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Validating the calculations of kinetic resistive wall mode (RWM) stability is important for

confidently predicting RWM stable operating regions in ITER and other high performance

tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic

Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)],

Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301

(2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys.

Plasmas 20, 122507 (2013)] codes for two Solov’ev analytical equilibria and a projected ITER

equilibrium has demonstrated good agreement between the codes. The important particle

frequencies, the frequency resonance energy integral in which they are used, the marginally stable

eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between

the codes. The most important kinetic effect at low rotation is the resonance between the mode

rotation and the trapped thermal particle’s precession drift, and MARS-K, MISK, and PENT show

good agreement in this term. The different ways the rational surface contribution was treated

historically in the codes is identified as a source of disagreement in the bounce and transit

resonance terms at higher plasma rotation. Calculations from all of the codes support the present

understanding that RWM stability can be increased by kinetic effects at low rotation through

precession drift resonance and at high rotation by bounce and transit resonances, while

intermediate rotation can remain susceptible to instability. The applicability of benchmarked

kinetic stability calculations to experimental results is demonstrated by the prediction of

MISK calculations of near marginal growth rates for experimental marginal stability points

from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557

(2000)]. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873894]

I. INTRODUCTION

Tokamak fusion plasmas generate energy most effi-

ciently when the ratio of plasma stored energy to magnetic

confining field energy is high. In this regime, the plasma is

subject to magnetohydrodynamic (MHD) kink-ballooning

instabilities. This can lead to a disruption of the plasma cur-

rent and a loss of confinement on the relatively short Alfv�en

time scale. However, the growth rate of this mode can be

slowed quite considerably by the presence of a close-fitting

wall around the plasma. The magnetic perturbation from the

mode can penetrate the wall during mode growth, and

the time scale for that penetration is much longer than the

Alfv�en time scale. When the mode is converted to the more

slowly growing mode in this way, it is called the resistive

wall mode (RWM).1

Originally, it was thought that the presence of a resistive

wall could slow down the kink-ballooning mode, but that the

RWM itself could not be stabilized. Experiments soon found,

however, that tokamaks could be stably operated above the

so-called “no-wall limit.”2,3 It was then postulated theoreti-

cally that the RWM can be stabilized by a combination of

plasma rotational inertia and an energy dissipation

mechanism.4–6 Simple models proved to be insufficient to

explain experimental results,3,7–9 and theoretical investiga-

tion has turned to the inclusion of kinetic effects to explain

the plasma stability.10–34

One can calculate the stability of the RWM by determin-

ing x¼xrþ ic, the complex mode frequency, where xr is

the real mode rotation frequency, and c is the growth rate. A

standard approach is to change the force balance equation

into an equation in terms of changes of kinetic and potential

energies (dW), and then to write a dispersion relation for the

complex mode frequency x in terms of these dW terms.35–37

Specifically, applicable to the RWM is the so-called

“low-frequency” energy principle,36–40 which requires the

inclusion of the particle drift frequencies, as these cannot be

considered to be much lower than the mode frequency. The

approach of solving for the dW terms has the advantage of

clarity in distinguishing the various stabilizing and destabi-

lizing effects. In this work, we will concentrate on the

change of potential energy that arises from the perturbed ki-

netic pressure of thermal particles.

The RWM dispersion relation can be written10,11,14

ðcþ ixrÞsw ¼ �
dW1 þ dWK

dWb þ dWK
: (1)
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Here, sw is the current decay time in the resistive wall, dW1
is the sum of the plasma fluid and vacuum perturbed poten-

tial energies when the wall is placed at infinity, and dWb is

the sum of the plasma fluid and vacuum dWs when the wall

is placed at a specific location b. These two contributions to

the energy principle have been theoretically developed for

years,41 and computer codes have been written to solve for

them, such as PEST.42 The kinetic term, dWK is given by

dWK ¼ �
1

2

X
j

ð
n�? �

h
$ � ~PK

i
dV; (2)

where n? is the mode displacement. In the fluid approach,

the perturbed pressure is given in terms of macroscopic

quantities. In the kinetic approach, the components of the

pressure tensor ~PK; ~p?, and ~pk, are defined by taking

moments of the perturbed distribution function ~f . The kinetic

approach allows for resonances between the mode rotation

and particle precession, bounce or transit frequencies that

can transfer energy from the mode to the particles and

thereby maintain the stability of the RWM.

The goal of this work is to benchmark calculations of ki-

netic resistive wall mode stability. This effort was initiated

and conducted through an International Tokamak Physics

Activity (ITPA) of the MHD Stability group. Three codes,

Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-
K),14,43 Modification to Ideal Stability by Kinetic effects

(MISK),11 and Perturbed Equilibrium Nonambipolar

Transport (PENT) (Ref. 44) are compared in detail, in this

work. The PENT code was largely written during this effort.

This work builds off of, and greatly expands upon, a previous

effort in which the MARS-K and MISHKAþHAGIS (Refs. 45

and 46) codes were benchmarked in Ref. 14, Sec. III C.

The ITPA MHD Stability Group proponents decided

upon a group of common equilibria to test, and a set of con-

straints were determined to allow direct comparisons

between the codes. It was decided to compare code calcula-

tions for two analytical equilibria, one a simple, near-

circular shape with no n¼ 1 rational surfaces, and one a

shaped equilibria with two n¼ 1 rational surfaces, as well as

an ITER case. In each case, the focus was on the calculation

of rotational resonances of thermal particles, so collisions

were ignored and energetic particles were not included.

Though obviously important, it is beyond the scope of this

work to fully compare stability calculations to present exper-

imental results, though MISK calculations of RWM stability

have been compared to both National Spherical Torus

Experiment47 (NSTX)19–22,24,34,48,49 and DIII-D (Refs. 9 and

25) experimental results, while MARS-K calculations have

been performed for RWM stability in DIII-D (Refs. 18 and

43) and the RFX-mod reversed field pinch,27,50,51 as well as

for ideal wall mode stability in NSTX. Finally, comparisons

between the benchmarked MISK calculations and NSTX

results are also presented here. Benchmarked and experimen-

tally validated calculations of RWM stability are important

to confidently project the stability of future devices such as

ITER, which cannot tolerate disruptions.

The paper is organized as follows. First, the MARS-K,

MISK, and PENT codes are briefly described in Sec. II. In

Sec. III, the equilibrium configurations that are tested are

described. In Sec. IV, various important frequencies of

the plasma are compared, which are then used in Sec. V in

the energy integral of the frequency resonance fraction. The

three different eigenfunctions used are described in Sec. VI,

and are then used in Sec. VII in calculating the perturbed

Lagrangian. The results of the resistive wall mode stability

analysis are presented, starting in Sec. VIII with the fluid dW
terms, in Sec. IX with the kinetic dW term, and in Sec. X

with the RWM growth rate and rotation frequency. Finally,

the benchmarked calculations of the MISK code are briefly

compared to NSTX experiments in Sec. XI.

