the edge, for example. Finally, the precession drift

frequency, xD, will be considered independent of the pitch

angle. As we will see, xD appears in the denominator of an

expression for C along with the difference between the

plasma and mode rotation frequencies. In general, xD is a

small perturbation on this differential rotation unless the

plasma and the mode are in resonance. We will also see that

whether or not energy dependence is included in xD does

change the quantitative value of the growth rate and mode

rotation frequency of the roots but does not qualitatively

change their nature. We expect that by neglecting the pitch

angle dependence, a similar effect is obtained.

These assumptions therefore greatly simplify the calcu-

lation of dWK, as only energy dependence is retained in the

frequency resonance fraction, while not fundamentally

changing the characteristic dependence of dWK, and thus the

behavior of the roots, on the various frequencies. Let us

finally define some normalizations. For energy, ê ¼ e=T, oth-

erwise x̂ ¼ xsw, where x represents any frequency. Finally �x
is the constant value of x̂ at ê ¼ 1. Then using the definition

of dWK from Ref. 17, Eq. (4), we can write

C¼ c
8

15
ffiffiffi
p
p
ð1

0

x̂�Nþ ê� 3
2

� �
x̂�Tþ x̂E� x̂r� iĉ

xDêa1� i��êa2þ x̂E� x̂r� iĉ

� �
i

	

þ
�x̂�N� ê� 3

2

� �
x̂�Tþ x̂E� x̂r� iĉ

�xDêa1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mi=me

p
��êa2þ x̂E� x̂r� iĉ

 !
e

#
ê

5
2e�êdê:

(3)

The first term in the integral is for trapped ions, while

the second is for trapped electrons. The x*N and x*T terms

are the density and temperature components of the diamag-

netic frequency (x*¼x*Nþx*T), which have opposite sign

for ions and electrons. The E�B frequency is defined as

xE¼x/�x*, which results from radial force balance,

neglecting poloidal rotation.12,20 Here x/ is the plasma to-

roidal rotation.

In the denominator, xD is the precession drift frequency,

which also changes sign between ions and electrons. We

have written the equation with xD to make the energy de-

pendence of this term explicit. Normally, a1 should be equal

to one, but we can set it equal to zero to remove the energy

dependence of the precession drift frequency for analysis

purposes. Similarly, �� is the ion collisionality at thermal

energy, and we can use a2¼ 0 or � 3
2

. Note that for deute-

rium ions,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mi=me

p
� 86, so electron collisionality is gen-

erally much larger.19

Finally, here c is a constant which represents the com-

pleted integration over pitch angle, v, and magnetic surface,

W, of all the other terms in the full dWK calculation not

inside the energy integral

c ¼ 15
ffiffiffi
p
p

ð�dW1Þ8
X

j

ð ð
jhH=êij2njTj

ŝ
B
jvjdvdW; (4)

where H=ê and ŝ are defined in Ref. 21. Note that the mode

eigenfunction, n? appears in H only. No assumptions about n?
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have been made except that it is unchanged by kinetic

effects.17 The constant c is roughly proportional to b=(�dW1),

where b is a measure of the ratio of plasma pressure to mag-

netic pressure.

Technically, our assumptions of x*N(W), x*T(W), and

��ðWÞ all being constant are inconsistent, as x�n / T=nð Þ
dn=dWð Þ and x�T / dT=dW imply n / T / W, while

�� / nT�
3
2. Nevertheless, we will treat them each as constants

for simplicity.

B. Further simplified model without energy
dependence

Liu et al. presented a simplified, analytical form of

Eq. (3), in which there are no energy dependencies in the

frequency resonance fractions.9 It can be recovered under

the following assumptions: x*T¼ 0, a1¼ 0, and a2¼ 0. Then

the energy integral can be easily performed, resulting in a

constant, and we find

C ¼ c
x̂�N þ x̂E � x̂r � iĉ

x̂D � i�̂ þ x̂E � x̂r � iĉ

	

þ �x̂�N þ x̂E � x̂r � iĉ

�x̂D � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mi=me

p
�̂ þ x̂E � x̂r � iĉ

#
: (5)

Additionally in Ref. 9, only the �̂ ¼ 0 collisionless case was

considered. An analytical solution for this collisionless case

is discussed in Appendix B.

