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Abstract
Fast ion transport models currently implemented in the tokamak transport code TRANSP
(Hawryluk 1980 Physics of Plasmas Close to Thermonuclear Conditions (Brussels: CEC)) are
not capturing important aspects of the physics associated with resonant transport caused by
instabilities such as toroidal Alfvén eigenmodes (TAEs). This work describes the
implementation of a fast ion transport model consistent with the basic mechanisms of resonant
mode–particle interaction. The model is formulated in terms of a probability distribution
function for the particle’s steps in phase space, which is consistent with the Monte Carlo
approach used in TRANSP. The proposed model is based on the analysis of the fast ion
response to TAE modes through the ORBIT code (White and Chance 1984 Phys. Fluids
27 2455), but it can be generalized to higher frequency modes (e.g. compressional and global
Alfvén eigenmodes) and to other numerical codes or theories.

Keywords: fast ion transport, tokamak simulations, Alfvénic instabilities, reduced transport
modules

(Some figures may appear in colour only in the online journal)

1. Introduction

Simulations of tokamak discharges have made considerable
progress in the past few years. Because of the complexity of the
problems that numerical codes aim to solve, two main lines of
code development are emerging. On one hand, first-principles
models target a representation of tokamak physics as close as
possible to reality. This is supported by improvements in both
experimental measurements and theory, which enable a deeper
insight into plasma physics phenomena than was possible only
a decade ago. Examples of first-principles models applied
to the physics of energetic particles and associated plasma
instabilities can be found in [1–6] and references therein. The
generality of this approach comes at a cost. Simulations are
expensive, in terms both of computing time and of required
hardware resources. Use of first-principles codes is thus
usually restricted to a limited number of conditions. On the
other hand, reduced models are often utilized in combination
with more general-purpose codes to tackle specific problems
in a simplified form. Recent examples include simplified
models for computing the relaxed fast ion profile resulting
from a given set of Alfvènic instabilities; see [7–9]. Although
the accuracy of the results from reduced models is expected
to degrade with respect to more comprehensive codes, more

insight into the problem under study can be gained by looking at
a much larger number of cases. Clearly, the distinction between
first-principles and reduced models is sometimes questionable,
depending on the amount of simplifications introduced in the
models and in their practical implementation. In several
aspects, the two approaches are complementary and their
combined use can result in improved understanding of tokamak
and plasma physics.

This paper reports on the development and initial
validation of a new reduced model for fast ion transport by
plasma instabilities such as Alfvénic modes. The model will
be included in the tokamak transport code TRANSP [10, 11],
which is used on several tokamaks either to simulate existing
discharges or to develop and predict new plasma scenarios.
The general aspects of the new model are discussed in section 2.
Section 3 describes the practical implementation and the
integration of the new model with the existing TRANSP code
and its modules. Initial verification and validation work is then
presented in section 4. Section 5 concludes the paper.

2. A description of the new model

The NUBEAM module [12, 13] implemented in TRANSP
models fast ion dynamics in tokamaks on the basis of
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classical physics. In addition, NUBEAM has four possible
implementations for modeling fast ion transport mechanisms
different from classical ones. The first two models set the
fast ion diffusivity to be proportional to the electron particle
diffusivity (with or without corrections for the Ware pinch)
through a user-selected multiplier. These models give a fast ion
radial flux, �fi, that is related to the electron density gradient.
Clearly, such models do not capture the physics of resonant
wave–particle interactions. A third model includes fast ion
diffusion and convection coefficients as a function of the radius,
Dfi(r) and Vfi(r), such that �fi = −Dfi ∇nfi+nfiVfi. nfi(r) is the
radial fast ion density profile as a function of the normalized
minor radius r . The flux is therefore regulated by the spatial
fast ion gradient, ∇nfi. Energy- and space-dependent diffusion
coefficients can be prescribed in a fourth model for (up to)
six classes of particles: passing, barely passing, trapped,
deeply trapped, counter-passing and counter-barely passing.
The actual diffusivity for each particle during the NUBEAM
calculation is obtained as a weighted combination of two of
those six coefficients, depending on the orbit localization in
phase space. Although some dependence on the specific orbit
topology is introduced, the resulting transport is still diffusive
in real space, i.e. along the radial direction. In general,
all of these models do not contain the physics of resonant
interaction—and the resulting transport in phase space—
between instabilities and fast ions. In fact, the resonance
condition implies that only narrow regions in phase space may
be strongly affected by the modes, whereas adjacent regions
are possibly unaffected.

The following features should be included in a new fast ion
transport model in TRANSP to mimic the resonant interaction
between fast ions and instabilities:

(1) Characterize particles based on their orbit topology [14],
i.e. in terms of magnetic moment µ, energy E and
canonical toroidal angular momentum Pζ , instead of real-
space coordinates such as radius, poloidal/toroidal angles.

(2) Model transport as steps (or kicks) in phase space, for
instance kicks in energy associated with the resonant
interaction. Radial transport will eventually result from
the particle dynamics in phase space, but with no a priori
assumptions on its nature, such as being diffusive or
convective.

(3) Derive transport coefficients from consistent simulations
or theory. Whenever possible, experimental data should
be used as further constraints.

(4) The model must be suitable for inclusion in the NUBEAM
module. In this regard, a Monte Carlo framework seems
to offer the best approach.

(5) Calculate variations of E and Pζ consistently.

The fifth item in the list above is actually the most
distinctive feature for transport resulting from resonant wave–
particle interactions. On the basis of the guiding center
Hamiltonian formulation of the particle’s motion in the
presence of a mode with toroidal mode number n and frequency
ω = 2πf , one obtains the relationship [14]

ωPζ − nE = const. (1)

Figure 1. Illustration of the correlated variation of the energy and
canonical angular momentum in the presence of a single mode with
zero and finite frequency width; see equation (3).