II. CODES

Various codes have been developed that can incorporate

kinetic effects in stability calculations. In addition to the

three described here, one prominent example is the combina-

tion of the MISHKA (Ref. 45) and HAGIS (Ref. 46) codes.

A. MARS-K

MARS-K is a toroidal MHD-kinetic hybrid stability

code14,43 that solves the eigenvalue problem derived from

the linearized single-fluid ideal/resistive MHD equations

with toroidal flow, self-consistently including the drift ki-

netic effects in full toroidal geometry. This approach allows

the kinetic effects associated with the thermal or energetic

particles to consistently modify the mode eigenfunction,

which could significantly influence the mode stability and

structure in certain circumstances.31 In this work, however,

MARS-K will be used in a perturbative mode.

MARS-K simulates a plasma surrounded by a pure vac-

uum region, a resistive wall, and a set of magnetic coils.

With these features, the code can be applied to the physical

study and support of experiments on various subjects such as

MHD instabilities (e.g., resistive wall mode and tearing

mode), and plasma response to external fields (e.g., resonant

field amplification and resonant magnetic perturbation).

B. MISK

The MISK code11 calculates the change in potential

energy of the plasma due to kinetic effects, dWK. Along with

the fluid dW terms calculated using a marginally stable eigen-

function with the PEST code,42 the dispersion relation or

energy principle including kinetic effects is used to predict the

growth rate of the resistive wall mode. This approach assumes

that kinetic effects do not change the eigenfunction, and that

the mode growth rate and frequency are small, so their nonlin-

ear inclusion is unimportant. Cases which are above the ideal

no-wall limit, and therefore would be unstable without kinetic

effects, are examined. MISK has been used extensively (see

Refs. 19–25, 34, and 49), and close quantitative agreement

has been found between theoretically expected RWM mar-

ginal stability points and RWM stability in NSTX and DIII-D.

C. PENT

The PENT code44 calculates the toroidal torque

due to neoclassical toroidal viscosity (NTV)52 in a

052505-2 Berkery et al. Phys. Plasmas 21, 052505 (2014)
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nonaxisymmetric equilibrium. In the perturbative approach

with no mode rotation, the toroidal torque due to nonambipo-

lar transport and the drift kinetic energy are related by a sim-

ple equivalency principle,53,54 T/ ¼ 2indWK . The PENT
code was developed in conjunction with the IPEC (Ref. 55)

(Ideal Perturbed Equilibrium Code) and DCON (Ref. 56)

codes, which have been widely used and found to be in good

agreement with experiment.57–61 Although originally devel-

oped to couple externally applied 3D fields to the plasma,

this suite of codes is used with an equivalent approach to

MISK and PEST for this benchmark. The fluid dW is calcu-

lated using the marginally stable eigenfunction from DCON,

which is used in IPEC to calculate the 3D perturbed equilib-

rium. The kinetic term calculated in PENT is then included

in Eq. (1), which is valid only in the same small perturbation

limit as the equivalency principle.

III. EQUILIBRIA

Three equilibria were used for this benchmarking exer-

cise: an analytical equilibrium with nearly circular surfaces

and no rational surfaces, an analytical equilibrium with

shaped surfaces and two n¼ 1 rational surfaces, and finally a

projected ITER equilibrium.

A. Solov’ev equilibrium

Solov’ev equilibria62,63 are a family of analytical equi-

librium solutions to the Grad-Shafranov equation for the

poloidal current function F¼RBt (with R the major radius

and Bt the toroidal magnetic field), and the pressure profile

P(w), where w is the magnetic flux coordinate. In MARS-K,

the Solov’ev equilibrium is written14

FðwÞ ¼ 1; (3)

l0

B2
0

PðwÞ ¼ � 1þ j2

jR3
0q0

w; (4)

w ¼ j

2R3
0q0

R2Z2

j2
þ 1

4
R2 � R2

0

� �2 � �2
aR4

0

� �
: (5)

This w ranges from a negative value at the axis (�w0) to

zero at the edge. A normalized flux can be written

Wn¼w/w0þ 1, which goes from 0 on axis to 1 at the edge.

In addition to B0, the magnetic field on axis, and R0, the

major radius of the plasma axis, three quantities must be

specified: the elongation j, the safety factor on axis q0, and

the inverse aspect ratio �a¼ a/R0, where a is the plasma

minor radius. The plasma boundary is specified in (R, Z)

coordinates by

Rb ¼ R0 1þ 2�a cos hð Þ
1
2; (6)

Zb ¼
R0�aj sin h

1þ 2�a cos hð Þ
1
2

: (7)

Note also that for the Solov’ev cases, the q profile can

be analytically determined from64

q ¼ q0

2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�r

p

1� 4�2
r

EðkÞ; (8)

where E is the complete elliptic integral of the second kind,

k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�r=ð1þ 2�rÞ

p
, and er¼ (R�R0)/R0.

MISK uses the PEST code and PENT uses the DCON
code to provide the eigenfunction and fluid dW terms. The

two differ in that the PEST calculation includes both poten-

tial and kinetic energy terms in dW, which allows typically

resonant eigenfunction displacements to bridge the corre-

sponding rational surfaces. DCON only includes a potential

energy dW, and resonant components of eigenfunction dis-

placement are forced to zero at the corresponding rational

surfaces. The Solov’ev equilibrium can be explicitly speci-

fied in PEST and DCON.

1. Solov’ev 1

The equilibrium designated “Solov’ev 1” was used in

Ref. 14, and is near-circular (Fig. 1(a)), with no n¼ 1

rational surfaces (Fig. 2). It is specified by the parameters

j¼ 1, q0¼ 1.2, and �a¼ 0.2, and has a qedge¼ 1.41371.

2. Solov’ev 3

The equilibrium designated “Solov’ev 3” was also used

in Ref. 14. This equilibrium is shaped (Fig. 1(b)), and con-

tains the q¼ 2 and 3 rational surfaces within the plasma

(Fig. 2). It is specified by the parameters j¼ 1.6, q0¼ 1.9,

and �a¼ 0.33, and has a qedge¼ 3.263.

B. ITER

The ITER equilibrium utilizes the current design of the

ITER target for 9 MA operation,65 with bN¼ 2.9. It has

R0¼ 6.2 m, B0¼ 5.3 T, the shape shown in Fig. 3 and the q
profile shown in Fig. 4.

IV. FREQUENCY COMPARISONS

A. Density, temperature, pressure, and rotation
frequency profiles

We will assume for the Solov’ev cases that there are no

energetic particles, only thermal ions and electrons, and that the

ion and electron densities and temperatures are equal, ne¼ ni

and Te¼ Ti. Also, for the purposes of determining P from

Eq. (4), we now set R0¼ 1 m and B0¼ 1 T. Then, the pressure

has the form P¼P0(1�Wn), with P0¼ 2.210� 104 Pa for

Solov’ev 1, and P0¼ 4.273� 104 Pa for Solov’ev 3.

