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1. Introduction

The linear peeling-ballooning stability boundary expresses 
an onset condition for edge localized modes (ELMs) [1], 
but ELM saturation mechanisms, filament dynamics, and 
multi-mode interactions require nonlinear models [2–5]. For 
instance, models for edge harmonic oscillations point to low-n  
peeling modes destabilized by rotational shear and held in 
a saturated state through rotational damping from wall drag 
[6, 7]. Nonlinear magnetohydrodynamic simulations indicate 

hyper-resistivity is a key factor for realistic radial penetration 
during the pedestal collapse [4]. Also, nonlinear simulations 
indicate low-n modes that are subdominant during the linear 
phase can grow to amplitudes that rival dominant modes due 
to nonlinear mode coupling [2, 5]. Typical diagnostic tools 
for ELM observations, like Thomson scattering profiles and 
αD  filterscopes, do not resolve the Alfvén timescales of ELM 

events. Furthermore, heuristic ELM classification schemes 
(Type I, III, etc) based on extrinsic ELM properties, like 
secular edge emission and inter-ELM period, do not capture 
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the nonlinear dynamics and Alfvén-scale evolution of ELM 
events [8]. Validation of nonlinear ELM models requires fast 
measurements on Alfvén timescales, and successful models 
should reproduce the complex evolution patterns observed 
during ELM events. Identification of common evolution pat-
terns in ELM events can motivate the formulation or valida-
tion of nonlinear ELM models.

In this paper, we investigate Alfvén-scale evolution pat-
terns in ELM events captured by beam emission spectroscopy 
(BES) measurements [9, 10] on the National Spherical Torus 
Experiment (NSTX) [11, 12]. We implement unsupervised 
machine learning algorithms that identify groups of ELMs 
with similar time evolution characteristics. The ELM database 
in this investigation most likely includes only Type I ELMs 
due to the ELM selection criteria. The analysis points to at 
least two and possibly three ELM groups with distinct evol-
ution patterns, which suggests recurring and distinct varia-
tions in nonlinear dynamics or saturation mechanisms. The 
identified ELM groups exhibit similar stored energy loss, but 
the groups occupy distinct parameter regimes for plasma cur-
rent, triangularity, magnetic balance, and pedestal height. The 
observed evolution patterns and associated parameter regimes 
can motivate nonlinear ELM models or validation scenarios 
for ELM simulations. Finally, several scientific fields leverage 
machine learning techniques to automate scientific discovery 
tasks like pattern identification, data classification, or rela-
tionship quantification in large, complex datasets for which 
exhaustive visual inspection of data is not feasible. The anal-
ysis presented here demonstrates an application of unsuper-
vised machine learning at a data-rich experimental fusion 
facility.

In the remainder of this paper, section  2 describes the 
NSTX ELM database and presents example ELMs. Section 3 
presents unsupervised machine learning analysis (hierar-
chical clustering and k-means clustering) that identifies ELM 
groups with similar evolution patterns, and section 4 considers 
plasma parameter regimes that correlate with the identified 
ELM groups. Section  5 discusses opportunities to leverage 
machine learning techniques and large data archives at large 
experimental fusion facilities. Section 6 provides a summary 
of results. Finally, digital data for all figures and analysis in 
this manuscript can be found in [13].

2. ELM event database

We identified 51 ELM events from the NSTX data archive 
with beam emission spectroscopy (BES) measurements span-
ning pedestal region and into the core plasma, as shown in 
figure  1. BES measurements of plasma density are local-
ized with ∆ ≈x 2 cm and sample on Alfvén timescales at  
2 MHz (∆ =t 0.5 µs, τ ∼ 5A  µs, and τ∆ ∼t / 0.1A ) [9, 10]. The 
measurement locations are fixed in space, so the locations in 
normalized flux can change with plasma shaping and posi-
tion control. For this reason, we utilized the radial array of 
BES sightlines in figure 1. The radial array covers the pedestal 
region in all discharge scenarios. As shown in figure 2, BES 

measurements capture the fast nonlinear evolution of ELM 
events in contrast to conventional filterscope measurements or 
Thomson scattering profiles. As we describe below, the mul-
tiple BES signals are condensed into a single, representative 
time-series with principle component analysis.