For a single mode, variations in E and Pζ for particles
satisfying equation (1) (given a specific constant on the right-
hand side [15]) are thus related through

�Pζ/�E = n/ω, (2)

which sets a constraint on the allowed trajectories in the
(E, Pζ ) space. In reality, if a finite mode frequency width
is assumed and if more than one mode are present, �E and
�Pζ can depart from the ideal (linear) relation of equation (2);
see figure 1 and section 2.

One possibility for satisfying the requirements described
above would be to develop a module, interfaced with
NUBEAM, that models the resonant wave–particle interaction.
For example, the model could be a reduced version of the
ORBIT code [16]. However, this approach is not very flexible:
if one decides to use another code to manage the mode–particle
interaction, an entirely new module has to be developed and
included in NUBEAM.

Another possibility, that is the one discussed in this paper,
is to split the problem into two parts: (i) derive a set of transport
coefficients in some given form, and (ii) use those coefficients
in NUBEAM for the actual computation of fast ion evolution.
By doing this, the NUBEAM part of the problem can be
developed independently of the different models (or theories)
used to infer the transport coefficients.

The main ingredient of the new model discussed herein
is the probability that a particle, whose orbit is characterized
by the constants of motion (Pζ , E, µ), experiences a change
over a time δt in energy and canonical angular momentum
of magnitude �E and �Pζ in the presence of a mode with
amplitude Amode. For simplicity, here and in the following it is
assumed that µ is conserved. This is a reasonable assumption
for low frequency modes with ω � ωci (ωci being the ion
cyclotron resonance frequency), such as TAEs1. However, the
model can be generalized to include µ variations.

In the following sections, the general principles inspiring
the new model are first discussed for an ideal case with a single
resonance and for a specific class of particles, then generalized
to an arbitrary set of modes for the entire fast ion population.

1 It is still debated whether spherical tokamaks such as NSTX represent an
exception for magnetic moment conservation. Because the fast ion gyro-radius
may be comparable to both the radial width of the modes and the typical scale
lengths of equilibrium profiles, conservation of µ is not necessarily satisfied
even for low frequency modes.
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2.1. The single-mode, single-resonance case

In the presence of a single resonance, the motion of a specific
class of particles satisfying equations (1)–(2) is subject to
simple constraints in the (E, Pζ , µ) space [15, 17]. Even for
this simple case, the shape of the distribution of steps in energy
and canonical angular momentum can be rather complicated
and far from a simple bi-Maxwellian distribution, from which
diffusion coefficients in E and Pζ could be readily extracted.
However, to illustrate the general ideas of the new model, we
first assume that the bi-variate probability density function for
�E and �Pζ changes of the particle’s energy and canonical
toroidal momentum can be approximated by

p(�E, �Pζ |Pζ , E, µ, Amode) = p0×

e
− 1

2(1−ρ)

[
(�E−�E0)2

σ2
E

+
(�Pζ −�Pζ0)2

σ2
Pζ

−2ρ
(�E−�E0)(�Pζ −�Pζ0)

σE σPζ

]
(3)

with the normalization factor

p0 = 1

2π σE σPζ

√
1 − ρ2

. (4)

(The dependence of all parameters on Amode, e.g. σE =
σE(Amode), has been omitted to simplify the notation.) Here
the variances σE and σPζ

give the spread of the distribution
along the �E and �Pζ axes. The correlation parameter

ρ = 〈(�E − �E0)(�Pζ − �Pζ 0)〉
σE σPζ

(5)

takes into account the coupling between �E and �Pζ

expressed in equations (1)–(2):

�Pζ (�E) = �Pζ0 + sign(ρ) × σPζ

σE

(�E − �E0). (6)

The offset (or convective) terms �E0 and �Pζ0 are redundant
and ≡0 for cases in which there is no systematic drift in energy
or Pζ . They are included in the model for generality, e.g. to
account for slowing down processes or transport mechanisms
other than classical processes.

In principle, the set of probability density functions
p(�E, �Pζ |E, Pζ , µ, Amode) contains all the information
required by NUBEAM for calculating the energy and Pζ steps
caused by resonant wave–particle interaction. In practice, if
the analytical formulation from equations (3)–(6) had to be
adopted, a set of four dimensional (4D) coefficients has to be
given as input to NUBEAM:



σE = σE(E, Pζ , µ, Amode)

σPζ
= σPζ

(E, Pζ , µ, Amode)

�E0 = �E0(E, Pζ , µ, Amode)

�Pζ0 = �Pζ0(E, Pζ , µ, Amode)

ρ = ρ(E, Pζ , µ, Amode).

(7)

Incidentally, a similar term could be added to include variations
of the magnetic moment µ in the model, according to a
probability density function σµ = σµ(E, Pζ , µ, Amode).

The dimensionality of the set of transport coefficients in
equations (7) can be reduced. ORBIT simulations indicate
that σE and σPζ

have a (roughly) linear dependence on the

normalized mode amplitude Amode; see figure 2. Thus, only
the coefficients for a specific value of Amode (for instance
Amode = 1) have to be passed to NUBEAM, along with a
separate vector of mode amplitude versus time that is used to
rescale the coefficients as time evolves. (The validity of this
simplification is further discussed in section 4.1 and figure 14.)
By doing this, matrices in equations (7) are reduced to three
dimensions, i.e. the three variables (E, Pζ , µ) that identify
orbits in phase space.

