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Abstract
Motivated by experimental observations of apparently triggerless tearing modes, we have performed linear and
nonlinear MHD analysis showing that a non-resonant mode with toroidal mode number n = 1 can develop in the
National Spherical Torus eXperiment (NSTX) at moderate normalized βN when the shear is low and the central
safety factor q0 is close to but greater than one. This mode, which is related to previously identified ‘infernal’
modes, will saturate and persist, and can develop poloidal mode number m = 2 magnetic islands in agreement with
experiments. We have also extended this analysis by performing a free-boundary transport simulation of an entire
discharge and showing that, with reasonable assumptions, we can predict the time of mode onset.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the phenomena presenting an obstacle to successful
plasma confinement in tokamaks is the seeding of neoclassical
tearing modes (NTMs) [1], slow-growing resistive instabilities
that create poloidal mode number m = 2, toroidal mode
number n = 1 magnetic islands at the q = 2 surface. In the
National Spherical Torus eXperiment (NSTX), these have been
observed to degrade energy confinement and to interact with
resonant components of the intrinsic field coil error to exert a
braking effect on plasma rotation, leading to mode locking. As
the rotation slows, equilibria with normalized plasma pressure
β above the no-wall limit become unstable to resistive wall
modes (RWMs), causing disruption.

Often, the mechanism for the destabilization of the NTMs
is apparent from the diagnostic data; they are observed to
be triggered by sawteeth, energetic particle modes, edge-
localized modes (ELMs), and by other locked modes. For
a particular subset of NSTX discharges, however, the 2,1
mode amplitude begins to grow steadily from zero without
any evident precursor in the soft x-ray, magnetic, or neutron
diagnostic data [2]. A typical example of this class is shot
#124379 (figure 1(a)), in which the n = 1 mode co-rotates
with the q = 2 surface from its onset. An important clue to the
origin of the mode in this shot is that the multichord soft x-ray
signal at time t = 0.73 during the instability is best accounted
for by the presence of a 1,1 kink-type perturbation in addition to

the 2,1 perturbation (figure 1(b)). Further investigation reveals
that both m = 1 and m = 2 components are present from the
earliest time at which the n = 1 mode can be detected. The
equilibrium reconstruction for this snapshot exhibits a very flat
central q profile with q0 slightly above one. This suggests that
the falling safety factor may be putting the plasma in a regime
that is ideally unstable to a kink-like mode; the tight aspect
ratio and high elongation of the spherical torus configuration
could then couple the 1,1 mode to an m = 2 component.

In this paper we perform numerical linear stability analysis
of the equilibrium with a number of ideal and resistive MHD
codes, verifying that this intuitive picture is correct: it is near
marginal stability for an ideal n = 1 mode with various
poloidal components. We investigate the nonlinear behaviour
of the mode with a resistive MHD model, showing how it can
saturate at finite amplitude for suitable choices of parameters.
We also consider corrections to this analysis arising from the
inclusion of kinetic effects of the hot ion population introduced
by neutral beam injection (NBI), and discuss our attempts
to simulate the time of onset of this mode using a discharge
evolution transport code.

2. MHD stability

2.1. Equilibrium construction

We began our analysis with an LRDFIT equilibrium of NSTX
discharge 124379 at time 640 ms, approximately the time of

0029-5515/11/063027+06$33.00 1 © 2011 IAEA, Vienna Printed in the UK & the USA

http://dx.doi.org/10.1088/0029-5515/51/6/063027
http://stacks.iop.org/NF/51/063027


Nucl. Fusion 51 (2011) 063027 J.A. Breslau et al

Figure 1. (a) Diagram showing reconstructed island equilibrium and positions of USXR chords for NSTX shot 124379, t = 0.730.
(b) Comparison of simulated perturbed plasma state with and without (1, 1) component to measured multichord signal.

Table 1. Input parameters for the JSOLVER equilibrium calculation.

Major radius 0.8579 m
Minor radius 0.6022 m
Elongation 2.15
Triangularity 0.52
Toroidal field 0.4429 T
β0 ≡ 2µ0p0/B

2
0 0.54

q0 1.0–1.4

mode onset. This had βN = 3.33 and IP = 1 MA. In
order to conduct more systematic scaling studies to clarify
the physics of the mode, we also defined a parametrizable
family of analytic equilibria to be computed by the JSOLVER
code [3], an iterative fixed-boundary Grad–Shafranov solver
that computes ideal axisymmetric MHD equilibria for specified
analytic pressure and current profiles; it can be configured to
target a particular central safety factor q0, total plasma current
Ip or loop voltage V . Typical input parameters for the NSTX
equilibria are given in table 1.

