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NSTX-U Digital Coil Protection System
Software Detailed Design

Keith G. Erickson, Gregory J. Tchilinguirian, Ronald E. Hatcher, and William M. Davis

Abstract— The national spherical torus experiment (NSTX)
currently uses a collection of analog signal processing solutions
for coil protection. Part of the NSTX upgrade (NSTX-U) entails
replacing these analog systems with a software solution running
on a conventional computing platform. The new digital coil
protection system (DCPS) will replace the old systems entirely,
while also providing an extensible framework that allows adding
new functionality as desired. The development of the DCPS was a
multidiscipline engineering effort. The fact that long-trusted yet
presently inadequate protection mechanisms were being replaced
with a first-of-a-kind system at NSTX-U has led to a care-
fully crafted, full-featured software design. Real-time concurrent
RedHawk Linux provides the deterministic environment in which
the software runs, and the software architecture follows a unified
modeling language design with industry standard patterns.

Index Terms— Digital coil protection system (DCPS), Linux,
national spherical torus experiment upgrade (NSTX-U), real
time, RedHawk, real-time operating system, unified modeling
language (UML).

I. INTRODUCTION

THE national spherical torus experiment (NSTX) [1] is
currently undergoing a multiyear upgrade [2]–[4] that

will expand the realm of possible scientific goals [5], [6].
An increased pulselength, new divertor coils, and doubling
the field capacity (which quadruples the magnetic loads) all
contribute to an increased need for protection of the hard-
ware [7]. These protection systems serve as the last line of
defense to shut down the power supplies before they cause
damage. The existing hardware-based systems, while highly
reliable, are costly to reconfigure and upgrade.

Thus, NSTX upgrade (NSTX-U) will replace the older coil
protection system with a new digital computer-based solution
that enables a flexible and extensible protection system at a
lower cost. Historically, however, general purpose operating
systems, commercial computers, and high level programming
languages have been ill-suited for protecting equipment. Deter-
minism, latency, throughput, and failure rate are only a few of
the factors that tend to preclude choosing a fast GNU/Linux
system in favor of an embedded device [8]. To overcome this
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ambiguity, the digital coil protection system (DCPS) comput-
ing system uniquely combines new technologies and modern
design techniques to provide the flexibility of software without
compromising the inherent safety of embedded hardware. The
chosen technologies have matured to the point that they are
more effective in the embedded world today than in years past.

Among other things, DCPS will include the following.
1) AMD Opteron based x86_64 architecture.
2) Concurrent RedHawk Linux based on RedHat enterprise

Linux 6 [9].
3) Supermicro H8DG6-F motherboard with a dual 16-core

CPU setup and 64-GB registered error checking and
correcting RAM.

4) C++11 programming language with strict adherence to
the standard [10].

5) Object oriented design techniques following the unified
modeling language (UML) 2.4.1 standard [11].

6) Industry standard design patterns.
7) Commonly available analog input cards from general

standards (16AI64SSC) and a digital input/output card
from Adlink (7296).

8) 200-µs cycle time on input data.

II. NSTX-U DCPS SYSTEM REQUIREMENTS

A. Fault Logic

DCPS has two concurrent outputs: a fault signal, and
a heartbeat. It will continually send a heartbeat signal to
an external device to validate its own health, but will not
normally output a fault signal. The loss of said heartbeat or
the existence of said fault signal signifies a degraded ability to
prevent damage to the system, and thus triggers an immediate
NSTX-U shutdown. This two factor approach ensures the
ability of DCPS to operate in a failsafe manner.

B. Coil Protection

DCPS will protect NSTX-U during a plasma attempt, or
pulse, by running a collection of algorithms [12], [13] against
the plasma current and the 16 magnetic coil currents every
200 µs. A fault occurs if the result of any algorithm exceeds
a preprogrammed minimum and maximum limit. A fault also
occurs if the system determines that a fault could occur before
the next time cycle given a worst case projection. Finally, a
fault occurs if a disruption before the next time cycle would
cause any algorithm to exceed its limit value.

Between plasma attempts, the DCPS must monitor all of
the currents in the system and ensure that they remain at zero.
Any current in the system prior to the start of the next plasma
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Fig. 1. DCPS finite state machine.

attempt will similarly result in a fault that prevents the pulse
from occurring [14].

