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Abstract
Neural networks have been implemented to reconstruct electron temperature profiles from
multi-energy soft-x-ray (ME-SXR) arrays and other plasma diagnostics with fast time
resolution. On NSTX, electron temperature profiles are measured with a Thomson scattering
diagnostic at 60 Hz, a speed limited by the repetition rate of the lasers. By training a neural
network to match fast (>10 kHz) x-ray data with Te profiles from Thomson scattering, the
ME-SXR diagnostic can be used to produce Te profiles with high time resolution. In particular,
a new ME-SXR system will be used in conjunction with a new laser blow-off impurity
injection system to measure cold pulse propagation in NSTX-U plasmas for direct,
perturbative heat transport measurements. Synthetic ME-SXR data were used to optimize
performance of the neural networks and study the impact of including data from various
diagnostics in the networks. Initial tests on data from a previous-generation ME-SXR
diagnostic on NSTX have proven successful.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the National Spherical Torus eXperiment (NSTX) [1] and
similar ST experiments, electron temperature and density
are primarily measured via Thomson scattering [2]. While
these diagnostics provide accurate, localized measurements
of electron temperature Te and electron density ne, the time
resolution is limited by the repetition rate of the powerful
lasers used. While conventional tokamaks and other magnetic
fusion devices may use ECE diagnostics for fast temperature
measurements, the relatively low fields and high density of
the ST result in a plasma frequency that far exceeds the
electron cyclotron frequency and prohibits the use of these
diagnostics. An alternative method to measure electron
temperature with fast time response is to use soft-x-ray (SXR)
emissivity measurements [3–8]. The limitations of using
SXR emissivites for temperature measurements are due to the
complex dependence of x-ray emissivity on Te, ne, and the
concentration and charge state distribution of each impurity
present in the plasma. Two-filter techniques, where the ratio

of x-ray emissivity measurements from two x-ray diagnostics
with different x-ray filters are compared to theoretical values,
have been used to produce temperature estimates in some
fusion devices, usually when the measured x-ray brightness
is dominated by continuum emission or when impurity line
emission is small and well-defined [5–8]. For NSTX, in which
x-ray emissivity is dominated by line radiation, multi-energy
SXR (ME-SXR) diagnostics, with three or more filtered x-ray
arrays have been developed [9, 10]. The additional arrays
place constraints on the impurity concentrations and improve
temperature measurements [3, 4]. Previously, analytical
methods have been used to extract Te from ME-SXR data,
involving atomic modeling of impurity line and continuum
emission. While these models may be sufficient to simulate
emission from carbon, the material used in NSTX plasma-
facing components (PFCs), NSTX-Upgrade (NSTX-U) [11]
plans to begin replacing the PFCs with high-Z materials such
as molybdenum or tungsten. These high-Z impurities generate
quasi-continuum emission that can be quite difficult to model.
Additionally, impurity ions are generally assumed to be in
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coronal equilibrium in these models, though in the presence of
large impurity transport, this is no longer the case and impurity
transport modeling should be used.

An alternative approach to finding Te profiles from
ME-SXR data, without relying on complex atomic data or
transport models, is to use neural networks. Neural networks
have previously been employed in magnetic fusion research
to solve a variety of problems, including fast magnetic
equilibrium reconstruction (originally described in [12]), real-
time disruption detection (originally in [13], see [14] for
a recent summary of work in this area), fast tomographic
reconstruction [15], and fast spectroscopic analysis [16–19].
They have been used to determine parametric dependencies
of plasma quantities such as radiated power [20] and energy
confinement time [21]. Neural networks have also been used
for fast estimates of plasma parameters such as total radiated
power [22] and deuterium density profiles [23]. A review of
neural networks with some applications to magnetic fusion can
be found in [24]. Similarly, a neural network can be trained
by matching ME-SXR data with actual Te and ne profiles
from Thomson scattering, then applied to x-ray data between
Thomson measurements to provide increased time resolution.
Additionally, once a network is trained with sufficient data, it
can be applied to discharges without Thomson scattering, or it
can be used to produce a real-time measurement of theTe andne

profiles. Such networks have been tested with synthetic x-ray
data to study their behavior, and with real experimental data
to demonstrate their capabilities. These results are described
below, following a description of the ME-SXR diagnostics and
the design of the neural networks.