The pressure profile was specified to bep(ψ̂) =p0(1−ψ̂),
where the radial coordinate ψ̂ is the normalized poloidal flux.
The current profile was given by

〈J · B〉
〈B · ∇ϕ〉

∝ (1 − ψ̂)4 (2.1)

which provides an extremely flat q profile in the centre;
additional off-axis current broadening terms taking the general
form J‖ ∝ [$2ψ̂(1 − ψ̂)]/[(ψ̂ − a)2 + $2] were added to
provide the slightly reversed shear profile shown in figure 2.

2.2. Ideal stability

Ideal stability of the JSOLVER equilibria were evaluated using
the PEST-1 code [4], which uses a variational method to

Figure 2. q profile of the analytic NSTX equilibrium computed by
JSOLVER after rescaling the field by a Bateman factor of 1.05.

minimize the Lagrangian for axisymmetric equilibria, yielding
eigenvalues and displacement eigenvectors for all unstable
modes. Only those equilibria found by PEST to be ideally
unstable to n = 1 modes but stable to n = 2, 3 were
retained for further analysis. These proved to be equilibria
with qmin slightly less than that of the experimental equilibrium
reconstruction but still slightly above unity, in the range
1.05–1.1. The most promising had q0 = 1.25, qmin = 1.074,
and a PEST n = 1 eigenvalue of λ = ω2τ 2

A = −4.56 × 10−3.
As a benchmark exercise, this equilibrium was also evaluated
with the nonvariational ideal stability code NOVA, and the
results were in agreement.

2.3. Resistive stability

Linear numerical analysis was also performed with the M3D
[5] and M3D-C1 [6] codes. Both are initial-value finite

2



Nucl. Fusion 51 (2011) 063027 J.A. Breslau et al

Figure 3. Resistivity dependence of scaling the n = 1 growth rate
with q0 for a family of TSC equilibria as computed by M3D-C1.

element fluid codes capable of solving the complete set of
resistive MHD equations using a stream-function/potential
representation of the poloidal velocity field and a vector
potential representation of the magnetic field. The relatively
new M3D-C1 code is fully implicit and uses a higher order and
more accurate set of basis functions, but to date lacks the ability
to perform 3D nonlinear simulations. Both codes possess the
ability to rescale their input equilibria taking advantage of the
fact that in the Grad–Shafranov equation

$∗ψ + µ0R
2 dp

dψ
= −F

dF

dψ
= −1

2
d

dψ
(F 2) (2.2)

the toroidal field F can be rescaled without changing the
toroidal current density or pressure profiles simply by scaling
its value at the boundary ψ̂ = 1 by Bateman factor ζ

[7] and then integrating F 2 into the axis using the existing
profiles. This has the effect of rescaling the q profile in a way
approximately proportional to ζ , and so is a convenient way
to perform a parameter scan in q0. When this is done with
the M3D-C1 code using the LRDFIT reconstruction of the
NSTX equilibrium, the results indicate that the equilibrium
is unstable to a very weakly growing resistive n = 1 mode
(which appears to be a ballooning mode), but that it is close
to marginal stability to an ideal mode with both m = 1 and
m = 2 components (figure 3). We find that the linear stability
properties and the nonlinear development of this mode depend
sensitively not only on the central value of the q profile, but also
on the central magnetic shear. If the shear is too low, higher
n modes become unstable before the n = 1 as the central q

value drops during the discharge evolution.
Growth rates and eigenmodes computed by M3D were

consistent with those found by M3D-C1 and, in the ideally
unstable regime, with PEST and NOVA. The unscaled
JSOLVER equilibrium described in section 2.2 (qmin = 1.074)
was predicted to have an n = 1 growth rate of γ τA =
4.1 × 10−2, where τA is the poloidal Alfvén transit time.

For ζ = 0.9 (qmin = 1.016), the growth rate increases to
5.6 × 10−2; while for ζ = 1.05 (qmin = 1.101, figure 2), γ τA
decreases to 1.9 × 10−2 and the eigenmode is as shown in
figure 4, predominantly 1,1 but with a 2,1 component. Such as
PEST and NOVA, M3D predicted the n = 2 and n = 3 modes
to be stable.