Finally, we must specify the density profile. For the

Solov’ev cases, we use n¼ n0(1� 0.7Wn). Then, the density on

axis, n0, is determined by specifying (xci/xA)0, where

the Alfv�en frequency on axis xA0 ¼ B0=ðR0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0mini0
p Þ and

the ion cyclotron frequency on axis xci0 ¼ eB0=mi ¼ 47:9
�106 krad=s. For the comparisons here, we will use

(xci/xA)0¼ 121, to be consistent with Ref. 14, even though this

results in the values of xA0¼ 395.9 krad/s and the unrealistically

high density n0¼ 1.518� 1021 m�3. Note that the normalized

mass density q/q0¼ 1�Wn also affects the eigenfunction.
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The temperature profile is then determined from

T¼P/(2n). For the Solov’ev cases, this means T ¼ ðP0=2n0Þ
ð1�WnÞ=ð1� 0:7WnÞ.

For the Solov’ev cases, we will use the E�B frequency

profile xE¼xE0(1�Wn), and a range of constant values of

xE0. We will take xE0/xA0¼ 1� 10�2 or xE0¼ 3.959 krad/s

as a nominal value. The toroidal rotation frequency, x/ can

then be found by a radial force balance neglecting poloidal

rotation so that x/ ¼ xE þ xi
�N þ xi

�T , where xi
�N and xi

�T
are defined in Subsection IV B.

For the ITER case instead of using analytically pre-

scribed functions for the pressure, density, temperature, and

rotation, we will use profiles determined for the 9 MA ITER

steady-state scenario target. Additionally, the ITER case will

have three separate species, each with their own pressure:

ions, electrons, and alpha particles. The following are given,

as profiles of W: na/(neþ ni), ne, Te, Ti, Pa/(PeþPi), and x/.

The ion density is taken to be equal to the electron density,

i.e., quasineutrality is not enforced. The ion and electron

pressures are determined from Pe¼ neTe, and Pi¼ niTi,

which then determine Pa as well.

For the ITER case instead of using analytically pre-

scribed functions for the pressure, density, temperature, and

rotation, we will use profiles determined for the 9 MA ITER

target. The deuterium ion density is taken to be equal to the

electron density (energetic particles, alpha particles, and trit-

ium are not considered here). Figure 5 shows the profiles of

density, temperature, and rotation, normalized to their

axis values: ni0¼ ne0¼ 7.22� 1019 m�3, Ti0¼ 31.32 keV,

Te0¼ 34.25 keV, and xu0¼ 37.34 krad/s. The nominal value

of xE0/xA0 calculated from these parameters is 1.62� 10�2

for the ITER case.

FIG. 1. (a) The Solov’ev 1 equilibrium and (b) the Solov’ev 3 equilibrium, showing flux surfaces at the edge (blue) and r/R0¼ 0.02, 0.08, and 0.18 (red).

These last three are compared to their equivalent circles (dashed). Finally, conformal walls having rw/a¼ 1.15 for Solov’ev 1 and rw/a¼ 1.10 for Solov’ev 3

are shown in black (see Sec. VIII).
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FIG. 2. The Solov’ev 1 and Solov’ev 3 equilibrium q profiles.

FIG. 3. The ITER equilibrium, showing a flux surface at the edge (blue) and

r/R0¼ 0.18 (red). Also shown are the ITER double wall (black) and a con-

formal wall with rw/a¼ 1.5 (green).
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B. Diamagnetic frequencies

The density and temperature gradient components of the

diamagnetic frequency are defined in [rad/s] as: xj
�N

¼ �Tj=ðZjenjÞðdnj=dWÞ; xj
�T ¼ �1=ðZjeÞðdTj=dWÞ, where

Zje is the electric charge of species j. For the Solov’ev equili-

bria, these can be written analytically as

xi
�N ¼ �xe

�N ¼
0:7T0=e

ð�w0Þ
1�Wn

1� 0:7Wnð Þ2

 !
; (9)

xi
�T ¼ �xe

�T ¼
0:3T0=e

ð�w0Þ
1

1� 0:7Wnð Þ2

 !
: (10)

C. Collision frequency

Although, in general, collisionality can impact kinetic

stability calculations, and there are various ways of express-

ing collisionality;22 for the comparisons here, both ion and

electron collision frequencies are taken to be zero. This deci-

sion was taken to avoid the complication of the effect of col-

lisionality and to allow focus on the computation and

comparison of other physics aspects in the codes.

D. Bounce frequency

The general formula for the particle bounce frequency is

xb ¼ 2p=ð
Ð
ðdl=vkÞ, where l is the particle trajectory and vk

is the parallel velocity.

In the large aspect ratio limit, the particle bounce fre-

quency can be written13,66

xbffiffiffiffiffiffiffiffiffiffiffiffi
2e=mi

p ¼
ffiffiffiffiffiffiffiffiffiffi
2�rK
p

4qR0

p
KðkÞ ðtrappedÞ; (11)

xbffiffiffiffiffiffiffiffiffiffiffiffi
2e=mi

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kþ �rK
p

2qR0

p
Kð1=kÞ ðcirculatingÞ; (12)

where K is a pitch angle variable defined by K¼ lB0/e with

l ¼ mv2
?=2B the magnetic moment and e¼mv2/2 the kinetic

energy of the particle (m and v are the mass and velocity of the

particle), K is the complete elliptic integral of the first kind, and

k ¼ 1� Kþ �rK
2�rK

� �1
2

: (13)

Figure 6(a) shows the normalized, dimensionless ion

bounce frequencies calculated by MISK, MARS-K, and PENT
compared to the large aspect ratio approximation, using the

Solov’ev 1 equilibrium at the �r¼ 0.08, Wn¼ 0.160 surface vs.

K. Figure 7(a) shows the normalized ion bounce frequencies

compared to the large aspect ratio approximation, using the

Solov’ev 3 equilibrium at the �r¼ 0.33, Wn¼ 1 surface (the

plasma boundary) vs. K. Figure 8(a) shows the normalized ion

bounce frequencies using the ITER equilibrium at the

�r¼ 0.322, wn¼ 0.982 surface (very close to the plasma

boundary) vs. K. All three codes are in quantitative agreement,

FIG. 4. The ITER equilibrium q profile.
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FIG. 5. Normalized profiles of density, temperature, and rotation for the

ITER case.
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FIG. 6. (a) Ion bounce frequency and (b) ion magnetic precession drift frequency calculated by MISK, MARS-K, and PENT compared to the large aspect ratio

approximation for the �r¼ 0.08 surface of the Solov’ev 1 case, vs. K. The left branch of (a) is for circulating ions and the right branch is for trapped ions. Plot

(b) can be directly compared to the same one produced by MARS-K in Ref. 14, Fig. 1(b).
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and significantly deviate from the large aspect ratio case due to

their general treatment of the magnetic topology.

