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Abstract
The application of non-axisymmetric magnetic perturbations has been demonstrated to destabilize edge-localized
modes (ELMs) in the National Spherical Torus Experiment. A model 3D equilibrium has been calculated for these
experiments using the VMEC code, which assumes nested flux surfaces and therefore that resonant perturbations
are shielded. First, a free-boundary equilibrium is calculated using the NSTX coil set, with pressure and current
profiles matched to a standard 2D reconstruction, but with up–down symmetry enforced. A new equilibrium is then
calculated with the n = 3 field applied at a level consistent with experiment. This equilibrium is then used as the
basis of further calculations using codes developed for analysis of stellarator plasmas. The neoclassical transport
due to the 3D fields is calculated to be small compared with the experimental transport rates. Initial stability analysis
has been performed, and indicates a modest degradation in ballooning stability with 3D fields applied. A new 3D
equilibrium is also calculated using the SIESTA code, which allows for the formation of islands and stochastic
regions. A comparison of the field structure between the SIESTA calculation and the assumption of fully penetrated
vacuum perturbation indicates smaller island sizes and very small stochastic transport in the SIESTA case.

(Some figures may appear in colour only in the online journal)

1. Introduction

While nominally axisymmetric, the effects of small 3D
magnetic perturbations have proven to have a strong impact
on the performance of tokamak plasmas. In particular,
the application of resonant magnetic perturbations has been
studied intensively recently [1–4], since this may provide a
means of controlling edge-localized mode (ELM) size [5] in
future large experiments such as ITER. While such 3D fields
have been observed experimentally to have a strong impact on
transport and stability, these effects are not well understood,
introducing significant uncertainty in extrapolating the use of
3D fields as control tools in large future devices.

The impact of 3D magnetic perturbations on plasma
behaviour in the National Spherical Torus Experiment [6] is

a case where experimental results are not well understood
theoretically. As will be shown, the result of applying n = 3
fields is the rather robust triggering of ELMs in otherwise
ELM-free H-modes [2, 7], with the change in stability only
partially explained by the observed pedestal profile changes.
The impact of n = 3 fields on pedestal transport and profiles is
less consistent, with the pressure gradient increasing in some
cases [2] and local flattening of the electron temperature and
density observed in others [8].

In this paper, we describe the application of stellarator
tools to help analyse these NSTX experiments. These
codes have been developed over several decades to study
the equilibrium, stability and transport properties in systems
that are inherently 3D, and so are well suited to analysing
the effects of 3D perturbations to tokamaks. The first step
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in these studies is the generation of 3D MHD equilibria
that include the non-axisymmetric perturbations. Here, two
types of equilibria are studied: an ideal 3D equilibrium with
closed flux surfaces (using the VMEC code [9]), and a quasi-
resistive equilibrium allowing for the possibility of magnetic
island formation (using the SIESTA code [10]). To facilitate
this work, several approximations are made as described in
more detail below. For example, the plasma is assumed
to be up–down symmetric, whereas the experiments deviate
somewhat from this symmetry (this approximation is required
by the transport and stability codes that couple to the VMEC
equilibrium, as well as by SIESTA). Another approximation
is made regarding the pressure and current profiles used in
the 3D modelling. In order to produce a VMEC equilibrium,
first a 2D plasma reconstruction generated using conventional
tokamak analysis tools must be transferred into an equivalent
VMEC calculation. While the highest-fidelity 2D plasma
reconstruction available at present was used to make this
transfer, the pressure and current profiles do not fully capture
the experimental pedestal structure. These approximations
prevent us from performing a comprehensive study of the
stability of the experimental plasmas. However, the resulting
model equilibria do allow the study of how properties change
when 3D fields are applied, which is the focus of this
paper.

Several codes are available that couple to the ideal
equilibrium from VMEC to calculate, e.g., neoclassical
transport and MHD stability in 3D fields. Two sets of
such calculations are presented here: the neoclassical flux
induced by the breaking of axisymmetry, and the stability to
infinite-n ballooning modes. As will be shown, the ripple-
induced neoclassical transport is negligibly small compared
with the experimental cross-field transport rates, so that this
transport mechanism should not impact the edge density and
temperature profiles. In addition, a preliminary analysis of
MHD stability shows that the 3D field application degrades
ballooning stability, but as will be argued the magnitude of
the stability change is small. In the future, this analysis will be
extended to include finite-n stability (more relevant for ELMs),
as well as edge pressure and current profiles more consistent
with experiment.

Finally, a new equilibrium calculated with the SIESTA
code, which allows for island formation, is studied. The
SIESTA equilibrium shows that, even though the applied
fields have strong resonant components, the islands produced
when plasma response is included and MHD equilibrium is
enforced are for the most part rather small. As a result, the
stochasticity of the magnetic field is small when compared with
that calculated using the vacuum perturbation fields without the
plasma response, and the related stochastic transport rates are
estimated to be small compared with experiment.

This paper is organized as follows. In section 2, a
brief review of the observations from ELM destabilization
experiments is given, along with simple estimates of the
stochastic transport rates calculated when the plasma response
is neglected. Section 3 describes the calculation of an ideal,
nested-flux-surface 3D equilibrium using the VMEC code.
The following two sections present calculations based on this
VMEC equilibrium, with neoclassical transport addressed in
section 4 and ballooning stability in section 5. The calculation
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Figure 1. Time traces of (a) line-averaged electron density,
(b) plasma stored energy, (c) current in perturbation coils, and
(d)–(f ) divertor Dα emission during control discharge (solid black),
with n = 3 field applied (red/dashed), and with n = 3 applied with
phase shifted by 60◦ (blue/dotted–dashed).

of a new equilibrium with SIESTA, allowing for the presence
of islands, is presented in section 6. Section 7 contains a
discussion of the results obtained to date, and a description
of further research plans.