C. Finite State Machine

Central to the DCPS framework is the finite state machine
shown in Fig. 1 that contains ten possible states reflecting
the system being in one of four modes: plasma operations,
auto test, simulate, and maintenance. Plasma operations, as
the name implies, is the real operating mode for actually
protecting NSTX-U. Auto test is for attaching an external
simulator, whereas simulate is for running internal simulations.
While the first three modes represent different ways to run
the system, the last mode, Maintenance, is for modifying the
runtime characteristics of DCPS [15].

III. DCPS SYSTEM

A. Operating System Choices

Embedded systems historically used hardware dedicated to
a specific task, as opposed to a more general purpose platform.
While GNU/Linux is growing in popularity outside of its
traditional server/workstation role, it remains ill-equipped for a
sub-millisecond hard real-time device. The ability of the kernel
to meet a deadline is predominantly a measure of process
dispatch latency (PDL). The Linux kernel by itself has no
latency guarantees at all, and PDL delays due to interrupt
handling easily exceed 100 ms. Created as a workstation oper-
ating environment, the Linux scheduler tends to favor servicing

many simultaneous processes in a fashion that delivers quick
response time to a physical user. An embedded device by
comparison would rather preempt I/O tasks-like disk activity
in favor of servicing the real-time application and meeting the
timing deadline at stake.

There are two mainstream real-time versions of Linux that
overcome the PDL deficiencies: RedHat MRG and concurrent
RedHawk. DCPS uses the latter, as it includes unlimited sup-
port, real-time I/O drivers, and a NightStar toolset that enables
the DCPS development team to monitor, tune, and debug the
system with orders of magnitude less effort compared with the
conventional tools. Without NightStar, system tuning becomes
a much more arduous task requiring many iterative test and
check cycles with invasive recompiling and reconfiguring.
Using the provided tools, however, it is possible to dry run
hundreds of scenarios in several hours. Applying this approach
to a prototype version of DCPS on NSTX-U, for example,
reduced timing analysis efforts for a two man-week task to
a matter of minutes. DCPS will therefore take advantage of
these experiences and the benefits that RedHat MRG cannot
provide.

Both systems provide deterministic capability using differ-
ent techniques, described in the following section.

B. Kernel Modification Methods

There are two main approaches to solving the determin-
ism problem investigated for DCPS: a kernel modification
developed by Ingo Molnar called PREEMPT_RT [16], and
a technique to aid scheduling concerns called CPU shielding
[17], [18]. The kernel modification approach tends to be
system wide, while the CPU shielding approach focuses on
just the real-time processes. It is therefore a less intrusive
and more forward compatible choice, which is a large driving
factor in the DCPS design.

In kernel preemption, the technique used in RedHat MRG,
the user application has the ability to preempt a kernel thread
scheduled for the same CPU on which it is currently trying to
run. Without this patch, the kernel is strictly not preemptible.
The user application is at the mercy of any possible kernel
event, such as an asynchronous interrupt request (IRQ) that
needs to run for 50 milliseconds during the real-time event’s
50-µs inner loop. Obviously, the real-time process will com-
pletely miss its deadline (effectively, it will miss it 1000 times
in a row). For a protection system, this is catastrophic. The
PREEMPT_RT patch modifies the kernel and allows the user
application to stop the IRQ from running so that it can
service its own event instead. Unfortunately, an IRQ has to
run eventually, and no amount of preemption will alleviate the
unending kernel tasks that keep a stable system operational.
The patch is system-wide, greatly changing the entire scope
of the kernel runtime metrics. Because of the intrusive nature
of the change, the patch, by the author’s own admission, will
reduce overall system throughput and kernel response times. It
trades total performance for the ability to preempt kernel tasks.

Conversely, with a simplistic CPU Shielding approach, the
user application and the kernel share the available CPU cores,
dedicating certain tasks to specific cores. The user application
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receives one or more reserved cores on which the kernel cannot
schedule interrupts or other kernel threads. Instead, the kernel
stays on nonreal-time application cores where it is free to tie
up CPU time without affecting the real-time determinism. The
user application on its dedicated cores can effectively latch the
CPU in a spin-wait or sleep in a blocking idle state without
fear of another thread taking control. This effectively reduces
dispatch latency to near zero, as there is never any resource
contention in terms of processor allocation. The benefit to this
approach is that the core allocation for kernel and user space
remains fixed, defined at the beginning. The kernel always
has a place to run its own interrupt routines, and the user
always has a place to run its real-time loop. There is never
any preemption one way or the other, and therefore there is
no performance sacrifice. This creates a far more copasetic
relationship between the kernel and the user.