In the limit of deeply trapped particles, one can show that for

the Solov’ev equilibrium, the bounce frequency can be written64

xbffiffiffiffiffiffiffiffiffiffiffiffi
2e=mi

p ¼ 1

q0

F2

1þ 2�r
þ j2�2

r

q2
0

 !�1

� F2�r

2 1þ 2�rð Þ þ
j2�3

r

q2
0

þ 1� j2ð Þ�2
r

2q2
0

1þ 2�rð Þ
" #1

2

:

(14)

Figure 9(a) shows the normalized ion bounce frequen-

cies calculated by MISK, MARS-K, and PENT at maximum

K compared to the deeply trapped particle limit, using the

Solov’ev 1 and Solov’ev 3 equilibria vs. �r.

E. Magnetic precession drift frequency

The general formula for the bounce-averaged magnetic

precession drift frequency comes from Ref. 67, and is given

by: xD ¼ 1=ðZjeÞð@J=@WÞ=ð@J=@eÞ, where J ¼
Ð

mjvkdl is

the equilibrium longitudinal invariant of the particle parallel
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FIG. 7. (a) Ion bounce frequency and (b) ion magnetic precession drift frequency calculated by MISK, MARS-K, and PENT compared to the large aspect ratio

approximation at the outer surface of the Solov’ev 3 case, vs. K. The left branch of (a) is for circulating ions and the right branch is for trapped ions.

FIG. 8. (a) Ion bounce frequency and (b) ion magnetic precession drift frequency calculated by MISK, MARS-K, and PENT at the �r¼ 0.322 surface (very close

to the outer surface) of the ITER case vs. K. The left branch of (a) is for circulating ions and the right branch is for trapped ions.

Deep. Tr.
PENT
MISK
MARS-K

Solovev 1

Deep. Tr.
PENT
MISK
MARS-K

Solovev 3

a)

0.0 0.2 0.4 0.6 0.8 1.0
r/a

0.00
0.05

0.10

0.15

0.20

0.25

0.30
0.35

ω
b/

(2
ε/

m
i)1/

2  *
R

0

      

 

 

 

 

 

 

 

 

Deep. Tr.
PENT
MISK
MARS-K
Solovev 1

Deep. Tr.
PENT
MISK
MARS-K
Solovev 3

b)

0.0 0.2 0.4 0.6 0.8 1.0
r/a

10-1

100

101

102

103

ω
D
/

(ε
/

Z
je

)*
(R

02 B
0)

      

 

 

 

 

 

FIG. 9. (a) Ion bounce frequency and (b) ion magnetic precession drift frequency calculated by MISK, MARS-K, and PENT at maximum K compared to the

deeply trapped particle limit for the Solov’ev 1 and 3 cases, vs. �r.
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motion. This equation for xD is broken into two parts. Using

a definition of the bounce time, s ¼ @J=@e,67 we have

xD ¼
e

Zje

1

s
2

v2

@

@W

ð
vkdl

� �
; (15)

which eventually results in

xD ¼ �
e

Zje

1

s

ð
dl

1

vk

K
B0

@B

@W

� �(

�
2vk
v2

B2
h

B

@

@W
B

B2
h

� �
� 1

B2
h

l0

@p

@W
þ F

R2

@F

@W

� �" #)
:

(16)

Equation (16) is the form for xD used in MARS-K, with

an equivalent expression used in MISK, while PENT uses an

explicit bounce averaging of the gradient and curvature drift

velocities.44 Note that at the turning points vk ! 0 causes a

singularity in Eq. (16), but this singularity is integrable.

The large aspect ratio magnetic precession drift fre-

quency for trapped particles is13,14

xD

e=ðZjeÞ
¼ 2qK

R2
0�rB0

2sþ 1ð Þ E kð Þ
K kð Þ

þ 2s k2 � 1ð Þ � 1

2

" #
; (17)

where s¼ (r/q)(dq/dr) is the magnetic shear and E is the

complete elliptic integral of the second kind.

Figure 6(b) shows the normalized magnetic ion magnetic

precession drift frequencies calculated by MISK, MARS-K, and

PENT compared to the large aspect ratio approximation, using

the Solov’ev 1 equilibrium at the �r¼ 0.08, wn¼ 0.160 surface,

vs. K. Figure 7(b) shows the normalized ion precession drift

frequencies compared to the large aspect ratio approximation,

using the Solov’ev 3 equilibrium at the �r¼ 0.33, wn¼ 1 sur-

face (the plasma boundary), vs. K. Figure 8(b) shows the nor-

malized ion precession drift frequencies using the ITER

equilibrium at the �r¼ 0.322, wn¼ 0.982 surface (very close to

the plasma boundary) vs. K. Again, for xD, all three codes are

in quantitative agreement.

Finally, in the limit of deeply trapped particles, one can

show that for the Solov’ev equilibrium, the magnetic preces-

sion drift frequency can be written64

xD

e=ðZjeÞ
¼ q0

R0j�r

F2

1þ 2�r
þ j2�2

r

q2
0

 !�1
F2

ð1þ 2�rÞ2
� j2�r

q2
0

" #
:

(18)

Figure 9(b) shows the normalized ion magnetic preces-

sion drift frequencies calculated by MISK, MARS-K, and

PENT at maximum K compared to the deeply trapped particle

limit, using the Solov’ev 1 and Solov’ev 3 equilibria vs. �r.

V. ENERGY INTEGRAL OF THE FREQUENCY
RESONANCE FRACTION

A major part of the kinetic calculation (of ~PK in

Eq. (2)) is the energy integration of the frequency resonance

fraction

Ie W;K; lð Þ

¼
ð1

0

dê
n x�Nþ ê�3

2

� �
x�T

� �
þnxE�xr� ic

nxDþ lþanqð Þxb� i�effþnxE�xr� ic
ê

5
2e�ê

2
64

3
75
;

(19)

where ê ¼ e=T, and a¼ 0 for trapped particles or a¼ 1 for

circulating particles. Here, l is the bounce harmonic and n is

the toroidal mode number (not the density), and it will be

taken as n¼�1 for the comparisons presented here, to be con-

sistent with the MARS-K geometrical convention. The energy

integral can be evaluated based only upon the frequencies al-

ready described, for both ions and electrons. Nominally, �eff ¼
0 as specified in Subsection IV C, and we will take xr¼ 0 and

c¼ 0. Note that when collisionality is zero, having a small

imaginary component (via c) in the denominator is beneficial

to avoid singularities in the integration.24 Since we are taking

�eff¼ 0 and c¼ 0, there are poles on the real energy axis,

which need to be accounted for properly.

If we choose a particular W surface, then x*N, x*T, and

xE are constants. The precession drift and bounce frequencies

are functions of both K and ê still, as indicated in Figs. 6 and 7.

One major historical difference between MISK and

MARS-K is that MISK performed the energy integration

numerically, whereas MARS-K performed it analytically.13

Analytical solutions are possible only under certain constraints.