2. Overview of ELM-triggering experiments in
NSTX

The triggering of ELMs by magnetic perturbations has been
robustly observed in NSTX. An example is shown in figure 1,
where in the control case without applied 3D fields the plasma
shows a long phase free of large ELMs. With an n = 3
field applied, ELMs are destabilized, with several ELMs
occurring in the presence of the static perturbation. Similar
destabilization is also observed when a perturbation of the
opposite phase is applied. This destabilization of ELMs during
otherwise ELM-free phases is routinely observed in NSTX
when sufficiently strong n = 3 fields are applied. This includes
plasmas where thick layers of lithium are deposited on the
PFCs prior to the discharge [11]. These coatings result in a
relaxation of the pedestal profile [12], which makes the edge
strongly stable to ELMs [13]. Even with the stabilizing effect
of lithium, 3D fields destabilize ELMs, and pulsed n = 3 fields
have been used for ELM pacing to control impurity content
during these discharges with lithium coated PFCs [14].
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Figure 2. (a) Perturbation coil current (dashed) and Dα (solid), with profile measurement times indicated by vertical lines, (b) electron
density and (c) temperature profiles without (black) and with (red) 3D field applied with no lithium coatings. (d)–(f ) same, but with lithium
coatings, with an additional time point shown just prior to ELM onset (blue).

The effect of 3D fields on pedestal transport and structure
is less consistent than the ELM-triggering effect. Panels
(b) and (c) of figure 2 show pedestal profiles during initial
experiments testing the effects of 3D fields that were performed
without any lithium coatings [2]. These profiles combine data
from several time slices and multiple shots; these time slices
are indicated by the vertical lines in panel (a) (with colours
corresponding to those of the profiles), which also shows the
timing of the profile measurements relative to the 3D field
application and ELM onset. In this case, the density profile
is largely unchanged; ‘density pumpout’, which has been
seen on other experiments during RMP application [15, 16],
is generally not observed on NSTX (a second example can
be seen in figure 1, where the line-averaged density evolution
is unchanged by the applied 3D field). The pedestal electron
temperature, on the other hand, increases with the 3D field
applied. This gives an increase in the pedestal pressure
gradient, which was calculated to be sufficient to destabilize
peeling–ballooning modes [2]. However, in later experiments,
similar profile measurements were repeated in discharges with
lithium coated plasma PFCs, and this increase in the edge Te

was not observed. Instead, as shown in panels (d)–(f ) of
figure 2, a local flattening is seen in the region from ψN ∼ 0.8–
0.9, in both the electron density and temperature. The profiles
outside of ψN ∼ 0.9 are not strongly affected by the 3D
fields. Even though the pressure gradient is not increased

in this case, ELMs are still destabilized, suggesting a more
universal cause than the pressure steepening to which the
triggering was originally attributed. Thus, the modifications to
the pedestal profiles induced by the 3D fields and the changes
to ELM stability remain poorly understood. The case without
any lithium coatings is the focus of the studies presented in
this paper. Note that in all cases a reduction in toroidal
rotation is observed across the plasma profile, as expected from
neoclassical toroidal viscosity [17, 18].

2.1. Estimates of stochastic transport

For later comparisons with models that include plasma
response, estimates have been made of the stochastic transport
in the case that this response is neglected. The simple
superposition of the 2D equilibrium magnetic field with
3D vacuum fields from the perturbation coils (the so-called
‘vacuum paradigm’ [19]) predicts a high level of stochasticity
[7]. This can be seen by estimating the expected effect
of the stochastic transport, which is based on the field line
diffusivity calculated as DFL = 〈(�r)2〉/2L, where �r is
the radial excursion of a field line in a step of distance L

along the field line [20]. DFL is calculated using the vacuum
perturbation, and then used in conjunction with the plasma
kinetic profiles to estimate the stochastic particle and electron
thermal diffusivities D and χe. These are then compared with
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Figure 3. Profiles of (a) electron thermal and (b) particle diffusivity
due to stochastic transport (dashed black/red) and inferred from 2D
modelling of experiment (solid blue).

the values inferred from experiment, which are obtained by
2D interpretive modelling of the edge plasma [21] using the
SOLPS [22] suite of codes, which allows a self-consistent
treatment of the scrape-off layer plasma and recycling neutrals
(this method has been successfully benchmarked against
several other approaches to determine transport coefficients
at the plasma edge [23], although uncertainty in the fraction
of power carried by different particle species can have large
(∼50%) effects on the inferred heat transport rates).

A simple estimate of the stochastic transport of electron
heat in the absence of collisions is made by multiplying the
magnetic diffusivity by the electron thermal velocity [24]. This
yields a thermal diffusivity that is much larger than the value
from SOLPS modelling across the plasma radius, as shown
in figure 3. At high collisionality, the stochastic thermal
diffusivity can be reduced from this collisionless level [25].
Even with the collisional factor accounted for, however, the
stochastic electron thermal diffusivity is large compared with
the SOLPS values in the pedestal region, which extends from
ψN = 0.92–1.0. The situation is similar for particle transport.
A rigorous derivation of the particle transport requires an
accounting of the ambipolar radial electric field, since the
electrons will tend to stream radially along open field lines
more quickly than ions. This will drive the electric field
positive, which will tend to reduce the electron particle flux
down to the level of the slower ions. The impact of stochasticity
on the radial electric field has been shown experimentally; see,
e.g., [26]). A rough estimate of the ambipolar flux can be

made by multiplying the field line diffusivity by the plasma
sound speed cs = √

(Te + Ti)/mi. Indeed, a related model
has been successful in reproducing the density profile changes
measured in RMP experiments at DIII-D [27]. This estimate
yields particle transport rates that are larger than the values
inferred from edge modelling in the pedestal region (panel (b)
of figure 3). These admittedly simple estimates of stochastic
transport (more rigorous calculations using 3D fluid transport
modelling is underway [28]) indicate that, if this field were
present in experiment, the 3D fields should have an impact
on the edge profiles—especially Te. However, as shown in
figure 2, strong changes are not seen. These observations
indicate that the plasma response to the applied perturbations
cannot be neglected, and is likely to result in a reduction in the
stochasticity of the magnetic field. An analysis of the nonlinear
plasma response can be performed, at least approximately,
using the 3D equilibrium codes described below.