III. EXPERIMENTAL CALCULATION OF GROWTH
RATE AND MODE ROTATION FREQUENCY

The MISK code is used to calculate the stability of high b
plasmas in NSTX.17,22,23 The full MISK calculation for NSTX

discharge 133456 at 0.577 s, using experimentally measured

input profiles of various frequencies (shown in Fig. 1), results

in a single root, with x̂r ¼ 0:012 and ĉ ¼ �0:2. The fluid

growth rate was calculated to be ĉf ¼ 0:62 for this equilib-

rium, from dW1 ¼� 1.97� 10�2 and dWb¼ 3.17� 10�2.

The xE profile shown in Fig. 1, measured with charge

exchange recombination spectroscopy, is from just before

the RWM experimentally goes unstable the experimental

detection of an unstable RWM. Often during experiments,

the plasma rotation decreases with time during the discharge,

whether naturally or due to applied non-resonant magnetic

braking.24 When the x/ profile is scaled in this calculation

from three times down to one times the experimentally mar-

ginally stable profile, the trajectory in ðx̂r; ĉÞ space is indi-

cated by the dashed line in Fig. 2. A crossing of this line into

positive ĉ would indicate that the calculation predicts insta-

bility, consistent with the experimental result. We can see

that the result comes quite close (within ĉ � 0:05) in its

prediction.17

Only one root is found with the full MISK calculation,

even when x̂r and ĉ from the left hand side of Eq. (1)

are iterated back into the right hand side. The iterative root-

finding method for the perturbative approach is not practical

for finding multiple roots, as it does not consistently con-

verge on all of the solutions. This phenomenon is discussed

in detail in Appendix A.

We will now use our simplified model of Sec. II to gain

further insight and to try to find more than one solution. The

roots of the RWM dispersion relation are found by setting

D¼ 0 in Eq. (2). Using the analytical approximation of

Eq. (5), this can be done relatively straightforwardly using

MATHEMATICA. When the energy integral of Eq. (3) is

included, finding the roots requires more effort. Here, we use

a FORTRAN code which performs the energy integration that is

at the core of the MISK code. MISK is a perturbative code,

in the sense that values of ðx̂r; ĉÞ are not found self consis-

tently, but rather must be input into Eq. (3) to find C. There-

fore, we use a brute-force trial and error approach, where a

grid of values of ðx̂r; ĉÞ (generally from �10 to 10) are input

into Eq. (3) to determine C and then Eq. (2) to determine D,

and a plot of contours of 1=jDj vs. ðx̂r; ĉÞ is produced which

shows the values of ðx̂r; ĉÞ where D ! 0. Such a plot is

shown in Fig. 2 (with magnified axes).

The assumptions made to simplify the expression for

dWK limit our ability to make a detailed comparison with

experiments. The fact that the profiles in Fig. 1 are not con-

stant demonstrates the extent of the model simplifications.

However, we will attempt to make the calculation as realistic

as possible within those constraints. We will use the full

FIG. 1. (Color online) Profiles of various frequencies vs. normalized poloi-

dal magnetic flux for NSTX discharge 133456 at 0.577 s. Approximate aver-

age values are indicated. The precession drift and collision frequencies are

at thermal energy, and xD is also taken at zero pitch angle. The vertical

dashed line indicates the location where �*i, the ratio of the effective colli-

sion frequency to the bounce frequency, is one.