The ELM database was populated with the following objec-
tives: (1) sample ELMs for a variety of machine and wall con-
ditions, (2) identify ELMs that are isolated from other ELMs 
(ELM periods !30 ms) and confounding MHD activity, such 
as Alfvén avalanches, and (3) include only ELMs that exhibit 
a clear pedestal collapse or stored energy loss. An ELM ped-
estal collapse may not be observable if the ELM occurred early 
in the period between Thomson scattering measurements, and 
the stored energy loss may be erroneously small if the ELM 
occurred early in the period between magnetic reconstruc-
tions. Therefore, we require either a clear pedestal collapse or 
stored energy loss for ELMs in the database. The constraints 
likely exclude small, grassy, or Type V ELMs and Type III 
ELMs with periods !20 ms. In other words, the ELM database 
is likely populated only by Type I ELMs. To capture diverse  
ELM phenomena in a variety of machine conditions, the  
51 ELM events were drawn from 34 H-mode discharges span-
ning four months of experimental operations. The ELM events 
show stored energy losses up to 16%. As shown in table 1, the 
ELM database spans a large range of plasma current, auxiliary 
heating power, plasma shape, and magnetic topology.

Measurements on Alfvén timescales inherently capture the 
nonlinear dynamics and saturation mechanisms of ELM events, 
and figure 3 shows examples of diverse ELM events in the data-
base. For instance, some ELM events last less than 100 µs, but 
others persist up to 1 ms. A single perturbation dominates some 
ELM events, but other events show multiple perturbations. 
Finally, some events are oscillatory, but others are non-oscil-
latory. At this point, any structure, organization, or pattern in 
the ELM database is unknown. Structure in the ELM database 

Figure 1. NSTX cross-section showing BES channels in a radial 
configuration of ELM observations. Contour labels are normalized 
poloidal flux.
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might point to common nonlinear processes that govern ELM 
evolution, so our first objective is to identify any structure or 
pattern in the database. Often visual inspection is adequate to 
identify structure in data, but visual inspection is not scalable 
to large or high-dimensional datasets. Unsupervised machine 
learning algorithms can identify structure, patterns, or organi-
zation in unlabeled data with computational speed and scala-
bility. In the next section, we implement unsupervised machine 
learning algorithms to search for patterns in the ELM database.

3. Cluster analysis of ELM time series data

Unsupervised clustering techniques can identify structure, 
patterns, or association in datasets. Here, we begin with 
hierarchical clustering for the ELM dataset described in the 
previous section, and later we explore k-means clustering 
[14]. Hierarchical clustering links data objects in a multi-
level hierarchy according to the degree of similarity, and 
clustering is a common tool in genomics for linking gene 
expression and functional pathways [15]. The hierarchical 
clustering algorithm operates on a distance-like metric that 
quantifies dissimilarity between data objects, and the time 
series ELM data we examine requires metrics that quantify 
dissimilarity between time series [16]. Time series similarity 
metrics operate on a pair of time series, so we apply principal 
component analysis (PCA) to reduce the multi-channel BES 

data (see figure 3) to a single representative time series for 
each ELM event. PCA, a common technique for dimension-
ality reduction, is an orthogonal coordinate transformation in 
which the first coordinate axis (first principal component) is 
the data projection with maximum variance. Figure 4 shows 
examples of PCA time series extracted from multi-channel 
BES data. The first principal component (‘PC 1’) is repre-
sentative of evolution patterns in all BES channels, and the 
analysis below is performed on the PC 1 time series for each 
ELM event. PC 1 typically captures over 74% of the variance 
in the signals, and PC 2 typically accounts for less than 17% 
of the variance.