3. Generation of 3D equilibrium

The first step in analysing the NSTX experiments using
stellarator codes is to generate a 3D equilibrium using the
VMEC code. VMEC uses a variational approach to minimize
the total plasma energy

W =
∫ ( |B|2

2µ0
+

p

γ − 1

)
d3x,

where γ is the adiabatic index, yielding a solution to ideal
MHD force balance F = J × B − ∇p = 0. VMEC is fully
three-dimensional with no restrictions on symmetry, and can be
used either in fixed or free-boundary mode. The magnetic field
is assumed to take a Clebsch form [29]. An inverse coordinate
representation [30] is used in which the cylindrical coordinates
R(s, θ, φ), Z(s, θ, φ), are treated as the dependent variables
in the variation of W , while the flux coordinates (s, θ, φ) are
treated as independent variables. Here s is a flux surface label
(normalized toroidal flux is used in VMEC), and θ and φ are
poloidal and toroidal angles, respectively. The method used in
VMEC requires nested magnetic flux surfaces, and cannot treat
islands or stochastic regions. VMEC therefore solves for the
ideal 3D equilibrium, with current sheets at rational surfaces
perfectly cancelling any resonant components in the 3D field.
In this sense the VMEC equilibrium gives the magnetic field
assuming perfect shielding of the perturbation, e.g. by plasma
rotation [31] (although VMEC does not include rotation in the
force balance equation).

Before generating a 3D equilibrium, the profiles of
pressure and safety factor arising from a 2D equilibrium
reconstruction are transferred in to VMEC. The 2D Grad–
Shafranov solution is calculated using the LRDFIT code5,
which is constrained by several measurements including
external magnetics, magnetic pitch angle measured by a
motional Stark effect [32] diagnostic and corrected for the
radial electric field, and with a Te isotherm constraint that
requires that the temperature measured by Thomson scattering
[33] be the same on a flux surface on the inner and outer
side of the midplane. This is the most highly constrained
reconstruction available, but it is not constrained directly by

5 http://w3.pppl.gov/∼jmenard/software/lrd?t/lrd?t-index.htm
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Figure 4. Edge profiles of (a) pressure gradient and (b) safety factor
and shear from the 2D reconstruction usde here (black) and the
measured pressure profile and inferred bootstrap current included
(red).

the measured kinetic plasma profiles, and the edge current is
not constrained to be consistent with the calculated bootstrap
current; these are generally needed to accurately calculate
the peeling–ballooning stability [34]. While fixed-boundary
equilibria are available for these discharges that include these
edge constraints (but fewer overall constraints), at present
these cannot be transferred into VMEC due to a lack of fast
ion pressure (which contributes substantially to the total β in
NSTX [35]), without which the position of the plasma cannot
be reproduced. A comparison of the edge pressure gradient,
safety factor q, and magnetic shear s = (r/q)(dq/dr) from the
2D reconstruction used as the basis of the analysis here (black
curves), and the same values using the measured pressure
profile and inferred bootstrap current (red curves) is shown
in figure 4. The reconstruction used here overestimates the
pressure gradient over most of the plasma edge, except near
the pedestal top at ψN ∼ 0.93, where the experimental gradient
is ∼10% larger. The safety factor used in these studies is very
similar to that obtained when the edge bootstrap current is
included, and the reconstructed magnetic shear is ∼10–15%
larger than with the bootstrap current.

Since the goal of this work is to study the change in
plasma properties when 3D fields are applied (especially large
changes, rather than subtle effects) and not to explain the
behaviour of any single case, this reconstruction is considered
sufficiently close to the measured edge profiles to serve as a
useful starting point for the studies presented here. Further, the

Figure 5. Plasma boundaries from LRDFIT and VMEC codes, and
poloidal coil set used in the free-boundary calculations.

robustness of the results to the edge profiles has been checked
by generating a new set of VMEC equilibria in which the
edge pressure and safety factor have been altered to better
match the measurements (the plasma position in this case
departs from experiment, with the boundary being shifted on
the order of centimetres). Using the altered profiles yields
qualitatively similar results for the subsequent transport and
stability calculations, and does not change the conclusions
drawn. Therefore, in all calculations presented here, the
profiles from the 2D reconstruction shown in black in figure 4
are used. When available, higher fidelity reconstructions
including the edge kinetic profiles and bootstrap current will
be used to improve on this aspect as part of future research,
which will allow a more comprehensive study—in particular
of the plasma stability—than is presented here.