FIG. 2. (Color online) Contours of 1=jDj, showing the location of the single

root in the x̂r ; ĉð Þ space for the “realistic” case, and its trajectory with

decreasing x̂E, from 40 to 0. Also shown with a dashed line is the trajectory

from the full MISK calculation for NSTX discharge 133 456 at 0.577 s, also

with decreasing rotation (scaled experimental x/ profile).
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proper energy dependence from Eq. (3), setting a1¼ 1, a2

¼� 1.5. Using the constant values indicated in Fig. 1, and a

realistic sw¼ 5 ms, we find that representative values are

x̂�N ¼ 5, �xD ¼ 5, �� ¼ 25, and x̂�T ¼ 15. The E�B fre-

quency is roughly x̂E � 0� 10 over the outer 60% of flux

surfaces. Therefore, levels of x̂E ¼ 40! 0 will be used to

approximate an experimental slowing down trajectory.

Finally, the value c¼ 1 will be used, so that jCj
¼� jdWKj=dW1 is in the middle of the usual range (0.5–2.5)

that the full MISK calculation finds (i.e., kinetic effects are

comparable to fluid effects). Figure 2 shows that with these

parameters, a single root is found with near zero rotation and

near marginal growth rate. Although the axes are magnified in

this plot, the other two roots were not found for x̂r, ĉ between

�10 and 10 (<j2j kHz). The singularity shown is for

x̂E ¼ 40, and the trajectory is shown with a solid line from

there down to 0. The root changes very little in ðx̂r; ĉÞ space

with this rotation change.

Our simplified model with “realistic” values finds

ðx̂r; ĉÞ similar to the full MISK calculation. The fact that the

full MISK calculation trajectory changes ðx̂r; ĉÞ more may

be due to any number of differences in the calculations, most

prominently the assumption of flat radial profiles in the

model. Even with the simplified model, with realistic fre-

quencies, we still only find one root. This is not to say that

the other roots do not exist, but rather that they are outside of

the domain of credible RWM frequencies in our analysis by

being either highly rotating and=or highly stabilized or desta-

bilized. One candidate for this behavior is a collisional

plasma, which one might imagine could require a large nega-

tive ĉ in the denominator of Eq. (3) to balance the imaginary

terms for a solution to exist. In Sec. IV, we will consider the

parametric dependence of the roots on various quantities

individually to gain further insight.

IV. PARAMETRIC DEPENDENCE OF THE DISPERSION
RELATION

There are several important parameters for RWM stabil-

ity that have been explored in experiments, as well as com-

parisons between experiments and theory, including plasma

rotation and collisionality. Here, we will consider simplified

cases to attempt finding more than one root and to explore

the dependencies of the multiple roots on these same param-

eters. These simplifications will necessarily reduce the realis-

tic matching with present experiments, instead moving in the

direction of future devices. For example, in Subsection IV A,

we will consider the plasma to be collisionless. Additionally,

we will take x*T¼ 0, consistent with a flat temperature pro-

file, so that the only energy dependencies in Eq. (3) are in

the precession drift and collsionality terms. We will explore

the effect of these energy dependencies individually in Sub-

sections IV A and IV B as well.

A. Plasma rotation

Toroidal plasma rotation is an important variable in

RWM stability.22,25 As is often done,8,9 we will utilize xE as a

proxy for plasma rotation in the present analysis. Unless other-

wise indicated, the values of ĉf ¼ 2 and c¼ 0.6 will be used in

all cases presented here, to be consistent with Ref. 9. To more

clearly see the effect of xE, in this subsection, we will consider

the collisionless �̂ ¼ 0ð Þ case. Finite collisionality will be

added in Subsection IV B. To avoid singularities in the energy

integral of Eq. (3), the imaginary term in the denominator

must be less than zero.19 With collisions, this is normally not

an issue, but when �̂ ¼ 0, one can replace the limits of integra-

tion (0, 1) with two integrals, from (0,� 10i) and

(�10i,� 10iþ1) for ions, and (0, 10i) and (10i, 10iþ1) for

electrons.

Figure 3 shows that indeed all three roots are found in

the collisionless case. Here, the calculation is shown with

energy-dependent x̂D for x̂E ¼ 4 (and trajectories over the

range 0 � x̂E � 10) as contours of 1=jDj in the manner of

Fig. 2. The values for the other parameters are indicated on

the plot. Note that root 2 was not followed outside of the do-

main shown.