2. Description of ME-SXR diagnostics

The basic concept of a ME-SXR diagnostic can be
implemented in many ways. The results in section 5 were
obtained with data from a scintillator-based diagnostic referred
to as the optical SXR (OSXR) array [9]. This instrument
consisted of three horizontal rows of 16 channels, each with
overlapping mid-plane tangential views from the outboard
scrape-off layer to just inside the magnetic axis. Each of the
three rows had a different x-ray filter, with 10, 100 and 300 µm
Be foils. The OSXR diagnostic had a time resolution of
∼10 kHz. An updated design, utilizing diode-based detectors
in place of scintillators for better detector efficiency, was tested
during the last NSTX run campaign [10]. One advantage
of the diode-based system was that it utilized variable-gain
preamplifiers, which could be remotely adjusted to account
for changes in x-ray brightness in the plasma edge as well as
accommodate a wide range of filters. This system, also with a
tangential mid-plane view, consisted of five 20-channel diode
arrays, with a view from r/a ∼ 0.6 to outside the scrape-off
layer. 0.3 µm Ti and 5, 15, and 50 µm Be foils were used with
four of the arrays, while the fifth array had no filter, essentially
operating as a bolometer. Depending on the preamplifier gains,
this diagnostic had a time resolution ∼10–100 kHz. While
the analysis described in this paper is being tested on data
from these diagnostics, with the hope of gleaning new physics
understanding from a large database collected during NSTX

operations, it is primarily being developed for use with a
new ME-SXR diagnostic, currently under construction, for
NSTX-U. This diode-based diagnostic will be similar in
design to the previous edge system, but will be installed inside
the NSTX-U vacuum vessel and will consist of both core-
viewing and edge-viewing arrays.

3. Description of the neural networks

The neural networks described here were implemented with
the PyBrain 0.3.1 modular machine learning library for Python
2.7 [25]. The results that follow were obtained with simple
feedforward networks; there were no feedback loops. These
feedforward networks are multi-layer perceptrons with three
layers: an input layer, a hidden layer and an output layer.
The addition of a second hidden layer was briefly tested but
the resulting networks required more time to train with no
noticeable improvements in performance. The layers are fully
connected, with all input nodes connected to all hidden nodes,
and all hidden nodes connected to all output nodes. No
alternative connection schemes were tested. Figure 1 shows
the basic design of the networks. Diagnostic data fed into
each input node are scaled linearly from 0 to 1, normalized
to the maximum input value for that node in the training
dataset. The inputs are propagated to the hidden nodes through
each connection, multiplied by a weight associated with that
connection. A sigmoid activation function, in the form of the
logistic function f (x) = 1/(1+e−x), is applied to the summed
inputs of each hidden node. The outputs of the hidden nodes
are then propagated to the output nodes, again multiplied by
weights associated with each connection. The output nodes
simply sum all of their inputs. In the training datasets, the
outputs of the network are also normalized to the maximum
values of the dataset, scaled from 0 to 1.

The Rprop- (resilient backpropagation without weight-
backtracking) learning algorithm performed best amongst the
supervised training algorithms available in PyBrain and was
used to train the networks [26]. The algorithm optimizes the
connection weights to minimize the mean square error between
the network output and training data. The datasets used to train
the networks were collections of data from different instances
in time in a set of NSTX discharges, with an input node for
each radial chord of each diagnostic. There are typically 16 or
20 input nodes per ME-SXR array. The Te output nodes were
given the same radial resolution as an ME-SXR array (again,
typically 16 or 20 nodes). Unless otherwise stated, the number
of hidden nodes was set to 40, for reasons discussed in the next
section. The networks were trained for 1000 epochs, with 25%
of the data used as a validation dataset to prevent over-fitting.
Each network takes minutes to tens of minutes to train on a
single desktop CPU.