Since the DCPS computer has a large core count, it is
easy to organize the various tasks such that each main thread
receives a dedicated core shielded from all other system
activity. Operations such as I/O card interaction, watchdog
monitoring, and algorithm processing can all operate on an
isolated core with no overhead. Doing so still leaves spare
cores to conduct normal system operations, such as handling
IRQs, running user shells, and managing background services.

Of course, neither of the two options, shielding or preemp-
tion, removes the need for appropriate real-time programming
techniques that manage resources outside of CPU cycles.
Memory allocation, bus contention, I/O, and system calls all
still pose a threat to determinism. However, CPU shielding
greatly reduces the difficulty associated with these tasks.

C. Deployment Model

DCPS consists of two processes, a core and a client, that
communicate over a standard SSL encrypted TCP/IP socket.
The core is a multithreaded process written in C++11 that
actually runs the coil protection mechanisms. The client is a
separate process written primarily in Qt 5/C++ and possibly
running on a different machine that connects to and controls
aspects of the core. Communication between the client and
core uses Google’s open source project, Protocol Buffers,
for object serialization and ZeroMQ for the socket transport
library. These two complementary technologies are efficient,
well maintained, and compatible with current object oriented
programming languages (C++, Python, and Java). Since
the core and client languages are predominantly C++, this
presents an easy way to communicate between the two distinct
applications.

DCPS incorporates three physical computers to operate. The
main computer that runs the core is a fast 32-core commercial
off the shelf solution running the tuned RedHawk operating
system. The client connects to the core from a terminal that
will typically be in the main NSTX-U control room, but can
theoretically reside anywhere the virtual network rules allow.
The third computer is the database storage machine, a highly
protected, highly restricted machine hidden behind multiple
security layers. This machine houses all of the protection
data required to operate NSTX-U and DCPS. While read

access to this data will be readily available, write access will
instead require multiple levels of authentication combined with
physical access restrictions.

D. System Inputs

DCPS receives three kinds of input from external sources.
There is a 5-kHz clock signal and several discreet clock events
driving individual interrupt lines on the real-time clock and
interrupt module (RCIM). There are several digital inputs on
a digital I/O card to handle resetting and overriding faults.
Finally, there are 64 differential analog input channels spread
across two cards. The signals consist of statuses, triggers, and
most importantly the instantaneous currents in each coil as
well as the plasma current. There are two channels for each
current, duplicated for redundancy and sent to different cards.

E. System Outputs

There are far fewer outputs from the system compared with
the vast and varied array of inputs. Primarily, outputs consist
of two types of failure signals: a level 1 fault, and a watchdog
timer. In practice, the level 1 fault line is actually four-
independent fault lines, one for each coil system employed in
NSTX-U. These only trigger high when a protection algorithm
trips a limit value. Otherwise, they stay low. The watchdog
output is on the other hand a regularly oscillating signal,
alternating high and low with every successful real-time cycle
completion. Missing this heartbeat signifies the unreliability of
DCPS to protect NSTX-U, and thus an immediate shutdown
occurs.

Aside from the primary outputs, there are also a few status
outputs to signify various modes in which the DCPS might
operate. For instance, with the external AutoTester attached,
a corresponding output alerts other external devices that the
DCPS software thinks it is in a test mode. This is useful as a
sanity check to prevent crossover between real operations and
testing.

IV. SOFTWARE DESIGN

A. Design Methodology

Any moderately complex software application requires
accurate documentation and developer coordination. The
object modeling group created the UML [11] as an effective
way to communicate software designs between various stake-
holders: customers, end users, designers, engineers, devel-
opers, and so on. DCPS documentation fully exploits UML
version 2.4 to both identify the users and describe the software
requirements, code design, and eventual deployment.

Use of modeling such as UML encourages the subsequent
application of reusable design patterns that are standard in the
industry. These patterns provide building blocks to form more
complicated structures without reinventing commonly used
foundations. They are typically language agnostic, preventing
the overall design from dictating the eventual implementation.