2.2. Extension to the general, multi-mode case

The expressions introduced in the previous section could
be generalized to the case more commonly encountered in
experiments of multiple modes (and multiple resonances, even
for a single mode) inducing fast ion transport. For example,
one could specify a set of coefficients for N modes:



σE,i = σE,i(E, Pζ , µ)

σPζ ,i = σPζ ,i(E, Pζ , µ)

�E0,i = �E0,i (E, Pζ , µ)

�Pζ0,i = �Pζ0,i (E, Pζ , µ)

ρi = ρi(E, Pζ , µ)

wi = wi(E, Pζ , µ)

(8)

with i = 1 . . . N . wi is the relative weight of the ith probability
distribution, such that

∑N
i=1 wi ≡ 1. The set of probabilities

{pi} (see equation (3)) are used as basis functions for modeling
the total probability p(�E, �Pζ |Pζ , E, µ):

p(�E, �Pζ |Pζ , E, µ) =
N∑

i=1

wi pi(�E, �Pζ |Pζ , E, µ).

(9)
From initial tests based on ORBIT, it seems that N � 4
might be enough for modeling cases with multiple TAE
modes, each characterized by different toroidal mode number,
frequency and radial mode structure. However, the approach
of using the analytical representation for the pi , complemented
by the corresponding weight matrices wi , seems rather
impractical (although feasible), as the number of input files
required by TRANSP would rapidly increase for scenarios
that require N > 1 to model the impact of the modes on the
fast ions.

A more straightforward way to define the input required
by TRANSP is to use the total p(�E, �Pζ |E, Pζ , µ) directly,
without any attempt to reconstruct it on the basis of specific
expressions such as equations (3)–(8). This requires a single
file defining p as a set of two-dimensional (2D) matrices (with
variables �E, �Pζ ) as a function of E, Pζ and µ, with the clear
advantage that a large number of scenarios can be effectively
modeled (including resonant and stochastic transport) in a
relatively simple and general way.

Furthermore, three observations help us to introduce a
time dependence in a simplified way:

(1) For some practical cases, the scenario of interest is
characterized by modes whose amplitudes vary in time,
but whose relative amplitudes do not (at least on average,
when time steps �1 ms are considered). Therefore,
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Figure 2. Scan of the mode amplitude (normalized to the experimental value, Amode = 1, from the reflectometer’s data). ORBIT runs
include a single TAE mode. The initial particle distribution consists of 5000 particles, all within the same (E, Pζ , µ) bin but with different
toroidal locations and hence different phases with respect to the mode. The parameters σE and σPζ

are obtained from a fit of ORBIT data
with two bi-variate Maxwellians; see equation (9). (a)–(c) Contours of the kick probability (solid lines) overlaid on the particle distribution
(dots) for different values of the mode amplitude. (d) Dependence of the standard deviations σE (diamonds, black) and σPζ

(triangles, red)
on the mode amplitude, showing a roughly linear relationship.

providing the temporal evolution of the total mode
amplitude, Amode(t), as a 1D vector would be enough to
describe the evolution of the entire set of modes.

(2) As noted before, σE and σPζ
are roughly proportional to

the total mode amplitude, e.g. σE ∝ Amode (figure 2(d).
(Note that if σE, σPζ

are interpreted as equivalent diffusion
coefficients such as DE ∝ σ 2/δt , the proportionality
gives the expected dependence DE ∝ A2

mode for diffusive
transport.)

(3) Boundaries and the shape of the domain (E, Pζ , µ) evolve
in time during a discharge, for instance because of the
evolution of the q-profile. For practical purposes, one
can assume that the same domain can be used at different
times with appropriate normalizations, e.g. based on the
magnetic flux at the boundary for Pζ , or on the magnetic
field on the axis for µ.

The proposed formulation is suitable for a straightforward
inclusion of magnetic moment variations, that have
been neglected so far. In order to preserve possible
correlations between changes of E, Pζ and µ, the
general probability function should then be extended to
p(�E, �Pζ , �µ|E, Pζ , µ), i.e. as a six-dimensional matrix.
In practice, sampling methods such as the acceptance–
rejection algorithm can still be used to perform random

sampling from the arbitrarily shaped, multi-dimensional
probability distribution.

3. Practical implementation of the transport model

3.1. Deriving the transport coefficients

The NSTX [18] reference case used to illustrate how the
input for TRANSP can be defined is discussed in [19] and
summarized in figure 3. It consists of an NSTX H-mode
plasma with bursts of activity of n = 1–6 TAEs from ∼0.2 to
∼0.4 s. The modes have a more stationary character after 0.4 s,
when strong low frequency MHD activity is also detected.

TAE modes are analyzed with the NOVA-K code [20]
following the procedure outlined in [21]. This provides the
mode structure. The perturbation amplitude associated with
each mode is obtained by comparing the simulated density
response (in arbitrary units) to the modes with that measured
through the UCLA reflectometer system [22] installed on
NSTX.

The plasma equilibrium at a given time and the mode
structures are used in the particle-following code ORBIT to
characterize the fast ion population (figure 4) and simulate
the fast ion response in terms of transport, including loss,
redistribution and energy change. In the following example,

4
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Figure 3. NSTX scenario used to illustrate how input quantities for
the new model of fast ion transport in NUBEAM/TRANSP can be
derived from an experiment. (a) Spectrogram from Mirnov coils
located at the plasma edge. (b) Neutron rate showing repetitive
drops coincident with bursts of TAE activity. The arrow indicates a
specific event that will be further discussed later in the paper.

the reference time is chosen at t ≈ 0.27 s, when the mode
amplitude is sufficiently large to obtain good reflectometer
data.

Numerically or analytically obtaining the probability
function p(�E, �Pζ ) using expressions for the particle orbit
and eigenmode structure is extremely difficult. In particular,
modes are localized on flux surfaces, but high energy particle
orbits are not, whereby a particle may experience large
variations in mode amplitude in a single toroidal transit. The
strength and location of resonances can only be determined by
special numerical methods [15, 17].