4. Characterization of the networks using synthetic
x-ray data

4.1. Generating synthetic data

The neural networks were first tested with synthetic x-ray data
to better understand their performance. Synthetic datasets
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Figure 1. Representation of a fully connected three-layer feedforward neural network. Raw data is scaled linearly from 0 to 1 and fed into
the input nodes, with one node for each radial position for each diagnostic; results from the output nodes are similarly scaled.

were generated using real electron temperature and density
profiles from Thomson scattering and carbon density profiles
from charge exchange recombination spectroscopy (CHERS)
measurements [27]. Additional impurities were assumed
to have the same radial profile as carbon, with an oxygen
density of 0.2 nC, nitrogen density of 0.1 nC, and iron
density of 0.001 nC, values consistent with spectroscopic
measurements of typical NSTX discharges [28, 29]. The
charge state distributions of all impurities were assumed to
be in coronal equilibrium. The CHIANTI atomic database
[30, 31] was used to calculate line and continuum emission
for each impurity. Synthetic ME-SXR data were generated by
accounting for the spectral response of each array and line-
integrating the emission along each line of sight. Gaussian
noise was added to each signal to mimic real data. The final
dataset was obtained from a set of thirteen discharges that
included a scan of both plasma current (Ip = 0.8–1.1 MA) and
toroidal field (Bt = 0.4–0.55 T). Only temperature profiles
with Te > 200 eV were included; each discharge provided
about 50 Thomson profile measurements, generating a total of
658 training sets.

Simulated data from other diagnostics were generated
to add additional constraints to the neural networks. To

better constrain the impurity concentrations in the plasma,
synthetic spectra from the NSTX UV transmission grating
based imaging spectrometer (TGIS) were generated [32]. The
TGIS diagnostic has a tangential view of the plasma mid-plane
with radial resolution from the magnetic axis to the outboard
scrape-off layer. The synthetic TGIS data simulated line-
integrated UV brightness, spectrally resolved into 20 bins from
30 to 700 Å and spatially resolved into 20 radial bins. These
data were generating using the same methods described for
the ME-SXR data. To account for the slow time response of
the TGIS diagnostic (400 ms in NSTX will be upgraded to
∼10 ms in NSTX-U), an additional, uniform, Gaussian offset
was applied across all channels to simulate an overall drift in
impurity concentrations in time. As an additional test, electron
density was constrained by including line-integrated electron
density in the network, as would be measured by the NSTX far
infrared tangential interferometer/polarimeter (FIReTIP) [33].

4.2. Results with synthetic data

The first goal accomplished with the synthetic data was to
optimize the structure of the neural networks. After settling
on the basic design of the network (feedforward, three layers,
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(b)(a)

Figure 2. Mean square error from cross-validation of neural networks for varying numbers of hidden nodes using (a) the synthetic dataset
described in this section and (b) the measured dataset described in the next section.

(b)(a)

Figure 3. For tests with synthetic data, neural network outputs are compared to actual Te profiles from Thomson scattering. The error bars
represent the rms difference between the two, averaged over the test dataset. While the rms values decrease with the number of nodes in the
hidden layer, spatial features may be missed. Here, an artificial dip in the Te profile is introduced to test networks with (a) 20 nodes and (b)
80 nodes.