The time-lag cross-correlation (TLCC) is the first dissimi-
larity metric we consider. For ELM time series X(t) and Y(t), 
the time-lag cross-correlation, ( )ρ τ , is

( ) ( ( ) )( ( ) )
∑ρ τ

τ µ µ
σ σ

≡
+ − −

τ =

τ

N

X t Y t1

t

N
X Y

X Y1
 (1)

where τ is the time delay, and τN  is the time delay record 
length, σ is the time series standard deviation, and µ is the 
time series mean value. Figures 5(a)–(d) show ELM events 
with similar and dissimilar time evolution and time lag cross-
correlations. As expected, the pair of similar ELMs exhibit 
the larger ( )ρmax  value. The hierarchical clustering algorithm 
operates on dissimilarity metrics, so maximum correlation 
values are converted to dissimilarity values with

Figure 2. An example ELM event: (a) Thomson scattering profiles of electron density before and after the ELM event; (b) and  
(d) αD  filterscope signals viewing inner diverter (red) and full diverter (blue); and (c) and (e) BES measurements of the ELM event  
at R  =  146 cm. In (b) and (c), vertical lines denote Thomson scattering measurement times.
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( ( ))ρ τ≡ −D 1 maxTLCC (2)

where DTLCC is the dissimilarity metric for time-lag cross-
correlation. The hierarchical clustering algorithm operates 
on a dissimilarity matrix containing dissimilarity values for 
all ELM pairs. Figure 5(e) shows the dissimilarity matrix for 
DTLCC with blue colors indicating ELM pairs with low dis-
similarity (high similarity), and the matrix is necessarily sym-
metric with respect to ELM index.

The hierarchical clustering algorithm iteratively merges 
the most similar (least dissimilar) data objects into clusters, 
and the output is a multi-level hierarchy with the most sim-
ilar objects linked at low levels. As new clusters are created, 
a linkage formula sets dissimilarity metrics for new clusters 
relative to other clusters, and complete linkage is the max-
imum distance between objects in the new cluster and objects 
in other clusters. For instance, if the clustering algorithm cre-
ates a new cluster p, then the complete linkage between new 
cluster p and an existing cluster q is

( ) ( ( ))≡L p q D x x, max ,i
p

j
q

com (3)

where xi
p are the objects in cluster p and xj

q are the objects in 
cluster q. Figure 6 shows the results of hierarchical clustering 
with complete linkage for the ELM dissimilarity matrix from 
figure 5(e). Dendrograms illustrate the multi-level hierarchy 
of data objects and clusters, and figure 6(a) shows the dendro-
gram for the ELM database with complete linkage. Groups of 
data objects linked with high similarity in the dendrogram are 
candidate clusters, and figure 6(a) shows three candidate clus-
ters labelled 1 (red), 2 (blue), and 3 (green). Subsequent anal-
ysis in this section will demonstrate that clusters 1, 2, and 3 