A single ORBIT run with a sufficiently large number
of test particles is used to calculate p(�E, �Pζ |E, Pζ , µ).
Particles are initialized uniformly in the (E, Pζ , µ) space.
Since all particles have equal weight in the standard version of
ORBIT, a uniform distribution in phase space is necessary to
prevent gradients in the fast ion distribution from affecting
the computed p(�E, �Pζ ). (More efficient schemes may
be developed for different codes, for instance to improve the
statistics by initializing more particles with adjusted weights
in phase-space regions where resonances are active.) Runs
simulating ∼1 ms, corresponding to tens or hundreds of
toroidal transit times, are used. The mode amplitude is kept
constant (Amode = 1). Mode frequencies are also constant.
During the run, each particle is tracked at fixed intervals δtsim

and the main parameters (including E, Pζ , µ, orbit type) are
recorded.

ORBIT results are then processed in order to infer
p(�E, �Pζ ). Variations in E and Pζ are calculated at each
step, providing an ensemble of values over the whole phase
space: {

�E(E, Pζ , µ)

�Pζ (E, Pζ , µ).
(10)

This ensemble is then resampled on the basis of a
discrete grid in (E, Pζ , µ), and the probability distribution
function is computed as a 2D histogram for each bin
in the grid. A normalization is applied to ensure that∑

�E,�Pζ
p(�E, �Pζ ) ≡ 1 for each bin. These steps

define the probability matrix that is used as input in
NUBEAM/TRANSP.

3.2. Obtaining the mode amplitude scaling factor

Different approaches can be used to compute the mode am-
plitude scaling factor, Amode(t). Ideally, experimental mea-
surements of the actual mode amplitude are used. Diagnostics
such as reflectometry, electron–cyclotron emission radiometry
and beam emission spectroscopy are good examples. In some
cases, however, internal measurements of the mode amplitude
are limited or not directly available. Additional modeling is
required in these cases to infer Amode(t). In the following,
a simple method based on commonly available neutron rate
measurements is described. It is assumed that the mode am-
plitude is known at (at least) one time during the discharge.
By varying the mode amplitude in ORBIT simulations with
respect to the measured one, one can obtain the relationship
between the mode amplitude and expected drop in the neutron
rate; see figure 5. This graph, along with the measured neu-
tron rate evolution, can be used to derive the time-dependent
Amode(t), which is then used as input for NUBEAM/TRANSP.

In practice, one calculates the instantaneous relative
neutron rate variation, �Rn(t)/Rn(t), from the measured
neutron time-trace. At each time, �Rn(t)/Rn(t) is then used
to calculate the normalized mode amplitude that corresponds
to that change from the relationship shown in figure 5. These
steps are illustrated in figure 6. For comparison, the mode
amplitude scaling factors from the neutron rate and from
the Mirnov coils located at the plasma edge are shown in
figure 6(c). Both methods succeed in identifying times with
TAE bursts. The waveform from the neutron rate appears
smoother, mainly because of the filtering of the raw data
required to compute time derivatives without large spikes and
noise. The consequences of a different input for Amode(t) are
briefly discussed in section 4.2.

3.3. Algorithm implementation in NUBEAM/TRANSP

The fast ion transport model presented in the previous sections
has recently been implemented in Fortran and interfaced
with the NUBEAM code. A flowchart of the model’s
implementation is shown in figure 7. The model acts on the
fast ion distribution in between two steps of NUBEAM. Initial
conditions are read from the so-called plasma state structure
of TRANSP, which contains information on the machine
configuration (e.g. machine size, structures, parameters of
NB injection and other auxiliary heating systems) and current
plasma and equilibrium parameters (such as the magnetic
equilibrium, and plasma profiles).

The first step in the model is to convert the fast ion
distribution Fnb from real-space variables (R, Z, E, p) to
phase-space variables (E, Pζ , µ). Note that the three variables
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Figure 4. Examples of fast ion orbits in NSTX in the presence of four TAE modes. (a) Orbits in real space in an NSTX poloidal
cross-section. (b) Equivalent phase-space representation.

Figure 5. Scan of the fractional neutron rate drop as a function of
the constant mode amplitude from the ORBIT code. Arel = 1
corresponds to the nominal experimental values of the mode
amplitude for which p(�E, �Pζ ) is computed.

(E, Pζ , µ) (and sometimes the sign of the parallel velocity)
define a complete orbit in an axisymmetric system, whereas
(R, Z, E, p) define a single point on that orbit. Since the time
scale for distribution modification is long compared to transit
times, variables (E, Pζ , µ) are the relevant ones. Within the
NUBEAM/TRANSP framework, this conversion from single-
point (instantaneous) to orbit representation of the particle
distribution is valid because of the statistical approach used
in the code, i.e. the code evolves the distribution as a statistical
ensemble rather than keeping track of each particle separately.

Information on the mode amplitude evolution for the
current NUBEAM step is recovered from the input file. Then,
the model evolves each particle according to its location in
phase space and to the given mode amplitude. After the
full Monte Carlo step for (E, Pζ , µ), all remaining particle
parameters are updated and the possibly new position in (R, Z)

is recomputed. This leads to the conversion of Fnb(E, Pζ , µ)

back to the initial representation in terms of (R, Z, E, p)

required by NUBEAM/TRANSP. Once the updated Fnb is
known, information is passed back to NUBEAM/TRANSP to
update the plasma state and begin a new time step.

The full procedure is summarized here below:

(1) A TRANSP input file is defined for the step probability
distribution function, p(�E, �Pζ |E, Pζ , µ), that is used
as input to TRANSP. This consists of a five-dimensional
(5D) matrix of probability values. Two variables define
the (�E, �Pζ ) grid over which the probability for a
given region in phase space (E, Pζ , µ) is provided. The
remaining three variables define the discrete regions (or
bins) into which the phase space is divided.