For example, �eff must not have energy dependence and when

l 6¼ 0, one must assume xD¼ 0 (xD �xb). Since this is the

approach taken in MARS-K and in MISK’s analytical mode,

we have used this assumption in PENT and in MISK’s numeri-

cal mode for the purposes of this benchmarking. MARS-K,

however, has recently implemented numerical integration, and

can now treat energy-dependent collisionality. Therefore, both

MISK and MARS-K now have the capability to perform the

energy integral either analytically or numerically. Although

they were not used in that way in the present comparisons, in

general, each code can have energy-dependent collisionality

and both precession and bounce frequencies simultaneously.

Performing the energy integration, we can plot Ie as a

function of K. Figure 10(a) shows each l component of Re(Ie)
from �2 to 2 for thermal ions in the Solov’ev 1 equilibrium at

r/R0¼ 0.08 (Wn¼ 0.16), the same surface chosen in Fig. 6.

Figure 10(b) shows the same for the Solov’ev 3 equilibrium at

r/R0¼ 0.252 (Wn¼ 0.585, q¼ 2.5). Both of these are calcu-

lated at the nominal rotation of xE0/xA0¼ 1� 10�2. The

traces are plotted as l/n so that they are equivalent for n¼�1

or n¼ 1. Note that, while only the l¼�2 to l¼ 2, bounce har-

monics are shown and the contribution decreases with increas-

ing jlj, many more bounce harmonics are included in the

calculations in each code, to accurately capture the contribu-

tion from bounce resonant particles.

VI. EIGENFUNCTION COMPARISON

As an approximation to the fluid RWM, MISK and

PENT use the marginally stable ideal kink eigenfunction

with an ideal wall, as calculated by PEST and DCON, respec-

tively (with differences described earlier), by moving the
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wall position progressively inward until the marginal point is

found.11 This eigenfunction is a good approximation to the

fluid RWM,14 and has been compared to experiment.3 Figure

11 compares the poloidal Fourier harmonics of the normal

displacement n � r
ffiffiffiffiffiffi
Wn

p
vs.

ffiffiffiffiffiffi
Wn

p
for a marginally stable

ideal kink mode with an ideal wall computed by PEST and

DCON to the fluid RWM eigenfunctions computed by MARS-
K for the two Solov’ev equilibria and the ITER equilibrium

in PEST coordinates. The Fourier harmonics following this

definition have more physical meaning (a better separation

between resonant and non-resonant harmonics) than using

equal-arc coordinates. Note that due to geometrical conven-

tion in the MARS-K code, both Solov’ev eigenfunctions will

be considered to have n¼�1 toroidal mode numbers.

VII. THE PERTURBED LAGRANGIAN

As will be shown in Eq. (21), another major part of the

kinetic calculation is the perturbed Lagrangian14

hH=êi W;K; lð Þ¼1

s

þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�KB

B0

r ein/�iðlþanqÞxbt

� 2�3
KB

B0

� �
j �n?ð Þ� KB

B0

� �
$ �n?ð Þ

� �
dl:

(20)

Here, h�i indicates a bounce average, / is the toroidal angle,

and j ¼ b̂ � $b̂ is the magnetic curvature. Note that like the

bounce and precession frequencies, this quantity has a singu-

larity when vk ! 0, but it is integrable.

It is useful to examine the major constituents of hH=êi
separately. Figure 12 shows an example $ � n? contour for

the Solov’ev 3 equilibrium. Note that j � n? and $ � n? are

related by the definition of the perturbed parallel magnetic

field ~Bk ¼ �B $ � n? þ 2j � n? � n? � $ l0p=B2
� �� �

:
Finally, one must be cautious in evaluating $ � n?, as

the @=@/ component of $ will change sign whether one uses

n¼ 1 or �1.

One concern is that at rational surfaces, Alfv�en resonan-

ces can lead to singularities in the calculation of dWK.11 We

have found, however, that this is not the case at the q¼ 2 and

q¼ 3 rational surfaces in the Solov’ev 3 calculation.

Therefore, in this case, the integration is performed smoothly

across these surfaces; no special considerations such as

replacing the calculation in the vicinity of the rational surfa-

ces with an analytic calculation20,68 are taken. Though no

singularities were found in this case, small differences in the

eigenfunction near the rational surfaces between the different

codes can make a difference, as will be shown in Sec. IX B.

In contrast, in the ITER case, singularities were found at the

rational surfaces. The treatment of this issue will be dis-

cussed in Sec. IX B.

FIG. 11. Poloidal Fourier harmonics of the normal displacement for the marginally stable ideal kink mode with an ideal wall for (a) the Solov’ev 1, (b) the Solov’ev 3,

and (c) the ITER equilibria, as computed by PEST and DCON, compared to the fluid RWM eigenfunction as computed by MARS-K, in the PEST coordinate system.
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FIG. 10. Real components of Ie for each l/n from �2 to 2, vs. K for thermal ions in (a) the Solov’ev 1 equilibrium at r/R0¼ 0.08 (Wn¼ 0.16), and (b) the

Solov’ev 3 equilibrium at r/R0¼ 2.52 (Wn¼ 0.585, q¼ 2.5), calculated by MISK, MARS-K, and PENT in (a) and MISK and PENT in (b). In both cases, the

nominal value of xE0/xA0¼ 1� 10�2 was used.
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VIII. FLUID DW TERMS

dW1 and dWb are the fluid terms calculated with the

wall at infinity or the actual “experimental” location b. In

this study, we will use a conformal wall, so that b is the dis-

tance of the wall away from the plasma boundary, in units of

r/a, and the normalized wall position is rw/a¼ 1þ b. The

absolute value of these dW quantities as calculated by differ-

ent codes is arbitrary (the normalizations and units differ);

what really matters are the ratios. Therefore, in this section,

we will report the quantity ĉ�1
f ¼ dWb=ð�dW1Þ, which is

the inverse fluid growth rate, normalized by the wall time.

Let us now also define dW1 ¼ dWF þ dWS þ dW1V , the

sum of the plasma fluid, surface, and vacuum perturbed

potential energies when the wall is placed at infinity, and

dWb ¼ dWF þ dWS þ dWb
V , the sum of the plasma fluid, sur-

face, and vacuum dW terms when the wall is placed at a spe-

cific location b. The PEST and DCON codes use the

VACUUM code69 to calculate the dWV terms. The plasma

fluid terms are equal regardless of the wall position. The sur-

face term arises when there is a finite pressure gradient at the

plasma boundary. In the Solov’ev cases, there is a gradient at

the boundary; however, the surface term is neglected for the

purpose of this benchmarking exercise.

For the Solov’ev 1 case, we choose conformal walls

with rw/a¼ 1.15, and for Solov’ev 3, rw/a¼ 1.10 (see Fig.

1), to be consistent with Ref. 14. For the ITER case, we

choose a conformal wall with rw/a¼ 1.5, which approxi-

mates the actual ITER wall position. See Fig. 3 for illustra-

tions of these walls. The resulting values of ĉ�1
f for Solov’ev

1 are 1.187, 1.122, and 1.120 for MARS-K, MISK, and

PENT, respectively, for Solov’ev 3 are 1.830, 2.337, and

2.316 for MARS-K, MISK, and PENT, respectively, and for

ITER are 0.682, 0.677, and 0.856 for MARS-K, MISK, and

PENT, respectively.