There are six discrete components that make up the
DCPS software (Fig. 2): system management, data manage-
ment, algorithm management, monitor, security, and the user-
interface. Each component is an individual entity with a
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Fig. 2. DCPS component layout.

separate implementation, usually exposing itself to the remain-
ing components via the Façade design pattern.

B. System Manager

Orchestrating the effective interaction of independent com-
ponents requires that something guarantees each component
is working correctly. The system manager component (SMC)
starts, stops, and monitors each of the other components. It
manages the state transitions of each component in accordance
with the overall DCPS finite state machine model, and brokers
the communication infrastructure between the components.
Finally, it monitors the activity of each component for pur-
poses of accurately reporting the heartbeat that reflects the
internal integrity of the system.

The SMC implements the Façade design pattern to provide
a single application programming interface (API) to the other
components in the system. Through this façade, each compo-
nent can report its state or communicate system changes. The
SMC itself controls its own state through the same API in a
self-reflective manner.

C. Data Manager

The data manager component (DMC) component is the
largest of the six, both in scope and complexity. It handles
two forms of data: the three types of hardware I/O, and the
software database backend.

1) Hardware I/O: At the lowest level, it receives and sends
all of the input and output across the PCIe I/O cards that
connect DCPS to the outside world. This includes initializing
and configuring each card and running several threads to
continually move data on and off the various cards. The input
side is a combination of analog signals, digital signals, and
interrupts from the RCIM.

The link that synchronizes reads between all inputs across
two card types and three cards total is the RCIM. The
NSTX-U facility clock strobes the RCIM in synchronization
with the rest of the NSTX-U system. The RCIM has software
hooks to trigger user space code without requiring kernel space
interrupt handling routines, translating into dispatch latencies
in the order of 2 µs in heavily loaded testing scenarios.

The user code then polls each input card simultaneously, and
eventually makes the data available to the rest of the system.

All the analog channels require postprocessing at multiple
levels. First, the DMC must perform baseline subtraction and
calibration for each channel. This removes integration error
and magnetic co-interference. Then, there is an auctioneering
process that compares each set of duplicated currents and
chooses the larger of the two. The design model errs on the
side of caution, assuming that a larger current is a more stress-
ful condition for the machine. This final set of auctioneered,
calibrated, and subtracted set of currents is the main data set
that the DMC provides to the rest of DCPS.

The digital signals are much simpler in both scope (fewer
used channels) and complexity (no postprocessing), however,
one card shares both input and output. The card supports 96
total channels divided in half for 48 input and 48 output chan-
nels. While the total count is a lot, DCPS currently only uses
a small number of both inputs and outputs. The rest remain
for future expansion. Nevertheless, the simple nature of digital
input is such that once read, they require no postprocessing.

2) Software Database: The software side of the DMC
consists of a database backend, MDSPlus, and a service
oriented front end for the rest of the system to abstract
out the inner workings of MDSPlus. The database stores
preshot data to configure the pulse and postshot data to record
events during the pulse. Preshot data mostly consists of the
configuration information for the algorithms, such as limit
values, coefficients, and algorithm scheduling. Postshot data
encompasses everything required to recreate the pulse in a
simulated environment, as well as any debugging or log-
ging information and intermediate calculated algorithm values
required to diagnose issues that may arise during a pulse.

a) MDSPlus security concerns (concurrency): MDSPlus
is inherently insecure in its handling of precious data. Even
when exploits are accidental and not malicious in nature,
MDSPlus makes it easy to affect the integrity of shot data.
For instance, a user creating a new shot for testing purposes
can easily overwrite data belonging to someone else by merely
typing the wrong number in. No checks exist, for instance, to
ensure that a user is within his own sandbox.

DCPS employs several mechanisms to bolster the security
situation. First is the forced atomicity of shot tree creation.
Historically, during testing, a user would create a new test shot
manually using a numerical series outside normal operations.
This has undefined behavior, however, when two users try
to use the same number. Different projects have developed
different methods to address the issue, including assigning
number ranges to specific people. However, no scheme stops
an accidental typographical error from destroying someone
else’s data. Therefore, NSTX-U instead has a scheme by which
a user can atomically request a new test shot, and have that
number atomically transferred to the test program without user
interaction. The atomic nature of the request prevents any two
users from receiving the same number.

b) MDSPlus security concerns (data access): Another
MDSPlus concern is the data store itself. It proved challenging
to maintain usability under the current permission system
that MDSPlus employs. Instead, DCPS will use a secondary
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data server hidden behind the main MDSPlus host that serves
data for all of NSTX-U. This secondary server provides two
functions: extra security due to restricted permissions and data
hiding, and contingency against network failures, as the main
DCPS program has a direct patch cable link on a secondary
Ethernet interface to the data server itself. This dual path
access ensures that during an actual test shot, any transient
network issues will not affect the real-time operation of DCPS
and thus NSTX-U.