(2) The time evolution of the total mode amplitude is specified
as a 1D array in a separate input file.

(3) The two input files, along with the appropriate switches in
the standard TRANSP parameter list, completely describe
the input for a given set of modes with (possibly) time-
varying amplitude.

(4) At the beginning of the TRANSP run, the probability
matrix is recovered from the input files. Variables in
p(�E, �Pζ ) are updated during the run to preserve
the correct orbit topology, based on the q-profile, and
magnetic equilibrium [14].

6
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Figure 6. Calculation of the normalized mode amplitude evolution
based on the measured neutron rate and using the relationship
between the neutron variation and the normalized mode amplitude
from ORBIT; see figure 5. (a) Measured neutron rate (black) and
cumulative neutron deficit (red). Also shown are the reconstructed
neutron rate in the absence of modes (blue) and the deficit that
would result from fast ion loss only (green), i.e. without taking into
account the energy variation induced by the wave–particle
interaction with the TAE modes. (b) Mode amplitude Amode(t)
normalized to the peak mode amplitude at t = 268.7 ms, obtained
from the measured neutron rate evolution and the graph in figure 5.
(c) Comparison between Amode(t) from neutrons and from Mirnov
coil data over a limited time range.

(5) The next step is to update the trajectory of the particles
at each iteration of NUBEAM. Classical mechanisms
(slowing down, scattering) are treated in the standard way.
Only the effects of resonant modes are discussed here.

(6) For a particle characterized by values (Pζ , E, µ), one can
identify the corresponding bin in the probability matrix
and proceed to the random sampling of the kicks in E and
Pζ for the next iteration. The steps for the ith particle
are indicated as �Ei and �Pζ,i . (More details on how a
particle’s energy and Pζ may be advanced in practice are
given in the next section.)

(7) Now proceed to the calculation of the E and Pζ variations
for a time step of duration δtstep. On the basis of the
time step used to compute p(�E, �Pζ ), indicated as t sim

step,
the step δtstep is divided into Nsteps smaller time intervals
of duration t sim

step and the total variation of E and Pζ is
calculated as the result of a correlated random walk in
time. The mode amplitude during the time step may
vary according to the input Amode(t). The �E and �Pζ

steps are calculated from the randomly extracted �Ei and
�Pζ,i , and E and Pζ are then updated.

(8) Loop over particles.

(9) Update other variables such as the radius and poloidal
angle of the particles.

3.4. Monte Carlo extraction of steps �Ei , �Pζ,i

The random extraction of �Ei and �Pζ,i is arguably the
most important step in the procedure depicted above. An
important feature is that the particle motion is characterized
by different time scales; see figure 8. Firstly, particles
oscillate in the wavefield over periods of 	1/fmode, which is
typically much shorter than the time step used in simulations
with NUBEAM/TRANSP. For many particles with similar
parameters but different phase with respect to the modes, this
fast motion results in a spreading of energy and Pζ around the
initial values. Secondly, the average particle energy and Pζ

drift over time scales of several toroidal transit times. This
second time scale is the relevant one for the process under
study. What makes these constraints important for calculating
the particle trajectory in the (Pζ , E, µ) space is that the particle
motion is not purely periodic and can be skewed toward
positive as well as negative values of �E and �Pζ . In other
words, over time scales of hundreds of µs a specific particle
can (i) fluctuate around its instantaneous energy value, but (ii)
slowly drift away from the initial energy; see figure 8. When
the concept is extended from a single particle to a statistically
significant ensemble of particles, a net gain or loss of energy
can emerge.

Moreover, each p(�E, �Pζ ) for a given bin (Pζ , E, µ)

may, in general, contain both resonant and non-resonant
particles because of the discrete grid used to cover the
(Pζ , E, µ) space. The algorithm used to evolve Fnb must be
able to keep track of the ‘class’ to which a particle belongs,
or else, for example, a non-resonant particle will have a finite
probability of experiencing large energy and Pζ excursions,
which would lead to wrong results. To illustrate that, suppose
the p(�E, �Pζ ) for a specific bin is composed of two distinct
components, that are hereafter indicated by their typical energy
steps only. The first group has negligible �E1 ∼ 0 and is
classified as non-resonant particles. The second group has
large �E2 ∼ 5 keV and is dubbed the resonant particles. If
the average step �E is sampled randomly at each sub-step,
particles in the first group may receive an occasional kick
�E2 
 �E1. As a result of the unbiased sampling, the final
distribution will be much broader than it should be, even if
the extra kick does not happen frequently for particles in the
first group. The main consequence of developing a scheme to
evolve Fnb in time is that the motion has to be described as
a correlated random walk, rather than a simple random walk
with every particle’s step totally uncorrelated with the previous
one. This is implemented in the new model in a semi-empirical
way. The following explanation is given for energy variations
only, then extended to the �E, �Pζ case under consideration
by implicitly invoking the constraint in equation (2).

To evolve the particles, the energy variation after a time
δtstep has to be reconstructed starting from the availablep(�E),
which is computed for t sim

step � δtstep. Begin by associating a
step �E, randomly extracted from p(�E), with a particle
(figure 9). Assume that ±�E represents the maximum energy

7
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Figure 7. Flowchart of the model as implemented in NUBEAM.