Note that ĉf is slightly lower for MARS-K than PEST or

DCON in the Solov’ev 1 case, and slightly higher in the

Solov’ev 3 case. This will impact the kinetic growth rate, as

will be seen in Sec. X. For the ITER case, DCON finds a

lower ĉf , due to a lower dW1. However, this difference also

impacts the normalization of the kinetic effects in PENT so

that, in the end, the ITER kinetic csw for PENT will be close

to that of MARS-K and MISK.

IX. KINETIC dWK

For trapped Maxwellian particles, the kinetic dW is

given by

dWK ¼ �
ffiffiffi
p
p

2

ðWa

0

nT

B0

ðB0=Bmin

B0=Bmax

s
X

l

jhH=êij2IêdKdW; (21)

where one can see that dWK involves the previously defined

quantities Iê and hH=êi in a straightforward way.

Once again, we will report the values found as

dWK/(�dW1), broken into its various contributions in Figs.

13 and 14 for Solov’ev 1, Figs. 15 and 16 for Solov’ev 3,

and Figs. 17 and 18 for ITER.

Generally, and as expected, one can see that the kinetic

resonance between the mode and the precession motion of

particles is strongest when the plasma rotation is small

(xE0/xA0 � 0.1), while the resonance with the bounce

motion of trapped particles or circulating motion of passing

particles is strongest at higher rotation (xE0/xA0 � 0.1). The
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FIG. 13. (a) Real and (b) imaginary dWK for l¼ 0 trapped thermal ions and electrons for the Solov’ev 1 case, as calculated by MARS-K, MISK, and PENT.

FIG. 12. Reðr � n?Þ [arbitrary units] in the Solov’ev 3 equilibrium, calculated by (a) MISK, (b) MARS-K, and (c) PENT. The MARS-K and PENT results are

renormalized by making the maximum value at r/R0¼ 0.252 (Wn¼ 0.585, q¼ 2.5), the same as the MISK maximum.
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codes agree well in the calculation of each term, especially

for the precession resonance and especially for the Solov’ev

1 case, which has no rational surfaces. The rational surfaces

are integrated over in the Solov’ev 3 case for each code. This

is historically how PENT (with smoothed rational contribu-

tion) and MARS-K (unsmoothed) have been operated; MISK
was operated like MARS-K, in this case. This leads to the dis-

crepancy between the codes in the bounce and circulating

terms seen in Fig. 16, as we will discuss in Sec. IX B.

Finally, in the ITER case, singular Alfv�en resonances at the

rationals have been removed for both MARS-K and MISK,

and this leads to good agreement between each code in each

term. This is how MISK has historically been operated

(although the analytical replacement of the rational surface

contribution normally calculated by MISK (Ref. 20) was not

included here); MARS-K was operated like MISK, in this

case. The PENT results are somewhat higher in magnitude in

Figs. 17 and 18, due the lower dW1 normalization factor.

We have seen that this difference also affects the fluid

growth rate, however, making ĉ�1
f higher as well. Therefore,

the growth rate from PENT will be consistent with that of

MISK and MARS-K in the end.
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FIG. 15. (a) Real and (b) imaginary dWK for l¼ 0 trapped thermal ions and electrons for the Solov’ev 3 case, as calculated by MARS-K, MISK, and PENT.
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FIG. 14. (a) Real and (b) imaginary dWK for l 6¼ 0 trapped thermal ions and for circulating ions for the Solov’ev 1 case, as calculated by MARS-K, MISK, and

PENT.
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FIG. 16. (a) Real and (b) imaginary dWK for l 6¼ 0 trapped thermal ions and for circulating ions for the Solov’ev 3 case, as calculated by MARS-K, MISK, and

PENT.
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A. The Chew-Goldberger-Low (CGL) limit

In the CGL, or high-frequency limit, jxE � xj ! 1.

Calculations in this limit of course represent an artificial sce-

nario, as very high x no longer applies to the RWM, and

very high rotation looses touch with experimental reality

and, additionally, we have neglected any effects of rotation

on the equilibrium or fluid stability. Nevertheless, in the

CGL limit, dWK is purely real and independent of the mode-

particle resonances, which allows a good check on the per-

turbed Lagrangian part of the problem. There are three sepa-

rate possible ways to calculate dW in the CGL limit. The first

is to just increase xE to a large value, as is effectively

accomplished in Figs. 13–18 on the right hand side when

xE0/wA0¼ 100. The total fluid dWCGL is found by adding the

various components in this limit. In this case, circulating

electrons and trapped electrons with a bounce (l 6¼ 0) reso-

nance become important, so they are included as well. The

second method is to add the various components, while tak-

ing the analytical limit

Ie W;K; lð Þ ! ICGL
e ¼

ð1
0

ê
5
2e�êdê ¼ 15

ffiffiffi
p
p

8
: (22)

These are effectively the numerical and analytical

approaches, and give the same result. The third method is to

solve for dWCGL directly using the CGL perturbed

pressures38

dWCGL ¼
1

2

ð
5

3
pj$ � n?j2dV þ 1

2

ð
1

3
pj$ � n? þ 3j � n?j2dV;

(23)

and then use the pressure and the quantities $ � n? and j � n?
from Sec. VII to calculate the fluid dWCGL directly. The

results of these methods are given in Table I for each case.

Again, the differences between codes in the Solov’ev 3 case

are due to integration over the rational surfaces, while the

PENT ITER results are higher due to lower dW1.
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FIG. 17. (a) Real and (b) imaginary dWK for l¼ 0 trapped thermal ions and electrons for the ITER case.
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FIG. 18. (a) Real and (b) imaginary dWK for l 6¼ 0 trapped thermal ions and for circulating ions for the ITER case.

TABLE I. dWK/(�dW1) in the CGL limit (jxE � xj ! 1). MARS-K
results are on top, MISK results are in the middle, and PENT results are on

the bottom. All values are real. For the ITER case, surfaces within

Dq¼60.1 of all rational surfaces are excluded.

xE0/xA0¼ 100 Fluid dWCGL

Solov’ev 1 1.57� 10�1 1.57� 10�1

1.60� 10�1 1.56� 10�1

1.55� 10�1 1.47� 10�1

Solov’ev 3 1.98� 100 1.84� 100

1.10� 100 1.01�100

6.32� 10�1 6.36� 10�1

ITER 6.11� 100 6.55� 100

6.72� 100 6.53� 100

9.88� 100 1.07� 101
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B. dWK as a function of W

One can gain understanding of the importance of the core

and edge regions, as well as rational surfaces, by examining

the contribution to dWK as a function of W. As an example,

Fig. 19 shows ReðdðdWK=ð�dW1ÞÞ=dWÞ vs. W for l¼ 0 and

l 6¼ 0 trapped thermal ions in the Solov’ev 3 case at the CGL

limit. The integrals of these curves represent the values of

ReðdWK=ð�dW1ÞÞ for l¼ 0 and l 6¼ 0 trapped thermal ions

with xE0/xA0¼ 1� 102. The precession drift resonance calcu-

lation (l¼ 0) is much less sensitive to the rational surface, and

the good agreement here in Fig. 19(a) explains the good agree-

ment in Fig. 15(a). The bounce resonance calculation (l 6¼ 0),

however, is influenced by differences at the q¼ 3 rational sur-

face. The differences in dWK between the three codes in Fig.