Figure 4 shows the normalized growth rate and mode

rotation frequencies vs. normalized E�B frequency of the

three RWM roots for the same set of parameters from Fig. 3

(in red=solid lines). Also shown with blue=dashed lines on

the figure are the three roots with the same parameters but

with energy-independent precession drift frequency. When

this collisionless analytical case is considered, the results

duplicate those previously found by Liu et al. in Ref. 9,

except for a flipped sign of x̂r (due to a different directional

definition).

The fundamental character of the roots remains the

same when the change is made from energy-dependence

(a1¼ 1) to energy-independence (a1¼ 0), but the patterns are

generally shifted to lower x̂E, higher growth rate, and mode

rotation closer to the plasma rotation.

When x̂E becomes large, the mode rotation frequency

goes to zero for one root and becomes large for the other

two. When x̂E goes to zero, one root is represented by

ð0; ĉ3Þ, while the other two are ð6x̂r1; ĉ1Þ. That is, one root

has no mode rotation, while the others have equal and oppo-

site mode rotation with the same growth rate. The mathemat-

ical reason for this behavior is discussed in Appendix B.

Generally, a pattern that can be observed is that one root

has a slow mode rotation x̂r . 1Þð while the other two have

FIG. 3. (Color online) Contours of 1=jDj, showing the location of roots in

the x̂r ; ĉð Þ space and their trajectories with increasing x̂E.
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mode rotation defined by x̂r ¼ 6x̂0 þ x̂E, where x̂0 is

found in Appendix B. In other words, the modes represented

by these roots rotate with the plasma, one leading and one

lagging. Note that while the analytic case presents the possi-

bility of a highly rotating unstable root (root 2), the more re-

alistic scenario of energy-dependent xD does not (root 2 is

stable). We can note some similarities in behavior of the

roots between the present kinetic model and the Fitzpatrick

and Aydemir model4 described in the introduction. We do

not find that one of the more highly rotating roots is robustly

stable (although this will become possible when collisional-

ity is added in Subsection IV B), but we do find that they

have xr �xE, as in the previous model.

We will now define the root with near-zero mode rota-

tion as the slow, or “S” root. The root leading the plasma

rotation will be designated the “Rþ ” root and the one lag-

ging the “R� ” root. We must keep in mind that one mathe-

matical solution can transit from being the R� to S root (as

in root 1 in Fig. 4) or vice versa (as in root 3) as parameters

are changed. This is a physically based categorization of the

roots. An alternative is to track the roots as the kinetic effects

are reduced to zero (c! 0 in Eq. (3)) and label the particular

solution that becomes the fluid solution ðx̂r; ĉÞ ! ð0; ĉf Þ

 �

as the RWM root. Our categorization is perhaps less clear

mathematically, as one solution can transit from S to R
labels, but we believe it is preferable as a physical interpreta-

tion as it always identifies the S root, which is most likely to

be seen experimentally.

There is some range of x̂E where a switchover occurs

between two of the solutions, as to which one obeys which

of these behaviors (slow or rotating). A similar behavior was

noticed with respect to the proximity of the wall, rather than

plasma rotation, in the previous model.4 Figures 5(a) and

5(b) show a duplication of Figs. 4(a) and 4(b) for only the

analytical roots 1 and 3, zoomed in on the switchover region

to better see the behavior of the roots in this rotation range.