Figure 8. Example of E, Pζ temporal evolution for particles with different initial values of (E, Pζ ). Particles in red and cyan are lost after a
few microseconds.

variation that that particle can experience under the effects of
the oscillating wavefield. The particle’s energy will vary in
time as

E(t) ∼ E0 + �E sin[φ(t) + φ0] + δE(t), (11)

whereφ(t) is the phase between the particle and wave(s), φ0 is a
random initial phase and δE(t) accounts for possible (secular)
drifts caused by resonances. For δE sufficiently small over a
step of duration t sim

step, the probability that the particle will have

an energy variation x at a certain time is thus

p(x) ≈ 1

π
√

�E2 − x2
, −�E � x � �E, (12)

which is further simplified as

p(�E) ≈ δ(�E+) + δ(�E−)

2
(13)

with �E+ .= +�E and �E− .= −�E. This particle is now
assumed to be representative of an ensemble of particles with

8
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Figure 9. Qualitative derivation of the scheme for evolving the
energy of the particles and Pζ . (a) For a single particle oscillating in
the wavefield, the probability function for experiencing a step �E,
shown by the line in the right panel of (a), is approximated by two
delta functions at ±�E. (b) When all particles experiencing a kick
|�E| and a drift in energy are taken into account, an asymmetric
distribution appears.

characteristic step |�E|; see figure 9(b). In general, p(�E)

may not be symmetric for the ensemble if δE(t) �= 0. Estimate
the average energy change, �E, after Nsteps of duration t sim

step for
the ensemble characterized by this |�E|:

�E ≈
N+

steps∑
j=1

�E+ +

N−
steps∑

k=1

�E−, (14)

where N+
steps (N−

steps) is the number of steps with positive
(negative) energy variation.

Now define the probability for either positive or negative
variations, p+

.= p(+�E) and p−
.= p(−�E). For

Nsteps sufficiently large, the probability that the particle will
experience a positive energy kick at each step is given by
p+/(p+ + p−) (and similarly for negative kicks); therefore
equation 14 can be rewritten as

[

N+
steps∑

j=1

(+1)

︸ ︷︷ ︸
Nsteps

p+
p++p−

+

N−
steps∑

k=1

(−1)]

︸ ︷︷ ︸
Nsteps

p−
p++p−

×�E →
Nsteps∑
j=1

Sr,k

︸ ︷︷ ︸
Nsteps

p+−p−
p++p−

�E, (15)

where Sr,k is the sign of a random number uniformly extracted
from [−p−/(p+ + p−), p+/(p+ + p−)] at each step. Finally,
since the step ordering in equation (14) is probabilistic, the
overall �E from equations (14)–(15) can be cast as

�E ≈
Nsteps∑
k=1

Sr,k �E Amode,k (16)

with the substitution �E → �E Amode,k at each step k to
account for the proportionality σE ∝ Amode; cf figure 2.

On the basis of this semi-empirical derivation, the overall
�E and �Pζ over a time δtstep are calculated as the result of
multiple steps, each of duration t sim

step that is sufficiently shorter
than δtstep. For example, the tests presented hereafter have
t sim
step � δtstep/10. The kicks �E and �Pζ are calculated for

the first step only. The only exception is when a particle moves
from one bin to another in (Pζ , E, µ) before the full step δtstep

has been covered, for example because it experiences a large
energy kick. In this case, new values of �E and �Pζ are
sampled on the basis of the new phase-space coordinates.

4. Verification of the reduced model

4.1. Verification against ORBIT simulations

In this section, the algorithm that implements the new transport
model is verified against full ORBIT simulations for the
scenario introduced in figure 3. Because a realistic modeling
of fast ion dynamics in phase space lies at the core of the new
model, the ability of the code to identify and evolve fast ion
orbits is first tested. For a given fast ion distribution (e.g. from
NUBEAM/TRANSP), orbits are classified and their trajectory
reconstructed in both real space and phase space [14]; see
figures 10–11.

Figure 10(a) shows a co-passing, confined fast ion that
is pushed into a trapped confined region by the interaction
with TAE modes. The change in orbit type is clear from
its projection in the (R, Z) poloidal cross-section of NSTX.
The evolution of the orbit in the corresponding (Pζ , µ) plane
(figure 10(b)) shows that, as the particle loses energy and
reaches a more negative 
 (i.e., larger minor radius), it first
moves on a potato orbit and finally it becomes a trapped
particle.

Similarly, figure 11 shows the loss process for a co-
passing, confined particle at larger pitch that crosses the loss
boundary and hits the wall. It is interesting to note that the
final orbit resides in a region of phase space where co-passing
lost and counter-passing confined orbits coexist (figure 11(b)).
By classifying the orbit of the particles at each Monte Carlo
time step, the code can still resolve the correct orbit evolution.

A comparison of the evolutions of the entire distribution
from ORBIT and from the reduced model is shown in
figure 12. Histograms for E and Pζ variations are shown
for co-passing, trapped and all particles in the original
distribution. Considering the simplicity of the model, the
agreement between the two codes is satisfactory over at least
three orders of magnitude, as indicated by the high values of
the coefficient of correlation, ρ � 0.97, between results from
ORBIT and from the new model. Possibly, the only exception
is in the energy and Pζ variations for trapped particles,
for which the relative error between the model and ORBIT
results approaches 1 for the bulk of the distribution around
�E = 0, �Pζ = 0. This is attributed to the relatively poor
statistics for this phase-space region, although uncertainties in
the reconstructed probability p(�E, �Pζ |E, Pζ , µ) cannot be
completely ruled out.

9



Plasma Phys. Control. Fusion 56 (2014) 055003 M Podestà et al

Figure 10. Illustration of orbit topology change induced by TAE modes in (a) real space and (b) phase space. The particle’s parameters are
reported in (a). Dark (light) colours for the orbit indicate co-going (counter-going) motion. The particle’s trajectory in phase space is shown
in (b) as a colored line connecting the initial orbit (red square) to the final orbit (green diamond). Final locations of other particles with
similar initial energy are shown by the symbols.