fully connected), the optimal number of hidden nodes needed
to be determined. This was accomplished by using five-
fold cross-validation, in which the dataset from the thirteen
discharges was randomly divided into five subsets, then each
of the five subsets were used to validate networks trained with
the remaining 4/5 of the data. The validation metric used was
the mean square error averaged over the five subsets, which was
calculated for varying numbers of hidden nodes and is plotted
in figure 2(a). While networks with few hidden nodes provide
the closest fits, interesting radial features may be washed out
in the resulting smooth temperature profile. Figure 3 shows
that when the synthetic temperature was depressed within a
small radial band, a neural network with 20 hidden nodes did
not recognize this radial feature. By comparison, when 80
hidden nodes were used, the total rms error increased, but the
network provided better radial detail, capturing the localized
dip in temperature. To balance the overall accuracy of the
network with radial resolution, 40 hidden nodes were used in
all subsequent examples. Cross-validation was also applied to

the measured x-ray dataset described in the next section, with
similar results shown in figure 2(b).

Next, the effect of different diagnostics on the
performance of the neural networks was tested. To begin, the
importance of the ME-SXR diagnostic was studied by testing
varying numbers of filtered SXR arrays. As seen in figure 4(a),
for a 900 eV test case not included in the original training
dataset, a single array was sufficient to recreate the temperature
profile, with additional arrays providing little added benefit.
The same held true when the electron density was artificially
increased in the synthetic test data; in fact, the network with
only one array produced the lowest rms error. However, when
the electron temperature is increased, as in figure 4(b), it is
revealed that in fact the network with one array is unresponsive
to changes in the data, and that two or more arrays are needed
to reconstruct the temperature. This is expected, since data
from one array should be insufficient to distinguish changes in
temperature from density. Figure 4(c) shows that the networks
with 2–3 arrays perform reasonably well when the impurity
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(b)(a)

(c) (d)

Figure 4. (a) A synthetic test case is generated to compare results from networks with 1, 2 and 3 ME-SXR arrays. This same test case is
then retried with (b) a 20% increase in Te, (c) a 50% increase in nFe, and (d) a 200% increase in nFe. Note in each case, the network with
only one array was unresponsive to changes in the data. The rms errors quoted are averaged over the 20 radial nodes.

concentrations used to generate the test data are varied within
reasonable bounds. However, when there is a large increase
in impurity density, such as might be the case when a flake
of material from the plasma-facing components enters the
plasma, the networks perform poorly, shown in figure 4(d).
This should not be surprising, as this is a scenario not included
in the training dataset.

One way to improve the neural network performance,
particularly in cases such as large impurity injections described
above, is to add data from additional diagnostics into the
network, particularly spectroscopic data. When synthetic
TGIS data were included in the network, performance
improved in virtually all cases, and drastically in the case of
the large impurity injection. These results are summarized
in figures 5(a)–(c). In each case, adding TGIS data to
the network decreased the rms error by as much as 50%.
Other NSTX-U spectrometers, while not providing spatial
resolution, might still contribute additional constraints to the
networks, and have the added advantage that they could be
used in real time. Additional diagnostics that could improve
network performance include any diagnostic signals relating

to the electron density. One such diagnostic is the FIR
interferometer (FIReTIP), with a single-chord, line-integrated
density measurement that could also be used in real time.
Adding synthetic FIReTIP data improves performance by up to
50%, as shown in figure 5(d). For best performance, as many
relevant diagnostics should be included in the neural networks
as is reasonable.

Finally, in addition to using these neural networks to find
Te profiles from ME-SXR data, one might consider using
these networks to calculate electron density profiles. This was
attempted with the same synthetic data, and while the neural
network found a reasonable match to the density profile for
the test case used in figure 4, it was unresponsive to changes
in the simulated ne profile, just as the network with only
one ME-SXR array was unresponsive to changes in Te. This
makes some sense, since with the exception of the one-channel
FIReTIP data, all other data scales as nenI, where the electron
and impurity densities cannot be deconvolved. In the future,
additional data that depends onne alone, such as beam emission
spectroscopy (BES) data, may be added to the neural networks
to find fast ne profiles in addition to Te profiles.
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(b)(a)

(c) (d)

Figure 5. Using the test case from figure 4, results from networks with and without TGIS data (with data from three ME-SXR arrays in each
case) are compared for (a) a 50% increase in nFe, (b) a 200% increase in nFe and (c) a 50% increase in ne. (d) A comparison with and
without FIReTIP data for a 20% increase in Te. The rms errors quoted are averaged over the 20 radial nodes.