To compare the VMEC and LRDFIT equilibria, VMEC is
first run in a 2D mode with no non-axisymmetric perturbations
applied. The pressure and safety factor profiles are read from
the LRDFIT output and used as input to VMEC, but are
truncated at ψN = 0.995 to avoid the X-point. VMEC is
then run in free-boundary mode, using the experimental coil
currents and positions. Although it is not required for VMEC,
the code is run in a mode where ‘stellarator symmetry’ is
enforced (in the 2D case, this requires up–down symmetry);
this is often required in other codes that use the VMEC
equilibrium, and so is enforced here so that these codes can be
used to calculate, e.g., the neoclassical transport and stability
properties of the equilibrium as described below. This is not
viewed as a strong limitation, as the deviation from up–down
symmetry is small (see figure 5), and the triggering of ELMs
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by 3D fields is robust to small shape changes such as this. The
calculated boundary shapes are shown in figure 5, and show
that the VMEC calculation reproduces the LRDFIT boundary
to within the constraint of up–down symmetry (note that the
VMEC boundary is equivalent to the ψN = 0.995 contour from
LRDFIT, due to the truncation of the equilibrium).

Next, a new VMEC equilibrium is calculated which
includes the 3D non-axisymmetric magnetic field produced
by the perturbation coil set. The perturbation coils are added
in the free-boundary VMEC, using a coil current consistent
with experiment. VMEC is then rerun using the same profiles
of pressure and safety factor as in the 2D case, yielding a
new equilibrium that includes the contribution of the 3D fields.
The use of the same pressure and safety factor profiles is not
justified by experiment, but allows the effect of the 3D fields,
which is the emphasis of this paper, to be isolated from profile
changes (which are inconsistent, as described in section 2).
This process yields two VMEC cases for use in further analysis:
one with 3D fields, one without them; these will both be
analysed to study the effect of the 3D field on the predicted
plasma properties.

4. Neoclassical transport due to 3D fields

The VMEC equilibrium including the 3D perturbation has been
used as the basis of neoclassical transport calculations. The
breaking of axisymmetry leads to an increase in neoclassical
transport at low collisionality [36]. This can be calculated
accurately using codes developed for stellarators, where
accurate values for the 3D neoclassical transport are needed
for the interpretation and design of experiments. To calculate
the neoclassical transport, the Boozer magnetic spectrum [37]
is calculated. The largest n �= 0 spectral terms are shown in
figure 6 for the NSTX 3D field applied case, and are on the
order of several 10−4 of the total magnetic field. The radial
profiles of the spectral components are strongly affected by the
shielding currents, which arise at rational surfaces and force
the normal component of resonant perturbations to be zero on
these surfaces (in the ideal MHD model). This results in non-
monotonic radial profiles of the resonant perturbations [38],
and similarly affects the radial structure of the Boozer spectrum
as shown in figure 6(a).

The neoclassical transport induced by the 3D fields can be
calculated quickly for the 1/ν regime using the NEO code [39].
This uses a field line tracing technique to give a semi-analytic
value of the ‘effective ripple’ [40] εeff , which can be used to
calculate the transport in the 1/ν regime, where the fluxes scale
as ε

3/2
eff . The radial profile of εeff as calculated by NEO is shown

in figure 6(b), and the corresponding diffusion coefficient as
a function of collisionality on a single surface is shown in
panel (c). For reference, the effective ripple in a conventional
stellarator is often on the order of 10% [40], and in optimized
stellarators is typically ∼1% [41, 42]. Compared with these,
the ripple in the NSTX 3D case is rather small, being <0.5%
at the plasma edge.

As an initial estimate of the neoclassical fluxes due to
the perturbed field, the effective ripple is used to calculate
the 1/ν radial particle and heat fluxes. In principle, the radial
electric field Er must be accounted for to accurately calculate
neoclassical transport, since transport rates depend sensitively

Figure 6. Profile of (a) 10 largest non-axisymmetric spectral terms
and (b) effective ripple; (c) NEO (solid black) and DKES (red
points) calculated diffusion coefficients (DKES Er values are
Er/v = 0,10−5, 3 × 10−5, 10−4, 3 × 10−4 and 10−3).

on Er , which can change the collisionality dependence and
strongly decrease transport. This is typically done by
calculating the ‘ambipolar’ Er , which yields zero radial charge
flux [43]. However, the 1/ν transport regime (neglecting
the effect of Er ) is useful to consider on its own, since this
gives the largest neoclassical transport rates. As a further
approximation, only the electron transport is considered. The
motivation for this is that the effect of Er is stronger for
ions, and will generally act to reduce the ion particle flux
to the electron level in order to maintain ambipolarity [44]
(exceptions to this case exist [45]; however, these ‘electron
root’ scenarios are typically only observed when εeff is large
or when Te � Ti, neither of which is true for NSTX plasmas).
Hence, electrons control the total particle transport rate, and
by calculating the maximum electron flux one gets a useful
measure of how large the total ripple particle flux can be.

The resulting radial electron energy and particle fluxes
are shown in figure 7, along with the fluxes from the SOLPS

6



Nucl. Fusion 52 (2012) 054004 J.M. Canik et al

Figure 7. Neoclassical and SOLPS profiles of (a) particle and
(b) electron heat fluxes.

modelling of these experiments. The neoclassical particle
and energy fluxes are both much less than the SOLPS values,
by nearly two orders of magnitude. Inclusion of the effects
of Er will further reduce �neo. Thus, it does not appear
that neoclassical transport due to the 3D field is sufficient
to measurably increase transport in the pedestal; this is
consistent with the lack of transport increase that is measured
in experiment. It should be noted that ion neoclassical effects,
while not considered here, are likely to be important. These
have been studied previously, and for example have been
shown to be important for understanding plasma rotation
[17, 18].