Figure 11. As figure 10, but for a lost co-passing particle. Note that, in addition to the particle’s initial (blue) and final (red) orbits, the code
correctly identified other orbits for confined counter-passing particles (yellow and green orbits) in the same phase-space region.

10



Plasma Phys. Control. Fusion 56 (2014) 055003 M Podestà et al

Figure 12. Test of the Fortran algorithm for evolving Fnb over 5 ms according to a given p(�E, �Pζ |Pζ , E, µ) and Amode(t). Results from
the Fortran code (red triangles) are compared to full simulations performed with ORBIT (black diamonds). Through ORBIT, p(�E, �Pζ ) is
calculated using steps of t sim

step = 25 µs. Scatter plots of energy and Pζ variations are shown in (a)–(d). The corresponding distributions from
the model and from ORBIT are compared in (e)–(j ). For each case, ρ indicates the coefficient of correlation between the model and ORBIT
results. The bottom panels show the relative error between the model and ORBIT results as a function of �E and �Pζ . Test particles are
selected with values of E, Pζ and µ corresponding to ((e), (f )) co-passing, ((g), (h)) trapped and ((i), (j )) all particles with E � 10 keV.

Figure 13. Probability distributions for the final energy step �E from full ORBIT simulations (black diamonds) and from the model (red
triangles). The mode amplitude Amode(t) is scaled by a factor of 0.25 up to 1.5. Error bars are simply estimated as proportional to the square
root of the number of counts in each energy bin.
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Figure 14. Variations of the shape of the p(�E) and p(�Pζ ) probability distributions as a function of the mode amplitude scaling factor are
not directly observed in the standard deviation (a), but do appear in both the skewness (b) and the kurtosis (c) as they change with the
scaling factor.

Larger discrepancies between the Fortran algorithm and
full ORBIT runs are observed when the overall mode amplitude
evolution is scaled to smaller or larger values than those used
for computing p(�E, �Pζ ); see figure 13. The cause for
the increased discrepancy is illustrated in figure 14, where
the second, third and fourth moments of the distributions
of �E and �Pζ are shown as a function of the amplitude
scaling factor (the nominal mode amplitude is 1) in the
presence of three TAE modes. As seen in the figure, the
standard deviation does indeed increase linearly with the mode
amplitude, similarly to what was already shown for a single
mode (see figure 2(d)). However, both the skewness and
the kurtosis vary with the mode amplitude, indicating that
the shape of the probability distribution from ORBIT does
vary with Amode. In this case, the assumption of simple
linear scaling of �E and �Pζ with Amode is not adequate for
accurately reproducing the actual dependence p = p(Amode).
Improvements to the model to include more accurate scaling
of the probability shape are under consideration. Nonetheless,
this exercise provides an indication of the uncertainties in
reconstructed fast ion evolution associated with computing
p(�E, �Pζ ) at a single time for the reduced model, and then
applying the same probability distribution to a broader time
window.

The computed fast ion evolution in real space for this
NSTX scenario is shown in figure 15. TAEs cause a
redistribution to the outer minor radii, with a drop in the number
of fast ions near the plasma center (

√

 � 0.2) of O(10%).

The corresponding increase in fast ion population at outer radii
appears small, but it should be considered that particles are
diluted into regions with much larger volume. The relative
variation shown in figure 15(b) is more suitable for quantifying
the fast ion density increase at

√

 � 0.4. For this case, losses

remain limited to �1%, or O(10) lost particles from the initial
population of 34 000 particles from NUBEAM.

The redistribution of fast ions is expected to affect other
quantities, such as the amount of NB-driven current, here
simply approximated by INB ∝ ∑

k pk

√
Ek , where the sum

runs over all particles with E � 10 keV at each minor radius√

. The results are shown in figure 15(c). Redistribution of

core fast ions causes a drop of INB near the magnetic axis, and
a slight increase for

√

 � 0.6.

Figure 15. Computed redistribution of Fnb over a 5 ms step with a
burst of TAE activity. Shown are (a) the profile variation and (b) the
relative profile variation as a function of the normalized minor
radius. Solid (dashed) lines in (a) refer to the Fortran algorithm
(ORBIT) simulation. Statistical uncertainties are assumed to be
equal to the square root of the counts. Panel (c) shows the estimated
variation in the NB-driven current profile.

4.2. Initial tests within the NUBEAM/TRANSP framework

Before its final implementation in the NUBEAM module of
TRANSP, the reduced model is tested with a stand-alone
version of NUBEAM. Iterations between the two codes are
used to test all of the steps illustrated in the conceptual
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Figure 16. (a) Mode amplitude scaling factor derived from the
measured neutron rate; see figure 6. (b) Measured (hatched region)
and simulated neutron rates. Rates are normalized to their value at
t = 266–267 ms (gray shaded region). Symbols refer to different
time steps δtstep for the macroscopic NUBEAM iterations. (c) Same
as (b), but forcing the reduced model to resample �E and �Pζ after
a different number of time steps (parameter N in the figure), each of
which has duration t sim

step = 25 µs.

flowchart of figure 7. Plasma profiles such as the density and
temperature ones are assumed to be constant in time. The
magnetic configuration is also considered as fixed. Without
modifying this background scenario, the code evolves the fast
ion population and other quantities related to it, for instance
the neutron rate and NB-driven current profile.

The goal of these initial tests is to verify that the new model
is capable of evolving fast ions over time periods of the order
of (or longer than) typical collisional and slowing down times,
i.e. �10–20 ms for NSTX plasmas. Considering the scheme in
figure 7, adjustable parameters for this simulation are the total
duration of the simulation and the length of each NUBEAM
step k → k + 1 required to cover that time range. The latter
also defines how frequently the fast ion population is updated
by the new model.