5. Initial tests with experimental data

To confirm that neural networks could perform with real data
as well as synthetic data, this method was applied to data from
the previous-generation OSXR diagnostic. Data were used
from one run day of NSTX operation; day-to-day variability
in the diagnostic configuration prevented the inclusion of data
from additional run days. The dataset contains 30 discharges
with a total of 1831 input patterns, roughly half of which
included gas puffs of neon, a bright emitter in the SXR range.
Neon concentration was negligible in the remainder of the
discharges. No other diagnostics were included in this test,
thus the network had 48 input nodes (16 channels ×3 arrays),
40 hidden nodes, and 16 output nodes. Once the network was
trained with this dataset, an additional discharge from this run
day was tested.

The results of these initial tests are illustrated in
figures 6 and 7, and appear quite promising. Figure 6 is a
contour plot of temperature as a function of time and major
radius obtained from the neural network and shows significant
variation in the temperature profile on time scales faster

Thomson Measurement Times

Figure 6. Time-evolving Te profile found with a neural network
applied to optical ME-SXR data. The red arrows indicate when the
Thomson scattering diagnostic makes a measurement.
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(b)(a)

(c) (d)

Figure 7. Results from figure 6 are compared to Thomson measurements. (a) Time evolution of Te at the core. (b) Average Te at the core,
resulting from retraining the network 100 times, smoothed to 1 kHz. (c) Radial Te profile at 765 ms. (d) Average radial profile from
retraining the network 100 times. The shaded regions indicate the standard deviation.

than the frequency of the Thomson scattering measurements.
This is highlighted in figure 7(b), an averaged, 1 kHz
smoothed version of the raw 10 kHz time trace of core
electron temperature obtained from the network and plotted
in figure 7(a). It can be seen that a large drop in temperature,
occurring between Thomson scattering measurements at 765
and 782 ms, is due to a 1 ms temperature crash at 780 ms.
Figure 7(c) shows a close fit between a temperature profile from
the neural network and from measurement, with a typical RMS
error <5%. The network was retrained 100 times, each time
with new, randomly generated initial weights, and the averages
and standard deviations of the outputs of these 100 networks
are shown in figures 7(b) and (d). The variation in the output
of the networks is of the same order as the experimental error
in the Thomson scattering measurements.

6. Conclusions

In summary, simple neural networks have proven capable
of producing electron temperature profiles from multi-energy

SXR measurements, when trained with a database of Te
profiles from Thomson scattering measurements. Reasonable
results can be generated with networks trained with about
one run day worth of data. The accuracy of the network
increases with a decrease in the number of nodes in the
hidden layer, at the cost of radial detail. Using synthetic
x-ray data, it was found that at least two ME-SXR arrays
were needed to distinguish changes in temperature. While
a network trained with ME-SXR data alone was adequate
in most cases, the addition of spectroscopic data improved
performance by as much as 50%, particularly when there
were large changes in impurity concentrations. Additional
data, such as line-integrated electron density from a single-
chord FIReTIP diagnostic, further improved performance. An
example has been presented in which a network was applied to
real ME-SXR data, and time-resolvedTe profiles were obtained
that compared favorably to Thomson scattering measurements,
matching within 5%. In NSTX-U, perturbative electron heat
transport measurements will be performed by measuring the
propagation of cold pulses with a new, in-vessel ME-SXR
diagnostic, and tracking the changing Te profile with the use of
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neural networks. These networks may also be incorporated in
the NSTX-U control system for real-time feedback, following
a study of the applicability of these networks to data from
separate experimental campaigns.
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