Because the operational DCPS has direct access to the secret
data server, and knowing that it is possible to run simulation
versions of DCPS elsewhere in the networking infrastructure,
the DMC abstracts out the identification of and connection
to this server. This abstracted nature reduces the complexity
of the code and of the user interaction, since neither requires
knowledge of the actual route taken to access the secret server.

c) Database contents: There are two main components
to the data that DCPS stores in MDSPlus. The first is the
preshot data known as parameter data. The second is postshot
data, consisting of every conceivable piece of interesting data
from a test shot.

The parameter data are highly controlled data representing
all of the settings required to protect the NSTX-U coils. This
includes algorithm limits, coefficients, threading priorities,
and which algorithms to run, among many other settings.
Changing this data in an adverse way could prevent the
ability of DCPS to protect the coils and possibly damage
the system. Therefore, it is vital that the data be under close
scrutiny and tight controls. Alongside software restrictions and
physical separation, NSTX-U will also employ strict operating
procedures as another layer of protection. Finally, the DMC
will contain hard-coded values on a per-algorithm basis to
prevent truly outlandish limits and coefficients.

The postshot data contains mostly time-based data collected
for every 200-µs cycle. This includes the result of every
algorithm calculation, intermediate calculated values, faults,
all of the raw input data, the calibrated version of the input
data, and more. All of this resides in the MDSPlus tree
following a strict organization that allows easy retrieval for
numerous different offline analysis programs.

D. Algorithm Manager

The algorithm manager component (AMC) controls the core
of the DCPS protection mechanism. For every 200-µs time
step, the AMC processes a complete set of algorithms. Each
algorithm checks against two predetermined limit values, a
minimum and a maximum, and potentially generates a fault.
At the conclusion of each time step, the AMC sends all faults
to the DMC for output to the hardwire control system, which
ultimately will terminate the pulse. There is built-in monitoring
to ensure that algorithms do not exceed an allotted run time,
and a method to adjust the runtime characteristics of the
algorithm processing allocation before the pulse.

1) Algorithm Manager Design: An algorithm factory (using
the factory pattern) hides the algorithm instantiation, and thus
the algorithm type, from the rest of the AMC. It employs a
strategy pattern to bind the calling API of a given algorithm

Fig. 3. Algorithm pipelining scheme.

instance to a standard signature shared by all algorithm types.
This hides any differences in the underlying algorithms, and
allows the dispatcher to remain algorithm-agnostic.

Each strategized algorithm instance created by the factory
runs in a pipeline, possibly shared with other algorithms.
The pipelines employed here are object pools, another design
pattern, locked to a thread running on a dedicated core. Based
on preshot data (parameter data) from the DMC, the AMC
assigns each algorithm to a specific pipeline created from the
object pool, as shown in Fig. 3.

This unique combination of four standard design patterns,
factory, strategy, Façade, and object oool, results in a system
that can allocate and dispatch arbitrary tasks to processing
queues without any internal knowledge of the task itself. This
is a powerful generic tool with application outside of DCPS.

2) Pipeline Synchronization: Each pipeline of discreet tasks
must execute in parallel, yet also synchronize between each
time step. Traditional multithreading involves keeping the
work queue of each thread full to maximize work output,
and waiting on a mutex lock when there is no more work
to allocate. This method is not ideal for a cyclical real-time
mechanism that requires both determinism and synchroniza-
tion. The pipelines must be deterministic in that they must
all start without delay at the beginning of each time step.
They must synchronize with each other so that they all start
at exactly the same time. To accomplish this, the AMC has
one manager thread, multiple worker threads each containing a
single pipeline, and a bidirectional synchronization mechanism
to create a concurrency barrier both at the beginning and at
the end of every time step.