The results of simulations with varying step size are shown
in figure 16, where measured and reconstructed neutron rates,
Rn, are compared for a specific NSTX discharge. The mode
amplitude scaling factor is derived from the neutron rate as
discussed in figure 6. The measured neutron rate is divided
by the central deuterium density at each time to account for

Figure 17. Dependence of the simulated neutron rate on the mode
amplitude. (a) Mode amplitude scaling factor rescaled to
kscale = 0.75, 1 and 1.25 times its nominal value. (b) Measured and
simulated neutron rate, including the case with no modes for
reference. The simulations have δtstep = 2 ms, N = 80. Solid lines
represent linear fits of the simulated neutron rate, showing the same
rate of increase in regions where the mode activity is negligibly
small.

the fact that plasma profiles are kept constant in time in the
simulation. Neutron rates are then normalized to their value
before the TAE bursts begin, t = 266–267 ms.

Figure 16(b) demonstrates that the new model is indeed
reproducing the correct neutron rate (or, rather, its correct
temporal evolution). Exceptions to this are for the runs in
which iterations between the model and NUBEAM happen
every 0.5 ms and 4 ms. The reason for this discrepancy is
twofold, as shown in figure 16(c). When δtsteps between
two NUBEAM iterations is �1 ms, the steps �E and �Pζ

are resampled too frequently in the model. The requirement
of a correlated random walk for the fast ion evolution is
violated, resulting in a net increase in the total transport (see
section 3.3). This is confirmed by a test run with the standard
δtstep = 2 ms but forcing the resampling of �E and �Pζ every
N = 20 steps, instead of the default N = 80. Transport is
artificially enhanced in this case. The second reason for the
discrepancy appears when δtsteps approaches the reciprocal of
the NB injection rate. Since the new model is applied here
at the beginning of each step, this means that newly injected
particles are not redistributed, resulting in reduced transport.
The three cases with δtsteps = 4 ms in figure 16(c) confirm this
interpretation. Transport is underpredicted (i.e., the neutron
rate is overestimated) with respect to the measured one for
δtsteps = 1–2 ms, unless N is reduced to <50, thus causing a
fictitious increase in the transport as explained above. These
two examples indicate that the value of δtsteps must be chosen
in the NUBEAM run to be much larger than the duration of
the microsteps in the model, t sim

step, but sufficiently shorter than
the collisional and NB injection time scales.
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Figure 18. Simulated effects of bursting TAE modes on fast ion and NB-driven current profiles. The radial variable ρ corresponds to the
normalized toroidal flux. Simulations have δtstep = 2 ms, N = 80. (a) Radial fast ion profile before, just after and 10 ms after the first TAE
burst occurs. (b) Same as (a), but for the NB-driven current profile. Solid (dashed) lines in (a) and (b) refer to simulations without (with)
enhanced transport from TAEs. The bottom panels show the temporal evolution of the (c) NB-driven current Jnb(ρ), (d) relative variation of
Jnb(ρ) normalized to the reference case with no modes and (e) relative variation of the fast ion profile Fnb(ρ) normalized to the case with no
modes. The solid line in (c) shows Amode(t).

Once the correct step size is adopted, it is useful to assess
the sensitivity of the simulation results to the input parameters,
and especially to the mode amplitude scaling factor, Amode.
Figure 17 illustrates the computed neutron rate for mode
amplitudes varying by ±25% from the nominal value. The
case with Amode = 0 is also shown for reference. It can
be seen that the time evolution of the neutron rate is quite
sensitive to Amode. This is because Rn at a given time depends
in part on the previous history of the fast ion population.
Inaccurate reconstructions of the fast ion transport at earlier
times cumulate, at least on time scales comparable to the
slowing down time, leading to increased discrepancy for the
wrong choice of Amode. In practice, the neutron rate also
evolves at a rate set by the NB injection rate at times with
negligible mode activity. Any deviation between runs with
different values of Amode is attributed to previous drops in Rn,
which scales with Amode.

The sensitivity of the reconstructed Rn to the input Amode

has two additional implications. Firstly, it is a confirmation
(although indirect) that the implementation of the new model
within NUBEAM/TRANSP does reflect the fast ion dynamics
as obtained from the original full simulations with the ORBIT
code. Secondly, it may be used to infer with some confidence
transport levels associated with other modes that are not
included in the computation of p(�E, �Pζ ), but may be
present in the original experiment. Another implication of
the tight dependence Rn = Rn(Amode) is that it may enable
simulations in which the measured neutron rate is supplied as
input, and Amode is determined during the run to match it. The
possible implementation of this Rn-feedback scheme directly
inside the model is left as future work.

Time evolutions of the fast ion and NB-driven current
profiles are finally considered as the last example in this
section; see figure 18. Like for the neutron rate, significant

drops are observed in both Fnb and Jnb when bursts of TAEs
occur. It is important to note that, as for the neutron rate, the
effects of each burst are not limited in time to the duration of
the burst, but propagate over a much longer time span, of the
order of the slowing down time.

5. Conclusions

A new fast ion transport model has been developed for
the tokamak transport code TRANSP. The model is based
on a Monte Carlo approach, for mimicking the effects
of instabilities on the fast ion population. A probability
distribution matrix, along with a mode amplitude scaling
factor, is used to define the fast ion response to the modes
as a function of time and fast ion phase-space coordinates.
Preliminary verification of the new model against the guiding
center code ORBIT has been performed. Initial tests with a
stand-alone version of the NUBEAM module, which evolves
the fast ion distribution in TRANSP, are successful. The
implementation of the model in the NUBEAM module of
TRANSP is under way. It will be followed by extensive
verification and validation work to assess the potential of the
new model as well as its limitations.
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