Although only the analytic roots are shown here, the behav-

ior or the energy-dependent case is quite similar. In Fig. 4,

the switchover occurs between roots 1 and 3 in the range of

2. x̂E. 4, for the analytic case and 5. x̂E. 7 for the

energy-dependent x̂D case. Also shown in Figs. 5(c) and

5(d) are the real and imaginary kinetic terms, Re(C) and

Im(C) for these roots. The switchover range is intriguing, pri-

marily because it means that two slowly rotating modes

could simultaneously exist. However, Fig. 5(a) shows that in

this range one of the two is highly damped. The S root,

which has xr � 0, has a resonance between xD¼ 1 and

xE¼ 1 for electrons. This makes the denominator of Eq. (5)

small, so both Re(C) and Im(C) are large and the plasma is

very stable. The S root then jumps to the other solution (root

1) at xE � 2.5, which is unstable. This jump in ĉ was also

analogously seen in the Fitzpatrick and Aydemir model with-

out kinetic effects.4 It only begins to approach marginal sta-

bility again at larger plasma rotation (xEZ6) as the real

kinetic effects are steadily rising.

Let us now consider further what these results imply

physically. For example, consider the energy-dependent case

FIG. 4. (Color online) (a) Growth rate and (b) mode rotation frequency of

the roots of the RWM dispersion relation, vs. x̂E. Shown in blue=dashed

lines are the results from the collisionless analytical simplification of Eq. (5)

(x*T¼ 0, �̂ ¼ 0, a1¼ 0), with parameters: x̂�N ¼ 10, x̂D ¼ 1, which are the

same results as in Ref. 9 (with flipped sign on x̂r). In red=solid lines are the

results with the same parameters, but with a1¼ 1 and xD ¼ 1 (energy de-

pendent precession drift frequency). The grey region indicates slow mode

rotation with respect to the wall time jx̂r j. x1Þð .

FIG. 5. (Color online) (a) Growth rate,

(b) mode rotation frequency, (c) Re(C),

and (d) Im(C) for the analytical roots 1

and 3 from Fig. 4, vs. x̂E.
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at x̂E ¼ 10. The S root is marginally unstable, while the two

R roots are stable ĉ < 0ð Þ with x̂r � 4 and �10. That is to

say if sw¼ 5 ms, the plasma is rotating at 2 kHz, while there

are possible damped, stable modes rotating at 800 Hz and

�2 kHz. Clearly the S root is the familiar resistive wall

mode, as is seen experimentally in NSTX and other devices.

B. Collisionality

Collisionality has been shown to be an important factor

in RWM stability,19 but not in a simple way, such as being

universally stabilizing.26,27 In Ref. 19, three collisionality

models were considered: collisionless, energy-independent,

and energy-dependent. In Subsection IV A, we considered

the collisionless case �̂ ¼ 0ð Þ. Here, we will consider the

energy-independent case (a2¼ 0), which once again provides

a convenient analytical solution (Eq. (5)) and the energy-de-

pendent case a2 ¼ � 3
2

� �
. For simplicity x̂D is considered a

constant in both cases (a1¼ 0), so that we can see the effect

of the energy dependence in the collisionality term alone.

Because the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mi=me

p
term makes collisionality consider-

ably larger for electrons, we expect that even a small �̂, com-

pared to the other frequencies, will affect the nature of the

RWM roots.

Figure 6 shows ĉ and x̂r vs. �� with the same parameters

as Fig. 4 at x̂E ¼ 4. For the analytical energy-independent

collisionality case, shown in blue=dashed lines, as soon as �̂
is increased to 0.01, the electron collisionality termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mi=me

p
�̂ becomes of order unity and begins to have a

large effect on the growth rate of the R� root (root 3). By

�̂ ¼ 0:1, this root is made extremely stable. The mode rota-

tion frequency is relatively less affected by collisionality, but

we do note that the R� root can begin to rotate in the

direction opposite to the plasma when it becomes highly

stabilized by electron collisions. A similar pattern does not

take hold for the Rþ root (root 2) until the ion collisionality

becomes of order unity itself, �̂ � 1. This description can be

confirmed by examining Eq. (5) with the electron term set to

zero. In that case, root 3 does not exist, and the resulting

roots 1 and 2 are the same as in Fig. 6 when �̂. 1.

When energy dependence is added to the collisionality

term (a2 ¼� 1.5), the results are the red=solid lines in Fig. 6.