Although the 3D neoclassical flux is apparently negligible
in present NSTX experiments, the collisionality in these
experiments is quite high (normalized collisionality ν∗ ∼ 2
in the case being discussed [2]), which suppresses the 1/ν
flux. In contrast, strong density pumpout has been observed in
DIII-D experiments at the much lower, more ITER-relevant
collisionality of ν∗ ∼ 0.1 [1]. Further, density pumpout
in DIII-D experiments has been observed to become more
pronounced at low collisionality [15]. It may be the case
that in the neoclassical fluxes are more important in these
low-collisionality experiments than in the NSTX discharge
analysed here. The neoclassical fluxes may also become large
enough to be experimentally relevant in the NSTX Upgrade,
which has a goal of operating at reduced collisionality [46].
Since the transport coefficients in the 1/ν regime scale as
D ∼ T 7/2/n [47], if experiments in the NSTX Upgrade were
able to achieve three times higher pedestal temperature and half
the density (bringing n, T and ν∗ in line with those of the DIII-
D experiments discussed in [1]), the 3D neoclassical transport
would be increased by two orders of magnitude compared with
the levels shown in figure 7. Whether these plasma conditions
can be attained remains to be seen.

Figure 8. Ballooning growth rates calculated for 2D equilibrium
(black), 3D (red) and 2D with pressure increased by 2% (blue).

In such a case where 3D neoclassical transport is likely to
be important, a more accurate calculation including the effect
of Er would be necessary. This can be accomplished using
the DKES code [48], which calculates the full neoclassical
transport matrix for arbitrary magnetic spectrum. This code
can be used to build a database of transport coefficients
over a range of radial flux surface, collisionality, and radial
electric field (an example is shown for a single flux surface
in figure 6(c)). A further necessity for the tokamak case
is to make corrections for momentum conservation. DKES
(along with stellarator transport codes in general) do not use
momentum conserving collision operators, and as a result
do not recover the intrinsic ambipolarity of the neoclassical
fluxes in an axisymmetric system. Recently, codes have been
developed that correct for this [49, 50], which is likely to be
important for correctly calculating the neoclassical ambipolar
electric field in a perturbed tokamak.

5. Ballooning stability without and with 3D fields

Since the application of 3D fields to NSTX H-mode plasmas
destabilizes ELMs, a long-term goal of this research is to
study how the MHD stability properties of the 3D equilibrium
differ from those of the 2D case. As discussed above, the
edge profiles used in this work differ somewhat from the
experimental values (see figure 4), and so at present this can
only be accomplished in a preliminary sense. Even so, stability
calculations based on these profiles can still be useful for
estimating the magnitude of the change in stability properties
due to 3D fields, even if the stability of the experimental profiles
cannot be directly addressed. To this end, an initial study
has been performed using the COBRA code [51, 52], which
calculates the stability of the VMEC-calculated equilibrium
against ballooning modes [53]. Note that in principle, changes
to the local curvature and shear of the magnetic field in
the presence of stochasticity could affect ballooning stability.
However, at present COBRA can only treat the nested-surface
magnetic fields as calculated by VMEC, and so cannot analyse
these effects in a stochastic field. The results of the COBRA
calculation are shown in figure 8, which shows the growth
rate for both the 2D case and the case with 3D fields applied.
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COBRA calculates a local growth rate [54]; the maximum
is shown in figure 8. The position of maximum growth rate
is at the outer midplane for both the axisymmetric and non-
axisymmetric cases, while the non-axisymmetric case shows
in addition a toroidal dependence that follows the n = 3
periodicity of the applied field.

The calculation using the 2D equilibrium shows a region
near the plasma edge with positive growth rates, indicating
instability. This is seemingly at odds with the fact that the
plasma is ELM-free in experiment, and does not appear to be
simply due to the mismatch of the edge profiles used here
with those measured (calculations based on equilibria with
the edge profiles altered by hand to better match experiment
also show this region of instability with similar growth rates,
although the width of the unstable region is reduced by a factor
of ∼2). However, this disagreement between experiment and
calculation is likely in part due to only infinite-n stability being
considered. Peeling–ballooning modes, which are believed to
be responsible for ELMs, are most unstable at intermediate
n [34], and so finite-n stability must be considered in order
to precisely calculate the stability boundary. Indeed, recent
analysis of MAST experiments has shown that the pedestal
is calculated to be unstable to infinite-n ballooning modes
during the period between ELMs, even though the pedestal
is experimentally stable [55]. This disagreement is resolved
by finite-n calculations, which show stable conditions until
just prior to ELM onset. When improved reconstructions
with experimentally matched edge profiles become available
for the NSTX experiments, studies of finite-n stability will
be undertaken. This can be accomplished using other codes
developed for stellarators (e.g. the ideal MHD stability code
TERPSICHORE [56, 57]), which are capable of assessing low-
n stability based on VMEC equilibria.

In the meantime, the change in infinite-n ballooning
stability caused by 3D fields can be studied by performing
similar COBRA calculations for the equilibrium including
the 3D perturbation. As figure 8 shows, with the 3D fields
applied the region of instability is enhanced, with both the
growth rate within and the radial extent of the unstable
region increasing (this change in growth rates is also observed
with the altered edge profiles described above). To gauge
the magnitude of the change in stability caused by the 3D
fields, a second axisymmetric equilibrium has been studied,
with the pressure increased by 2%. The ballooning growth
rate profile for this case is also shown in figure 8, and is
similar to the growth rates for the 3D case (without any
pressure scaling). Similarly, reducing the pressure by 2%
with 3D fields applied results in similar growth rates (not
shown) to the axisymmetric case. This indicates that the
stability degradation induced by the 3D field is relatively weak,
and would be easily overwhelmed by small changes to the
pressure profile. This is consistent with the expectation that
non-axisymmetric shaping sufficient to strongly alter stability
properties requires significantly larger perturbations than the
δB/B ∼ 10−3 applied here [58]. Further, we note that ELM
destabilization is also observed during lithiumized ELM-free
H-modes [2]. While calculations have not yet been performed
for the lithiumized discharges shown in figure 2, the peeling–
ballooning stability of other lithiumized discharges has been
studied using the ELITE code [34], showing that the plasma is

far from the peeling–ballooning stability boundary (see the
calculated stability diagram shown in [13], [59]]). In this
case, one would expect that small changes to stability such as
those calculated here would likely not be sufficient to reach the
stability boundary. To test this intuition and explore this regime
directly, calculations for experiments starting from lithiumized
ELM-free H-mode plasmas, including finite-n stability, will be
the focus of future research.