At the start of every time step, the manager thread sends
a notification to each worker thread to start processing their
work queues and waits for a response. The workers then send
notifications back to the manager to indicate completion of
the cycle, and wait for another notification to start. Waiting
in this context implies a spin-wait that prevents releasing a
CPU when no work remains. Since each worker thread and
the manager thread has exclusive access to a single CPU,
this allows instantaneous start up once the new cycle begins.
The RedHawk tools discussed earlier ensure that absolutely
nothing else runs on these CPUs, including operating system
interrupt handlers and the system timer.
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The manager thread does not actually distribute work to
each worker thread using this design. The workers assemble
their task queues before the test shot in a fixed fashion such
that the work processed by each pipeline does not change
throughout the entire shot.

3) Algorithm Types: There are currently five types of
algorithms that the AMC can handle, however, the design is
such that adding new algorithm types is easy and expected
for future growth. Each algorithm type can have any number
of algorithm instances, each with its own set of coefficients
and limit values. Some algorithms require the outputs of other
algorithms as additional input, resulting in a dependency tree
that prevents running.

a) Current predictor: The first algorithm that always runs
in a cycle is the current predictor. There is no limit value for
this algorithm. Instead, it provides two sets of currents for all
future algorithms: the now currents, and the predicted currents.
First, it auctioneers between the redundant input currents and
takes the highest of the two. This is the current in each coil for
the currently executing time step that the remaining algorithms
will use

IPD = I + L−1MIPL. (1)

Then, it applies an influence matrix to those currents to
determine two possible predicted currents. In this phase of the
algorithm, the objective is to predict what the current would
be should a disruption occur before the next opportunity to
execute a time step. The two possibilities depend on the shape
of the plasma cross section, which is initially limited to either
a circular plasma or an elongated plasma.

b) Action integral:

Ak = Ak−1 + I 2
k !t (2)

AF = Ak + I 2
k τ/2. (3)

Action integrals estimate the conductor temperature rise in
the coils, commonly referred to as ∫ I 2(t)dt. There are two
action integrals: the total action for the current time step k
based on the action from the previous time step k − 1 (2), and
an estimate of the additional action that would accumulate if a
fault were to occur and the current were to decay exponentially
from the present state (3). In this context, !t is the time
between each time step, and τ is the L/R time constant of
the circuit under consideration.

Since it does not make sense to compute action for postdis-
ruption currents, this algorithm only uses the currents for the
currently executing time step as its input current vector.

c) Forces and moments (torques):

X = wI# j (C j I j ). (4)

This is the first of the more general algorithms that the
DCPS will execute. This same formula will calculate radial
force (Fr ), vertical force (Fz), and torque (T ) for both the
currents in currently executing time step as well as the
predicted postdisruption currents. X represents each of those
results. For each X , there is a separate set of coefficients C
and an overall weighting factor w. I is the current in the coil
for which we are calculating X , and I j is the vector of all of
the currents in the system.

d) Derived type I:

YA = K +#
(
C I I +C A A+C Fr Fr +C Fz Fz +CT T

)
. (5)

The first of the derived type algorithms is a weighted sum
of all previously calculated values. There is a separate set of
coefficients (Cx ) for each value type, and each corresponding
X in the Cx X products ranges over all of the coils in the
system.

e) Derived type II:

Z = √
(Y 2

A + Y 2
B + · · · + Y 2

J ). (6)

The second of the derived type algorithms is a square root
of the sum of squares of all previously calculated derived
type I algorithms. This is not currently used, but is available
for future growth.

E. Security

The security component (SC) provides a service to the rest
of the system, in contrast to the several manager components
that operate independently processed tasks. It defines and
enforces a set of permissions that restrict user actions given a
combination of user type, system state, and other key factors.
Other DCPS components use the SC to check if a requested
user action is permissible at a given time. For instance, it might
harm the system if a user switched to test mode during a pulse.
Likewise, it would be counter intuitive to allow every user to
modify the algorithm run list.

Also unlike other components, the implementation of the
SC spreads across disciplines. Parts of the security model
incorporate tools outside of the source code. For instance, to
group users into eight user types with inheritable hierarchies,
standard UNIX groups fit well inside the existing security
infrastructure of the laboratory. Processes already exist to
control user group mappings, requiring authorization, sign
off, and auditing. Therefore, the SC provides a gateway to
access the standard UNIX group permissions via pluggable
authentication module instead of providing its own custom set.
Similarly with network access, the model integrates existing
network security infrastructure in terms of virtual networks
and firewalls to reduce the number of devices that can try to
access the operational DCPS software.