3. Nonlinear simulations with M3D

The linear n = 1 eigenmodes computed by the M3D code
for the respective Bateman-scaled JSOLVER equilibria were
scaled up to a perturbed kinetic energy of 5 × 10−8 in code
units and used as initial states for time-dependent nonlinear
three-dimensional calculations with the same code. Resistivity
profiles took the form η(x, t) = η0(T /T0)

−3/2 for various
choices of η0; viscosity was uniform at 5 × 10−4; thermal
conductivities were χ⊥ = 5 × 10−5 and χ‖ = 0.5; and a
parallel hyperviscosity of the form

∂V

∂t
= · · · − Hµ

∂4V

∂ϕ4
(3.1)

was imposed to prevent spurious nonlinear growth of the
high-n modes, with Hµ = 10−3. A time-centred version of the
implicit shear Alfvén operator [8] was employed to allow larger
time steps. Mesh resolution was 101 radial by 500 poloidal by
24 toroidal zones. A dealiasing filter retained only toroidal
modes n ! 7.

Nonlinear behaviour of a typical instability over the course
of 500 τA (a few hundred µs) is shown in figure 5. The n = 1
mode begins to grow at its linear rate, causing a 1,1 kink to
develop in the field structure. The mode quickly couples to
higher n modes. At some finite helical displacement, the mode
saturates—the magnetic energy stops growing and the kinetic
energy begins to decay—leaving the plasma in a state with
(2, 1) magnetic islands of some fixed size, in qualitative
agreement with the experimental discharge.

The dependence of the saturated state on equilibrium
properties and on resistivity was investigated in a set of
parameter scans, summarized in table 2. Because the n = 1
mode is ideal, the dependence of its growth rate on resistivity
was found to be weak. Reducing the resistivity does, however,
have a stabilizing effect on modes n " 5, suggesting that
the dominant mode may be driving a resistive ballooning
instability in this high-β case. The linear growth rate and final
vertical displacement of the axis (which are strongly correlated
with each other) show much higher sensitivity to δq = qmin−1.
This implies that quantitative validation with the experiment
will require a very precise measurement of the q profile at
mode onset. Little variation in saturated 2,1 island width was
detectable over the scanned parameter range.

4. Kinetic effects

4.1. Perturbative computations

To study the stabilizing effects of NBI ions on the n = 1 ideal
mode in NSTX, we use the perturbative code NOVA-K, which
computes quadratic form terms including beam ion particles

δK = δW ≡ δWMHD + δWkbeam, δK = ω2
∫

ρξ 2d3r

(4.1)
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Figure 4. Contours of the perturbed toroidal current density, pressure, vorticity, compressible velocity potential and toroidal velocity in the
n = 1 eigenmode computed by M3D for the reconstructed JSOLVER equilibrium (B = 1.05).

based on the n = 1 mode structure computed by the NOVA
code without fast particles. Unlike the ideal MHD case, where
δK ∼ ω2, the assumption that δK ∼ ω can be substituted,
which produces the following dispersion relation [9] to account
for the fast particle kinetic potential energy:

−iω
(

1 +
ω2

T

ω2
s − ω2

)
= γMHD

(
1 +

γbeam

γMHD

)
,

γbeam

γMHD
= RδWkbeam

δK
, (4.2)

whereω2
T = 2γsPcκ/ρ, ω2

s = (1/2)γsβcωA, κ is the curvature,
γs = 5/3 and ρ is the plasma mass density. One can
see that the real part of the fast particle contribution to the
potential energy RδWkh can give stabilization and is computed
in NOVA-K according to the following formula [10], which
includes particle finite orbit width (FOW) and finite Larmor
radius (FLR) effects:

δWkbeam = −(2π)2eαc

∫
dPϕ dµ dετb

×
∑

m,m′,l

X∗
m,l(ω − ω∗)Xm′,l

ω − ωd

∂Fbeam

∂ε
, (4.3)

where the integration is performed over the particle phase space
Pϕ , µ, ε in general tokamak geometry, τb is the particle bounce
time, Xm,l gives the wave–particle interaction power exchange,
Fbeam is the fast particle equilibrium distribution function,
ω∗ = −i(∂F/∂Pϕ/∂F/∂ε)(∂/∂ϕ), and ωd is the particle
toroidal drift frequency. One can see from equation (4.3) that
the condition ω < ωd is required for the mode stabilization
to occur. In other words, since the n = 1 mode frequency is
associated with plasma diamagnetic frequencyω∗ andωd ∼ ε,
particles should be energetic enough for ω∗ < ωd to provide
the stabilization.

4.2. NSTX simulations with NOVA-K

In these simulations we use the Lorentz form of the scattering
collision operator for the equilibrium distribution function
model [11], which is characterized by two parameters:
injection pitch angle χ0 = 0.55; and the width of the
distribution in pitch angle at the injection $χ = 0.3. We

also used the TRANSP-generated plasma profiles, which are
close to those used in the M3D simulations but more unstable.
In NOVA simulations with no-wall boundary conditions, only
the n = 1 mode was found to be unstable, which is consistent
with the M3D results.