6. Calculation of equilibria with islands with the
SIESTA code

A new finite-pressure 3D equilibrium without the restriction
of nested flux surfaces has been calculated using the SIESTA
code. The SIESTA calculation is based on the VMEC
equilibrium, which provides the background coordinate system
as well as an initial guess for the equilibrium. Like VMEC,
SIESTA also seeks to minimize the total MHD energy.
However, SIESTA does not require the magnetic field to be
represented in a Clebsch form or use the inverse representation,
but instead solves directly for the pressure and magnetic
field perturbations in a general form consistent with particle
conservation and Faraday’s law. This technique allows the
code to treat arbitrary magnetic fields without requiring nested
flux surfaces, making SIESTA capable of calculating an MHD
equilibrium that includes islands and stochastic regions.

SIESTA interleaves ideal and resistive iterations in its
solution procedure. During the resistive steps, an artificially
large resistivity is added to dissipate the current sheets present
at rational surfaces that prevent island formation. In this sense,
the SIESTA solution models the magnetic fields assuming full
penetration of the magnetic perturbation, as it seeks to fully
dissipate the shielding currents. However, unlike the vacuum
paradigm, SIESTA includes the nonlinear plasma response
(due to finite pressure) and enforces that the final magnetic field
satisfy nonlinear MHD force balance. At present, SIESTA
is limited to fixed-boundary solutions (with the boundary
given by the VMEC 3D equilibrium), and requires stellarator
symmetry. These are not fundamental limitations, however,
and will be addressed in future versions of the code.

A Poincaré plot using the SIESTA-calculated magnetic
field is shown in figure 9, along with a similar plot using
the vacuum paradigm for the magnetic perturbation. The
SIESTA equilibrium shows magnetic islands at the same radial
locations as the vacuum perturbation, as expected since both
calculations have the same safety factor profile. However, the
islands in the SIESTA case are often significantly smaller,
especially towards the plasma edge. The SIESTA solution
shows much less island overlap at the plasma edge compared
with the vacuum paradigm, and as a result the calculated
field line diffusivity using the SIESTA magnetic field is much
lower. The resulting stochastic transport rates using the
SIESTA fields are similarly reduced, to a level below the
values inferred from edge modelling (figure 10). This suggests
that the plasma response, even without invoking rotational
shielding, prevents edge stochasticity and may explain the lack
of increase in electron heat transport. However, it should
be noted that these edge islands are likely to be strongly
influenced by the boundary conditions used; free-boundary
SIESTA calculations will be necessary to explore this effect

8



Nucl. Fusion 52 (2012) 054004 J.M. Canik et al

Figure 9. Poincaré plots using the (a) vacuum perturbation
superposed on 2D equilibrium and (b) SIESTA magnetic fields and
(c) magnetic field line diffusivity using vacuum perturbation (blue)
and SIESTA (red) fields.

further. In addition, the SIESTA field shows large core islands
that experimentally do not appear to be present (based on
temperature profiles), indicating that rotational screening of
those core islands remains a strong effect.

7. Discussion

An initial analysis of ELM destabilization experiments using
3D fields in NSTX has been performed using tools developed
for stellarators. The basis of these calculations is a pair of
free-boundary VMEC equilibria: a 2D case, where the plasma
boundary from a 2D reconstruction has been reproduced, and a
3D case that includes the magnetic fields from the perturbation
coils. While the underlying cause of the ELM triggering has so

Figure 10. Profiles of (a) electron thermal and (b) particle
diffusivity due to stochastic transport using SIESTA magnetic field
(dashed black) and inferred from 2D modelling of experiment (solid
blue).

far not been revealed, several properties of the 3D equilibrium
have been studied, with quantification of some of the 3D field
effects.

These studies offer some clues to why the experimental
edge profiles are not strongly affected by the 3D fields.
First, neoclassical transport induced by the non-axisymmetric
magnetic field appears to be negligible in present experiments,
so that this transport mechanism is too weak to affect the
profiles. Further, a SIESTA equilibrium calculation shows
that the edge islands are small in the 3D case, with essentially
no stochastic transport expected. However, these calculations
are fixed-boundary (so that the effects of the 3D coils are
not entirely self-consistent and are only described by the 3D
VMEC boundary), and do not include rotational screening
effects on the perturbations. The importance of screening
is evident, for example, in the core islands in the SIESTA
calculations whose presence is not supported by experiment.
Nonetheless, these calculations are useful for giving an
estimate of the maximum stochasticity that can be expected
if the perturbations are not screened but fully penetrate the
plasma, and it is found that the plasma response has a strong
attenuating effect on the perturbations apart from screening.

The plasma stability, which experimentally is consistently
and strongly modified by 3D fields, has not been fully
addressed here, with a comprehensive analysis being left to
future research. However, an initial study has shown that
infinite-n ballooning stability is modestly degraded by the
application of 3D fields, but that the magnitude of this effect is
small and can be dominated by small changes to the pressure
profile. This suggests that the modification of the stability
boundary by 3D fields is too small to explain the observed
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triggering, but further calculations are required to test the
changes at finite-n.