F. Monitoring

The monitoring component (MC) provides an interface
for the rest of DCPS to report status to the outside world
via several means. It can log debugging information to a
file, populate EPICS displays, or send feedback to the user-
interface component (UIC).

Typically, logging implies writing out successive lines of
text to a file to aid in tracing the order in which events
occur. There are different levels of log details such as error,
warning, informational, and one or more levels of debug with
increasing verbosity. RFC5424 from the Internet Engineering
task force defines eight logging levels which the MC will
implement. The various levels allow filtering based on the
characteristics of a given test. For example, an error indicates
an identified problem causing a failure, whereas a warning is
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something that might be a concern but is not catastrophic.
Informational messages help tagging events in a timeline
(initialization complete, shot started, etc.), and debug messages
only serve a transient purpose while a developer traces down
a problem. Debug messages tend to be more intrusive to
real-time operations, either because of a high frequency or
because of overhead associated with crafting the specific line
of text.

Logging on a real-time system presents a challenge due to
the nondeterministic nature of writing out files. Whether the
application stores files on a local disk, a network mount, or
some other medium, writing to the files still requires kernel
system calls that disrupt deterministic real-time processing.
There are two approaches that, when combined, alleviate this
challenge.

For the first approach, the MC will do any output in a low
priority thread on a dedicated CPU. Conversely, the input will
arrive in a high priority thread that queues the writes to the
low priority thread. This separation between priorities provides
a mechanism that keeps short tasking at a high priority and
long tasking at a low priority to optimally allocate the system
resources.

The second approach involves short circuiting disabled log
entry function calls to avoid unnecessary processing. For
instance, consider a highly system intensive code path con-
taining a call to the logging API with a logging level of debug.
If creation of the logging string is intrusive, the logging API
should not only prevent recording the eventual log string, but
it should also prevent creating the string in the first place, thus
saving the overhead of building a string that it will never use.

G. User Interface

The UIC is the primary means by which a DCPS user
performs all possible actions. It is likewise the primary com-
ponent of the DCPS Client. User actions include starting
and stopping the system, adding and modifying algorithms,
changing the runtime mode, and building simulation scenarios
using a waveform editor. The UIC is unique in DCPS from a
deployment standpoint, as it can run on a physically separate
computer. It communicates to the rest of the core system via
a secured socket administered by the SC.

Since the UIC is the bridge connecting a physical user
to the rest of DCPS, it naturally is the largest customer for
the SC. The UIC continually asks the SC for permission
to allow actions, and modifies the display accordingly. For
instance, during a pulse, buttons to change the DCPS Core
mode turn gray and stop accepting input. Though it does not
preclude additional security checks further downstream, this
extra layer of security does inhibit many potential errors that
might otherwise arise oscillating.

The UIC implementation uses the Qt widget framework
to streamline GUI design and refocus efforts from coding
details to graphical window content and purpose. Editing Qt
windows and their contents is minimally invasive, and enables
a dynamic communication between the developer and cus-
tomer. Communication between the physical nodes combines
a transport package called ZeroMQ with object serialization

software called ProtoBufs. These two technologies handle
serializing arbitrary objects into a string of bytes, moving those
bytes through sockets between the computers, and deserializ-
ing them back into the same objects on the other side.

V. CONCLUSION

NSTX-U will replace the existing coil protection solution
with a software-based DCPS. It will make use of concurrent
RedHawk to achieve real-time performance on a GNU/Linux
system, as it outperforms RedHat MRG in determinism,
throughput, and overall development cost. The software design
is flexible enough to allow dynamic changes to runtime
characteristics, and extensible enough to provide an avenue
for future growth in the form of new algorithms and algorithm
types.

DCPS will naturally expand in the future to accommodate
plasma goals. Future work further includes adding a regression
tester that will automatically validate new changes against a
database of previously fixed bugs to reduce the probability
of reintroducing the same bug again. Additionally, DCPS can
possibly expand its reach from coil protection to machine
protection. Finally, in the short term, parts of DCPS will run on
the plasma control side with stricter limits to enable controlled
shutdowns instead of the current method of simply turning the
power supplies off.
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