Results of the simulations for beam ion stabilization are
summarized in figure 6. They are sensitive to the qmin of the
safety factor profile. At the inferred values of qmin = 1.25
the ideal mode is strongly unstable and the fast ions do not
contribute much to its stabilization. Only near the threshold of
the instability is the stabilizing effect from beam ions strong,
qmin = 1.53. Nevertheless, it seems that beam ions can play
an important role near the threshold of the instability via the
redistribution and affecting the beam contribution to the current
drive and to the q profile.

5. Discharge evolution

In order to see if we could predict the onset time of the mode,
we used the TSC free-boundary transport code [12] together
with the NUBEAM Monte Carlo neutral beam code coupled
through the CSWIM IPS framework [13]. A new option,
using TRXPL, allows us to import the density and/or pressure
profiles from a previous TRANSP run into the simulation and
to use these instead of the predictive profiles computed by
TSC. We find that if we import both the pressure and density
profiles, but use NUBEAM to compute the neutral beam
current drive, and TSC to compute the bootstrap current and
current profile evolution as well as the evolving equilibrium,
we can reproduce the onset time for the unstable mode to within
a few milliseconds. This gives some confidence that we can
predict the onset of a similar mode if it exists in ITER, given
a reliable model for density and temperature profile evolution
in that device.

6. Discussion

We have shown that the ‘triggerless’ tearing mode observed
in NSTX shot #124379 and others can be seeded by an ideal
n = 1 MHD mode that is destabilized as qmin → 1 during
the current ramp-up. Linear calculations demonstrate that this
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Figure 5. Nonlinear saturation of the ideal n = 1 mode in NSTX. (a) Kinetic and magnetic energy time histories by toroidal mode number.
(b) Poincaré plots of magnetic surfaces at ϕ = 0 in initial (t = 0), linearly growing (t = 100) and saturated (t = 250) states.

Table 2. Scaling of nonlinear saturation amplitude with qmin and η0.

Saturated 2,1
Vertical axis island width
displacement (normalized

qmin η0 γ τA (minor radii) flux units)

1.016 5 × 10−5 5.51 × 10−2 +0.822 3.118 × 10−2

1.074 5 × 10−5 3.45 × 10−2 +0.526 2.623 × 10−2

1.074 1.25 × 10−5 3.49 × 10−2 +0.538 2.810 × 10−2

1.101 5 × 10−5 1.79 × 10−2 +0.322 2.618 × 10−2

1.101 6.25 × 10−6 1.85 × 10−2 +0.358 2.882 × 10−2

mode has a 1,1 + 2,1 structure, in accord with the multichord
SXR measurements. The low central magnetic shear of the
equilibrium suggests that this is closely related to previously
identified ‘infernal’ modes [14, 15], which have a similar
character, and is likely the same as the ‘long-lived mode’
recently identified in MAST [16]. An alternate interpretation
of the linear results is that we are looking at a resistive infernal
mode [17], which has an ideal MHD character in the core
where the 1,1 component lies and a tearing character in the 2,1
sideband at the higher resistivity q = 2 surface.

In [2], it was reported that the onset threshold of the
‘triggerless’ NTM, unlike those triggered by ELMs and

Figure 6. Growth rate of ideal mode stabilized by beam ions in
NSTX. Experimental value of beam ion beta is βbeam = 10%.

energetic particle modes, was not sensitive to rotation shear
at the q = 2 surface. This is to be expected if the modes are
caused by this non-resonant mechanism. While the time and
space behaviour of the electron and ion thermal conductivities
remain a major source of uncertainty in this modelling, and
the simulation thus far lacks two-fluid or neoclassical effects,
we find that M3D can reproduce the experimentally observed
onset and nonlinear saturation of this mode with reasonable
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assumptions. We have not yet systematically assessed the
sensitivity of the mode structure to the device aspect ratio,
so it is unclear whether a similar phenomenon is likely to
be observed in ITER, for which A ≈ 3, far larger than for
the spherical torus. But the predictive capability we have
demonstrated for NSTX gives us some confidence that our
model is capable of predicting the onset of these modes in
ITER, should they exist.

In future work, we plan to delve further into the prediction
of the saturated 2,1 island width, investigating the dependence
of this quantity on the details of a wider range of equilibrium
profiles with plasma rotation added, including those in
which the n = 2 or 3 modes become unstable before the
n = 1, while incorporating more complete physical models
including kinetic effects of energetic particles in the nonlinear
simulations. Establishing the power-law-dependence of the
island growth rate on η should also help to clarify the regime
in which saturation occurs. It should also be instructive to
follow up on the high-n resistive modes seen in the nonlinear
results by checking for ballooning stability, and characterizing
its dependence on heat conduction near the plasma edge.
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