In general, it takes larger �� in the energy-dependent case to

have an effect on the growth rate of the roots, which is

expected since the ê�
3
2 greatly reduces the importance of high

energy particle collisions.19 Still, the R� root is highly

damped above �� � 2:5, an order of magnitude less than that

realistic NSTX value of �� � 25.

Finally, we note that it is the S root (root 1 in the

energy-independent case and root 1 transitioning to 3 in the

energy-dependent case) that remains close to marginal ĉ,

while the R roots are the ones stabilized by collisionality.

Once again the switchover region �� � 0:06ð Þ is intriguing as

two roots are slowly rotating and here are weakly damped

(also the Rþ root is highly rotating and unstable). Recall,

however, that xD energy dependence, which tended to be

stabilizing, was not included in this subsection.

The stabilization of one of the R roots by electron colli-

sionality and of another by ion collisionality can be explained

by examination of Eqs. (1) and (3). In order for a solution to

exist with large x̂r on the left-hand side of Eq. (1), a large

� i�̂ term in the denominator of Eq. (3) must be balanced

with a large negative ĉ. If they are not and ĉ is near marginal,

then the large collisionality in the denominator causes the x̂r

on the left hand side of Eq. (1) to be close to zero. In NSTX ��
is indeed on the same order as the other frequencies (see

Fig. 1), which can help explain why in Sec. III only the S root

was found with realistic experimental parameters.

The physical interpretation of this result is that machines

with collisionality on the order of the other important frequen-

cies will have the rotating roots robustly stabilized, but for

future devices with low rotation and an order of magnitude

lower collisionality, these roots may become more important.

This is in contrast to the simpler model4 in which one of the

three roots was always considered robustly stable. However,

we note that even in the low rotation, low collisionality case,

we do not find multiple roots with unstable or even near mar-

ginally unstable growth rates. Although the simplest collision-

less cases with energy-independent xD could be interpreted

that way (blue=dashed lines in the left side of Fig. 4(a) or ei-

ther result on the left side of Fig. 6), the energy-dependence of

the precession drift frequency is stabilizing, leaving only the

true RWM root near marginal stability.

V. CONCLUSION

The resistive wall mode dispersion relation, including

kinetic effects, is cubic and therefore allows the possibility

of three distinct modes, in general. Two simplified models of

the dispersion relation, analytical and energy-dependent,

give qualitatively similar understanding of the behavior of

these roots with respect to plasma parameters. As plasma

rotation is changed, the S root maintains slow mode rotation,

FIG. 6. (Color online) (a) Growth rate and (b) mode rotation frequency of

the roots of the RWM dispersion relation, vs. ��. Shown in blue=dashed lines

are the results from the analytical simplification of Eq. (5) (x*T¼ 0, a1¼ 0,

a2¼ 0), with parameters: x̂�N ¼ 10, x̂D ¼ 1, and x̂E ¼ 4. Shown in

red=solid lines are the results with the same parameters, but a2 ¼� 1.5, for

energy dependent collisionality.
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while the two R roots rotate with the plasma, one leading and

one lagging. It is this near-zero rotating S root that is the

RWM identified in the full MISK code calculations. When

collisions are included in the calculation, they can have a

strongly stabilizing effect on the two R roots, first through

electron collisionality which is higher, and then through ion

collisionality. Using an energy-dependent collisionality

model requires larger collisionality to have the same stabiliz-

ing effect. A comparison to realistic experimental conditions

indicates that only one root remains practically observable in

present devices such as NSTX, the slowly rotating, near-mar-

ginal stability S root that is identified as the resistive wall

mode. In future devices with lower rotation and lower colli-

sionality, the two rotating roots may become more important,

but our analysis indicates that these roots are still likely to

remain stable.
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APPENDIX A: ITERATION AND THE PERTURBATIVE
APPROACH

There are two general approaches for the calculation of

RWM stability, a calculation of a self-consistent set of equa-

tions for n and x used, for example, by the MARS-K code,

and the perturbative method, used in the simple model here

and by the MISK code, of calculating the dW terms sepa-

rately from a fixed n and then using Eq. (1) for x. It is possi-

ble that in the self-consistent approach, x is self-regulated in

the sense that large x̂r, for example, could change n in such

a way that x is modified from the solutions given here.9 It is

worthwhile, however, to now consider which root the pertur-

bative approach, used in the simple model presented here,

finds more generally in the full MISK calculation.