persist across multiple clustering techniques and algorithms. 
The designation of clusters in dendrograms is somewhat sub-
jective, but good candidate clusters should preferably contain 
many members with high similarity inside the cluster and low 
similarity outside the cluster. We feel the identified clusters 
in figure 6(a) best captures the criteria for good clusters. If 
less similarity within clusters is tolerable, then cluster 1 can 
expand to include ELMs 7/40/26/42/47. At even lower simi-
larity tolerance, clusters 1 and 2 merge leaving two dominant 
clusters. In hierarchical clustering, some data objects may 
not clearly belong to a cluster, as evident in figure 6(a). The 
hierarchical clustering algorithm iteratively merges the data 
objects or clusters with the lowest linkage, so it is feasible 
that some data objects are isolated with large linkage values 
to a larger cluster, like ELMs 48 and 49 in figure  6(a). In 
contrast, in k-means clustering (discussed below), all data 
objects are assigned to a cluster. For an alternative visual-
ization, the dissimilarity matrix figure 5(e) can be reordered 
according to the data sequence in the dendrogram, as shown 
in figure 6(b). In the reordered dissimilarity matrix, candidate 
clusters are square regions along the diagonal with low dis-
similarity values, and the three candidate clusters are desig-
nated with colored squares in figure  6(b). Figures  6(c)–(h)  
shows examples of ELM evolution for the identified clusters. 
ELMs in cluster 2 are short duration (∼30 µs), and cluster 1 
ELMs are similarly intense but with longer duration (∼400 µs).  
Finally, ELMs in cluster 3 show elevated signals that per-
sist over 1 ms. In summary, the clustering algorithm, without 
prior training or user guidance, created a hierarchy of ELM 
events grouped by the degree of similarity. The modest results 
in figure 6 are notable because (1) identifying structure, pat-
terns, or association in data is a fundamental activity in scien-
tific discovery; (2) algorithmic pattern recognition is scalable 
and readily automated; and (3) experimental fusion facilities 
generate large volumes of data. The remainder of this sec-
tion shows that the hierarchical clustering results in figure 6 
hold for other linkage formulas and dissimilarity metrics, and 
the results are consistent with k-means cluster analysis. The 
consistency of results from multiple algorithms and metrics 
adds credibility to the identified ELM evolution patterns. The 
next section (section 4) explores parameter regimes that cor-
respond to the ELM clusters identified in figure 6.

Figure 6 showed hierarchical clustering results for com-
plete linkage, and figure  7 shows similar results using an 
average linkage algorithm in which dissimilarity metrics 
for new clusters are the average distance between objects in 
the new cluster and other clusters. Specifically, the average 
linkage between a new cluster p and an existing cluster q is

( ) ( )∑∑≡
= =

L p q
n n

D x x,
1

,
p q i

n

j

n

i
p

j
q

avg
1 1

p q

 (4)

where xi
p is the ith object in cluster p with np objects and xj

q 
is the jth object in cluster q with nq objects. Average linkage 
values in figure  7 are less than complete linkage values in 
figure  6 because the average distance between data objects 
in two clusters is necessarily less than the maximum distance 
between the data objects. The clusters and colors in figure 7 

Table 1. 10th–90th percentile ranges for plasma parameters in the 
ELM database.

Parameter Parameter range

Plasma current, Ip (MA) 0.6–1.2
Toroidal field, Bt (kG) 4.4–5.4
Neutral beam power, Pnb (MW) 2.9–4.8
Magnetic balance, dr

sep (cm) −1.33 to 0.14
Safety factor, q95 6.1–11.2
Stored energy, Wdia (kJ) 127–260
Stored energy loss, Wloss (%) 0.7–9.9
Elongation, κ 1.9–2.4
Lower triangularity, δl 0.46–0.73

Pedestal ele. den. height, ne
ped (10 /cm13 3) 4.2–6.0

Pedestal ele. den. width, ∆Rne
ped (cm) 3.2–10.1

Pedestal ele. temp. height, Te
ped (keV) 0.33–0.67

Pedestal ele. temp. width, ∆RTe
ped (cm) 5.8–11.3

Zeff 1.5–3.2
Collisionality, νei (106) 1.3–4.2

Total beta, ( )β µ= p B2 2 /e0
ped 2 0.16–0.40

Poloidal beta, ( )β µ= p B2 2 /p e p0
ped 2 0.68–3.3

Alfvén time, τ = R v/A 0 A (µs) 4.3–5.6

Note: The 10th–90th percentile range captures approximate minimum and 
maximum values while excluding distortion from extreme outliers. Digital 
data for the ELM database can be found in [13].

Plasma Phys. Control. Fusion 58 (2016) 045003
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are preserved from figure 6, and the clusters’ memberships are 
largely preserved.