Several extensions of this work are planned for future
research. As described above, a primary focus will be an
extension of the stability studies. Calculation will be made
of the stability properties of the 3D VMEC equilibrium at
low to intermediate n, to study the more relevant peeling–
ballooning stability in addition to the pure ballooning stability
presented here. Higher fidelity kinetically constrained 2D
equilibria, when available, will serve as the starting point
for these calculations, so that the edge pressure gradient and
current profiles are in better agreement with experiment. In
addition, more discharges in which ELM destabilization has
been observed will be analysed. This process will allow more
accurate, experimentally relevant calculations of the stability
of these plasmas, and a more conclusive determination of the
effects of 3D fields to be made.

The SIESTA calculations will also be extended to
additional discharges, in part to test whether the reduction
in island size by the nonlinear plasma response is a possible
contributor to the lack of profile response observed, and
whether the calculated islands can also explain experiments
where local flattening is observed. In order to be conclusive,
these results will need to be augmented by calculations
using 3D MHD codes that include rotational effects [60,
61]. Finally, further development of the codes used in
this study is anticipated, and will allow further physics
investigations as new capabilities become available. For
example, a free-boundary version of SIESTA would allow
a more self-consistent calculation of the effects of the
perturbation. Another possible new avenue is exploration of
how stochasticity directly affects the MHD stability properties,
as opposed to changes due to magnetic flux surface shaping and
profile modification. This is outside the capabilities of present
codes, but could possibly be accomplished by, e.g., coupling
COBRA to the SIESTA equilibrium.

Acknowledgments

This research was supported by the US Department of Energy,
Contracts DE-AC05-00OR22725, DE-AC02-09CH11466 and
DE-FG02-99ER54524.

References

[1] Evans T.E. et al 2008 Nucl. Fusion 48 024002
[2] Canik J.M. et al 2010 Phys. Rev. Lett. 104 045001
[3] Kirk A. et al 2010 Nucl. Fusion 50 034008
[4] Liang Y. et al 2007 Phys. Rev. Lett. 98 265004
[5] Evans T.E. et al 2004 Phys. Rev. Lett. 92 235003
[6] Ono M. et al 2000 Nucl. Fusion 40 557
[7] Canik J.M. et al 2010 Nucl. Fusion 50 034012
[8] Ahn J.-W. et al 2010 Nucl. Fusion 50 045010
[9] Hirshman S.P. et al 1986 Comput. Phys. Commun. 43 143

[10] Hirshman S.P., Sanchez R. and Cook C.R. 2011 Phys. Plasmas
18 062504

[11] Bell M.G. et al 2009 Plasma Phys. Control. Fusion 51 124054
[12] Canik J.M. et al 2011 Phys. Plasmas 18 056118
[13] Maingi R. et al 2009 Phys. Rev. Lett. 103 075001
[14] Canik J.M. et al 2010 Nucl. Fusion 50 064016
[15] Unterberg E.A. et al 2009 J. Nucl. Mater. 390–391 486
[16] Alfier A. et al 2008 Nucl. Fusion 48 115006
[17] Park J.-K. et al 2009 Phys. Plasmas 16 056115
[18] Zhu W. et al 2006 Phys. Rev. Lett. 96 225002
[19] Schmitz O. et al 2008 Plasma Phys. Control. Fusion

50 124029
[20] Yan L. et al 2006 Nucl. Fusion 46 858
[21] Canik J.M. et al 2011 J. Nucl. Mater. 415 S409
[22] Schneider R. et al 2006 Contrib. Plasma Phys. 46 3
[23] Callen J.D. et al 2010 Nucl. Fusion 50 064004
[24] Rechester A.B. and Rosenbluth M.N. 1978 Phys. Rev. Lett.

40 38
[25] Joseph I. et al 2008 Nucl. Fusion 48 045009
[26] Coenen J.W. et al 2011 Nucl. Fusion 51 063030
[27] Mordijck S. et al 2010 Nucl. Fusion 50 034006
[28] Lore J.D., Canik J.M., Feng Y., Feng J.-W., Maingi R. and

Soukhanovskii V. 2012 Nucl. Fusion 52 054012
[29] D’haeseleer W.D., Hitchon W.N.G., Callen J.D. and Shohet

J.L. 1991 Flux Coordinates and Magnetic Field Structure
(Berlin: Springer)

[30] Hirshman S.P. et al 1983 Phys. Fluids 26 3553
[31] Waelbroeck F.L. 2003 Phys. Plasmas 10 4040
[32] Levinton F. and Yuh H. 2008 Rev. Sci. Instrum. 79 10F522
[33] LeBlanc B.P. et al 2003 Rev. Sci. Instrum. 74 1659
[34] Snyder P.B. et al 2002 Phys. Plasmas 9 2037
[35] Fredrickson E.D. et al 2006 Phys. Plasmas 13 056109
[36] Galeev A.A. and Sagdeev R.D. 1977 Reviews of Plasma

Physics vol 7, ed M.A. Lentovich (New York: Consultants
Bureau) p 307

[37] Boozer A.H. 1982 Phys. Fluids 25 520
[38] Park J.-K. et al 2007 Phys. Plasmas 14 052110
[39] Nemov V.V. et al 1999 Phys. Plasmas 6 4622
[40] Beidler C.D. and Hitchon W.N.G. 1994 Plasma Phys. Control.