16(a) at large rotation (on the right hand side) can be explained

entirely by this difference at the rational surface.

Finally, however, in Fig. 20, for the ITER case (also in

the CGL limit), it is clear that the rational surface contribu-

tions in the bounce resonance are not only very different

between the codes, but unreasonably large for MISK and

MARS-K. This is a well-known issue, where singularities

arise at the rational surfaces due to Alfv�en resonances, and it

was pointed out years ago.11 Generally, the treatment of this

issue in MISK has been to remove the singular rational sur-

face contributions calculated in this way by imposing a layer

with width Dq around each rational surface, and then

adding a separately calculated analytical Alfv�en layer contri-

bution.20 Note that this separate, analytical calculation was

not added here, but Dq¼ 0.1 was used for both MISK and

MARS-K in this ITER case. Historically, MARS-K has

included the rational surface singularities in its calculations,

which may account for some historical differences between

the codes’ results, particularly, when MARS-K was operated

in its perturbative mode. PENT, meanwhile, does not appear

to have singularities in Fig. 20(b). This is because the under-

lying IPEC calculation of the eigenfunction has been

“regularized” at the rational surfaces with a standard and

straightforward technique by using a characteristic width pa-

rameter r such that n! nðm� nqÞ2=ððm� nqÞ2 þ rÞ,
where m and n are the poloidal and toroidal mode numbers,

respectively.70 Essentially this approach smoothes the contri-

bution to dWK in a given width near the rational surfaces

rather than simply removing it as in the MISK approach. One

can see the effect of the IPEC approach, for example, in the

Solov’ev 3 case (where the r regularization was employed in

IPEC but the Dq cut-off was not yet employed in MISK and

MARS-K) in the lower values for PENT in Fig. 19.

C. Convergence vs. damping parameter

A damping parameter in the denominator of the resonance

operator can come either from the finite growth rate of the

RWM (c) or from collisionality (�eff). dWK should converge to
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FIG. 19. Re(d(dWK/(�dW1))/dW) vs. W for (a) l¼ 0 trapped thermal ions and (b) l 6¼ 0 trapped thermal ions in the Solov’ev 3 case at the CGL limit, as calcu-

lated by MARS-K, MISK, and PENT.
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FIG. 20. Re(d(dWK/(�dW1))/dW) vs. W for (a) l¼ 0 trapped thermal ions and (b) l 6¼ 0 trapped thermal ions in the ITER case at the CGL limit, as calculated

by MARS-K, MISK, and PENT.
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the same value as that of the “ideal” case without any damp-

ing, when these damping terms approach zero. Figure 21

shows the result of such a convergence study for the Solov’ev

1 case for the l¼ 0 trapped thermal ion term. The figure shows

how each code converges as damping goes to zero (as is the

case throughout the rest of this document) and also that the

codes give similar results with increased damping.

X. GROWTH RATE AND MODE ROTATION
FREQUENCY

In the dispersion relation (Eq. (1)), the change in poten-

tial energy due to kinetic effects, dWK, in general, has both

real and imaginary parts. The real part of x is the mode rota-

tion frequency and the imaginary part is the normalized

growth rate. The results are given in Figs. 22–24. They are,

in generally, good agreement. Note that in Figs. 22(a) and

23(a) at lower rotation, the MARS-K csw differs from MISK
and PENT due to difference in the fluid, not kinetic, dW
terms, as can be seen by the dashed lines. For the Solov’ev 1

case, over a large range of rotation, the growth rate is not

substantially changed from the fluid case. The Solov’ev 3

case (Fig. 23) shows a larger influence of the kinetic effects.

In particular, at high rotation, the growth rate is reduced to

different levels in each code’s calculation due to the different

levels of circulating and bounce resonant kinetic effects cal-

culated. Intermediate plasma rotation is the least stable.
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FIG. 21. Convergence of (a) Re(dWK) and (b) Im(dWK) for trapped thermal ions with l¼ 0 vs. damping for the Solov’ev 1 case.
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FIG. 22. (a) csw (with cfsw shown in dashed lines (MISK and PENT almost overlaying)) and (b) xsw for the Solov’ev 1 case.
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FIG. 23. (a) csw (with cfsw shown in dashed lines (MISK and PENT almost overlaying)) and (b) xsw for the Solov’ev 3 case.
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The ITER case (Fig. 24) takes this trend even far-

ther, as the kinetic resonances at high rotation with

bounce and circulating particles are large enough in each

code to stabilize the plasma, while the precession reso-

nance at low rotation is as well. The intermediate rota-

tion between these resonances remains vulnerable to

instability (as is seen in experiments20). One must recall

that this is an incomplete calculation for ITER, however,

as various simplifications have been made in the bench-

marking process, including, most notably, the lack of

collisions and energetic or alpha particles. Nevertheless,

the codes agree in the basic underlying calculation of ki-

netic effects and all support the present understanding

that both high and low rotation kinetic resonances are

stabilizing to the RWM, but intermediate plasma rotation

is potentially susceptible to instability.

Finally, Table II shows a summary of important bench-

marked quantities presented here. The calculated, and nor-

malized, ideal dWb, real and imaginary parts of the kinetic

dWK, growth rate, and mode rotation frequency are shown

for each of the three cases with their respective chosen nomi-

nal rotation profiles, for each of the three codes. In some

cases, when the quantities are small, apparent discrepancies

in this table can seem overstated when compared to the

better-illustrated agreement in the corresponding xE scan

plots already shown.

XI. COMPARISON OF MISK CALCULATIONS TO NSTX
EXPERIMENTS

NSTX experiments have demonstrated unstable RWMs

and MISK calculations have been used to understand those

experimental results.19–22,24,34,49 Here, we demonstrate that

the benchmarked MISK calculations of thermal particle ki-

netic effects (now including collisions) can come close to

predicting the marginal stability point. Figure 25 shows the

calculated growth rate vs. scaled experimental rotation for

two discharges from time points just before an unstable

RWM caused a disruption (from Ref. 34). In both

cases, MISK predicts that these discharges are close to mar-

ginal stability with the experimental rotation profile

(x/=x
exp
/ ¼ 1), and that both will go unstable with a slightly

lower rotation, which is what actually happens in the experi-

ment since the rotation is decreasing in time in these dis-

charges and there is some further decrease from the

equilibrium time points analyzed to the unstable time. We

also can demonstrate by the dashed lines in Fig. 25 that by

integrating over the rational surfaces, rather than performing

the calculation analytically, the code predicts significantly

greater stability, which is inconsistent with the experimental

evidence, being well outside experimental error. Note that

when the singularities are large enough and dWK is larger

than the fluid terms in Eq. (1), csw tends towards a highly sta-

ble value of unity.