An iterative method was developed for the perturbative

MISK code to include the non-linear effect of ðx̂r; ĉÞ appear-

ing in Eq. (3) (Ref. 17). Near-zero values of ðx̂r; ĉÞ are used

in the first step, dWK is calculated, and then ðx̂r; ĉÞ are

obtained from Eq. (1). These values are fed back as input

into the dWK calculation and iterated in this way until con-

vergence is achieved. This method works well for the refine-

ment of the single root found with MISK and has been

shown to make little difference to the outcome as long as sw

is not too low.17

Through experience, however, we have found that this

iterative method never leads to convergence on a second or

third root. We believe that this is because the single root

found by MISK is what is known as an attracting fixed point,

while the other two are repelling fixed points. If Eq. (1) is

written x̂ ¼ f ðx̂Þ, then

f 0ðx̂Þ ¼ � @C

@x̂
x̂þ i

ĉ�1
f þ C

; (A1)

and when jf 0ðx̂Þj < 1, x̂ is an attracting fixed point and itera-

tion with values around that x̂ will lead to convergence upon

it (and the opposite for repelling fixed points).28 Though a

mathematical proof of this for the RWM roots for the full

energy-dependent MISK calculation would be difficult,

given the complexity, the observed behavior is consistent

with this description.

We believe that the root which has jx̂rj closest to zero

(the S root, which is the most physically realistic representa-

tive of the true resistive wall mode seen in experiments), is

always a fixed point root in our simple iterative scheme.

Therefore the single root that is found by the full MISK cal-

culation for experimental equilibria is the desired RWM

root.

For the collisionless analytical case, we can calculate

jf 0ðx̂Þj, from Eqs. (5) and (A1), and plot it vs. x̂E for the

three analytical roots from Fig. 4. This is shown in Fig. 7 and

it confirms that only the roots with low jxrj (root 1 at

x̂E > 1:4 and root 3 at x̂E > 4:4) are attracting.

More sophisticated root finding techniques could be

employed in the future to find the other two roots with

MISK, including the use of a relaxation parameter to convert

the rotating repelling fixed point roots to attracting, and the

use of better initial guesses for x̂r and ĉ for those roots.

APPENDIX B: ANALYTICAL SOLUTION

A convenient solution for Eq. (5) with �̂ ¼ 0 can be

found in the form of the solution to the cubic relation

z3 þ b1z2 þ b2zþ b3 ¼ 0; (B1)

with

z ¼ �iðx̂� x̂EÞ; (B2)

b1 ¼
2c� 1

2c� ĉ�1
f

� ix̂E; (B3)

b2 ¼
2cx̂�Nx̂D þ ĉ�1

f x̂2
D

2c� ĉ�1
f

; (B4)

b3 ¼
2cx̂�Nx̂D � x̂2

D � ix̂E 2cx̂�Nx̂D þ ĉ�1
f x̂2

D

� �
2c� ĉ�1

f

: (B5)

When xE¼ 0, the coefficients of the cubic equation are real

and then the fact that the discriminant

FIG. 7. (Color online) jf 0ðx̂Þj vs. x̂E for the three analytical roots from Fig. 4.
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D ¼ 18b1b2b3 � 4b3
1b3 þ b2

1b2
2 � 4b3

2 � 27b2
3 (B6)

is less than zero means that one root of z is real and the

other two are complex conjugates. This translates into one

root having x̂r ¼ 0 at x̂E ¼ 0, while the other two have the

same ĉ0 and x̂r ¼ 6x̂0, as was noted in Subsection IV A

and Fig. 4.
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