Fusion 36 317
[41] Canik J.M. et al 2007 Phys. Plasmas 14 056107
[42] Reiman A. et al 2005 Nucl. Fusion 45 360
[43] Mynick H.E. and Hitchon W.N.G. 1983 Nucl. Fusion 23 1053
[44] Hastings D.E. et al 1985 Nucl. Fusion 25 445
[45] Maassberg H. et al 2000 Phys. Plasmas 7 295
[46] Menard J.E. et al 2010 Proc. 37th EPS Conf. on Plasma

Physics (Dublin, Ireland, 21–25 July 2010) P.2-106
http://ocs.ciemat.es/EPS2010PAP/pdf/P2.106.pdf

[47] Maassberg H., Beidler C.D. and Simmet E.E. 1999 Plasma
Phys. Control. Fusion 41 1135

[48] van Rij W. and Hirshman S.P. 1989 Phys. Fluids B 1 563
[49] Sugama H. and Nishimura S. 2002 Phys. Plasmas 9 4637
[50] Spong D.A. 2005 Phys. Plasmas 12 056114
[51] Sanchez R. et al 2000 J. Comput. Phys. 161 576
[52] Sanchez R. et al 2001 Comput. Phys. Commun. 135 82
[53] Connor J.W., Hastie R.J. and Taylor R.B. 1979 Proc. R. Soc.

Lond. A 1 365
[54] Cuthbert P. and Dewar R.L. 2000 Phys. Plasmas 7 2302
[55] Dickinson D. et al 2011 Plasma Phys. Control. Fusion

53 115010
[56] Anderson D.V. et al 1990 J. Supercomput. Appl. 4 34
[57] Cooper W.A., Singleton D.B. and Dewar R.L. 1996 Phys.

Plasmas 3 275
[58] Boozer A.H. 2009 Phys. Plasmas 16 058102
[59] Boyle D.P. et al 2011 Plasma Phys. Control. Fusion

53 105011
[60] Jardin S.C. et al 2008 J. Phys: Conf. Ser. 125 012044
[61] Sugiyama L.E. and Park W. 2000 Phys. Plasmas 7 4644

10

http://dx.doi.org/10.1088/0029-5515/48/2/024002
http://dx.doi.org/10.1103/PhysRevLett.104.045001
http://dx.doi.org/10.1088/0029-5515/50/3/034008
http://dx.doi.org/10.1103/PhysRevLett.98.265004
http://dx.doi.org/10.1103/PhysRevLett.92.235003
http://dx.doi.org/10.1088/0029-5515/40/3Y/316
http://dx.doi.org/10.1088/0029-5515/50/3/034012
http://dx.doi.org/10.1088/0029-5515/50/4/045010
http://dx.doi.org/10.1016/0010-4655(86)90058-5
http://dx.doi.org/10.1063/1.3597155
http://dx.doi.org/10.1088/0741-3335/51/12/124054
http://dx.doi.org/10.1063/1.3592519
http://dx.doi.org/10.1103/PhysRevLett.103.075001
http://dx.doi.org/10.1088/0029-5515/50/6/064016
http://dx.doi.org/10.1016/j.jnucmat.2009.01.052
http://dx.doi.org/10.1088/0029-5515/48/11/115006
http://dx.doi.org/10.1063/1.3122862
http://dx.doi.org/10.1103/PhysRevLett.96.225002
http://dx.doi.org/10.1088/0741-3335/50/12/124029
http://dx.doi.org/10.1088/0029-5515/46/10/003
http://dx.doi.org/10.1016/j.jnucmat.2010.11.084
http://dx.doi.org/10.1002/ctpp.200610001
http://dx.doi.org/10.1088/0029-5515/50/6/064004
http://dx.doi.org/10.1103/PhysRevLett.40.38
http://dx.doi.org/10.1088/0029-5515/48/4/045009
http://dx.doi.org/10.1088/0029-5515/51/6/063030
http://dx.doi.org/10.1088/0029-5515/50/3/034006
http://dx.doi.org/10.1088/0029-5515/52/5/054012
http://dx.doi.org/10.1063/1.864116
http://dx.doi.org/10.1063/1.1607324
http://dx.doi.org/10.1063/1.2968699
http://dx.doi.org/10.1063/1.1532763
http://dx.doi.org/10.1063/1.1449463
http://dx.doi.org/10.1063/1.2178788
http://dx.doi.org/10.1063/1.863765
http://dx.doi.org/10.1063/1.2732170
http://dx.doi.org/10.1063/1.873749
http://dx.doi.org/10.1088/0741-3335/36/2/007
http://dx.doi.org/10.1063/1.2709862
http://dx.doi.org/10.1088/0029-5515/45/5/006
http://dx.doi.org/10.1088/0029-5515/23/8/006
http://dx.doi.org/10.1088/0029-5515/25/4/005
http://dx.doi.org/10.1063/1.873821
http://ocs.ciemat.es/EPS2010PAP/pdf/P2.106.pdf
http://dx.doi.org/10.1088/0741-3335/41/9/306
http://dx.doi.org/10.1063/1.859116
http://dx.doi.org/10.1063/1.1512917
http://dx.doi.org/10.1063/1.1887172
http://dx.doi.org/10.1006/jcph.2000.6514
http://dx.doi.org/10.1016/S0010-4655(00)00225-3
http://dx.doi.org/10.1063/1.874064
http://dx.doi.org/10.1088/0741-3335/53/11/115010
http://dx.doi.org/10.1177/109434209000400305
http://dx.doi.org/10.1063/1.871853
http://dx.doi.org/10.1063/1.3099330
http://dx.doi.org/10.1088/0741-3335/53/10/105011
http://dx.doi.org/10.1088/1742-6596/125/1/012044
http://dx.doi.org/10.1063/1.1308083

	1. Introduction
	2. Overview of ELM-triggering experiments in NSTX
	2.1. Estimates of stochastic transport

	3. Generation of 3D equilibrium
	4. Neoclassical transport due to 3D fields
	5. Ballooning stability without and with 3D fields
	6. Calculation of equilibria with islands with the SIESTA code
	7. Discussion
	 Acknowledgments
	 References