       
 

 

 

 

 

MARS-K MISK PENT

a)

1e-4 1e-3 1e-2 1e-1 1e0 1e1 1e2
ωE0/ωA0

-2

-1

0

1

2
γτ

w

       

 

 

 

 

 

       
 

 

 

 

 
MARS-K
MISK
PENT

b)

1e-4 1e-3 1e-2 1e-1 1e0 1e1 1e2
ωE0/ωA0

-2

-1

0

1

2

ω
τ w

       

 

 

 

 

 

FIG. 24. (a) csw (with cfsw shown in dashed lines (MARS-K and MISK almost overlaying)) and (b) xsw for the ITER case.

TABLE II. A summary of important benchmarked quantities. MARS-K results are on top, MISK results are in the middle, and PENT results are on the bottom.

For the Solov’ev 1 and 3 cases, the nominal value of xe0/xA0¼ 1� 10�2 is used. For the ITER case, the nominal value of xe0/xA0¼ 1.62� 10�2 is used, and

surfaces within Dq¼60.1 of all rational surfaces are excluded.

dWb=ð�dW1Þð¼ ĉ�1
f Þ ReðdWKÞ=ð�dW1Þ ImðdWKÞ=ð�dW1Þ csw xrsw

Solov’ev 1 1.187 2.18� 10�2 �1.21� 10�2 8.09� 10�1 1.82� 10�2

1.122 2.08� 10�2 �6.82� 10�3 8.58� 10�1 1.11� 10�2

1.120 2.14� 10�2 �1.14� 10�2 8.57� 10�1 1.86� 10�2

Solov’ev 3 1.830 7.94� 10�2 �1.47� 10�1 4.73� 10�1 1.14� 10�1

2.337 8.92� 10�2 �8.96� 10�2 3.73� 10�1 5.07� 10�2

2.316 7.13� 10�2 �1.39� 10�1 3.84� 10�1 8.02� 10�2

ITER 0.682 2.41� 10�1 �4.56� 10�2 8.19� 10�1 8.99� 10�2

0.677 3.67� 10�1 �1.33� 10�1 4.64� 10�1 4.51� 10�1

0.856 3.87� 10�1 �7.23� 10�2 4.89� 10�1 8.66� 10�2
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XII. DISCUSSION AND CONCLUSIONS

Calculations of the kinetic effects on resistive wall

mode stability with the MARS-K, MISK, and PENT codes

have been benchmarked. During the course of this process,

changes and improvements have been made to each of the

codes. The successful development of the PENT code was

concurrent with, and highly dependent upon this process. An

error in the precession frequency calculation was success-

fully corrected in the MISK code. This change has been

tested and found to have a moderate impact on previously

published results because the precession frequency is much

less than the rotation frequency in NSTX. Finally, an error in

computing a particle phase factor in the bounce resonance of

thermal ions in the MARS-K code was found and corrected.

The benchmarking exercise considered three cases: two

analytical Solov’ev equilibria and a projected ITER equilib-

rium. The various important frequencies of the problem,

including bounce and precession drift frequencies, have been

compared and show good agreement between the codes and

also with analytical limits. These frequencies are used in the

energy integral of the frequency resonance fraction, which

forms the heart of the problem of kinetic effects on RWM

stability. Analytical solutions of the energy integral are pos-

sible under certain constraints, and comparisons show that

there is good agreement between the numerical and analyti-

cal approaches, as well as between the codes. The marginally

stable ideal kink (fluid RWM) eigenfunctions, which are not

affected by kinetic effects in the perturbative calculations

performed here, are compared and show good agreement for

the three equilibria. The terms in the perturbed Lagrangian

using the eigenfunction, j � n? and $ � n?, also generally

agree between the codes, although differences exist at the

rational surfaces. Ideal stability calculations of the fluid dW
terms and fluid growth rates of the mode are consistent.

Finally, the kinetic dW terms, growth rates, and mode

rotation frequencies have been compared between the codes

for the two analytical Solov’ev equilibria and the projected

ITER equilibrium. The codes all show good agreement in the

most important kinetic terms: the l¼ 0 precession drift reso-

nant (at xE � xA) trapped thermal ions and electrons. For

bounce-resonant trapped particles and circulating ions, with

resonance for xE � 0:1xA, the codes show some disagreement

at the rational surfaces of the Solov’ev 3 case when the surfa-

ces are integrated over. This is also reflected in a disagreement

of the real part of dWK as xE ! 1 in the CGL limit. In the

ITER case, once the singularities at the rational surfaces have

been removed all three codes show good agreement in dWK.

The calculations shown here support the present under-

standing that RWM stability can be increased by kinetic

effects at low rotation through precession drift resonance and

at high rotation by bounce and transit resonances, while in-

termediate rotation can remain susceptible to instability.

This can be most easily seen when the kinetic effects are

used to calculate a growth rate and mode rotation frequency

of the RWM. For example, in Fig. 22(a), for the Solov’ev 1

case, the growth rate is reduced at high and low xE. The

results are in good agreement, in this case, with the differ-

ence for csw coming mostly from the difference in the fluid

growth rate (dashed lines). For the Solov’ev 3 case, the codes

also show fairly good agreement in csw and xsw, with the

difference in csw at low xE again mostly due to the fluid

growth rate, and the difference at high xE from the differen-

ces in the magnitude of the circulating and bounce resonan-

ces (Fig. 16), which comes from the rational surfaces. For

MARS-K, the rational surface contribution is large enough to

provide marginal stability, in this case. In the ITER case

(Fig. 24), once the rational surface singularities are removed,

the codes all agree well. The kinetic resonances at high rota-

tion with bounce and circulating particles are large enough

in each code to stabilize the plasma, while the precession res-

onance at low rotation is as well. The intermediate rotation

between these resonances remains vulnerable to instability.

Comparisons between the benchmarked calculations of

the MISK code and experimental marginal stability points

from NSTX demonstrate that the kinetic stability code calcu-

lations are useful for predicting the stability of experimental

devices. Additionally, it is conclusively shown that the

numerically computed inclusion of the effect of rational sur-

face singularities can lead to an unrealistically large pre-

dicted kinetic stabilization effect and incorrect prediction of

very stable plasmas.

The successful benchmarking between MARS-K, MISK,

and PENT gives great confidence that these codes are cor-

rectly calculating the theoretically important expected ki-

netic effects of resistive wall mode stability. To the extent

that this model is then validated against present experimental

evidence of RWM stability, one can then project the stability

of future devices with confidence. This is important because

reliable, validated resistive wall mode stability calculations

are critical for ITER, which cannot tolerate disruptions.
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