Figure 6 showed results for the time-lag cross-correla-
tion dissimilarity metric, but now we repeat the analysis 
with other dissimilarity metrics (time-lag Euclidean dis-
tance (TLED), dynamic time warping, and the time-lag 
cross-correlation) to assess validate the results. The TLED 
is the minimum root-mean-square distance as a function of 
time delay,

( ( ) ( ))
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ τ≡ + −

τ τ =

τ

D
N

X t Y tmin
1

.
t

N

TLED
1

2 (5)

Figures 8(a)–(b) show examples of TLED for similar ELMs 
(blue) and dissimilar ELMs (red). In figure  8(b), the min-
imum TLED is lower for the blue ELMs with similar time 
evolution. Dynamic time warping (DTW) is similar to the 
TLED, but DTW allows timebase distortion to minimize a 
dissimilarity cost function. For ELM time series X(i) and Y( j ) 

with ⩽i j T, , the DTW distance is calculated from the recur-
sive algorithm

( )= + − − − −D f D D Dmin , ,i j i j i j i j i j, , , 1 1, 1, 1 (6)

with cost function f X i Y ji j, ( ) ( )= −  and initial conditions 
= =∞D Di j,0 0, . The DTW distance metric is ≡D DDTW T T, . 

Figure 8(c) shows a pair of similar ELMs, and figure 8(d) shows 
the corresponding DTW calculation. DT, T is upper-right point 
in figure  8(d), and we see ( )≈−Dlog 4T T,  for the similar 
ELMs. For comparison, figure 8(e) shows dissimilar ELMs, 
and figure 8(f) indicates ( )≈−Dlog 2T T, .

The final dissimilarity metric we consider is the time-lag 
cross-correlation of wavelet-transformed signals. We perform 
a multilevel discrete wavelet decomposition [17] to capture 
both short, rapid changes and slower trends in the signals. As 
the iterative wavelet decomposition advances, coarser signal 
trends are extracted. We apply the Daubechies db4 wavelet, 
a high-pass finite-impulse-response filter with four vanishing 

Figure 3. (a)–(d) Examples of nonlinear ELM evolution captured by multi-point BES measurements with high time resolution. Shown 
are four of eight BES signals from the radial array highlighted in figure 1, and the colors correspond to measurement locations in figure 1. 
The data segments are chosen to capture the fast evolution of the entire ELM burst, but t  =  0 selection is not systematic due to the lack of 
a universal marker for syncing across ELM events. The time-series analysis presented in section 3 is insensitive of t  =  0 selection. BES 
digital data for the ELM database are available in [13].
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moments. Convolutions with db4 are principally sensitive to 
signal segments that grow faster than t4, including exponen-
tial growth. At each level in the decomposition, the signal is 
convolved with the high-pass db4 (‘detail’ output) and the 
low-pass quadrature mirror of db4 (‘approximation’ output). 
The detail and approximation outputs are decimated by two, 
and the approximation output is the input signal for the next 
level in the wavelet decomposition. For signal s, the iterative 
wavelet decomposition with db4 is

≡a s0 (7)

( ( )) ( ⩾ )≡ −d a idec conv , db4 1i i 1 (8)

( ( ( ))) ( ⩾ )≡ −a a idec conv , quad db4 1i i 1 (9)

where di is the ith detail, ai is the ith approximation, dec 
denotes decimation by two, conv denotes convolution, and 
quad denotes quadrature mirror transformation. The approx-
imations are a smoothed versions of the original signal, and 
the details capture signal deviations faster than t4. To construct 
a dissimilarity metric between two ELM events, we calculate 
time-lag cross-correlations between detail and approximation 
signals for ELM , and then we convert the correlations into 
dissimilarity values like equation (1). We found that the level 
2 detail signal and the level 5 approximation signal captured 
ELM groups generally consistent with previous dissimilarity 
metrics. For example, figure  8(g) shows similar (blue) and 
dissimilar (red) ELM events, and figure 8(h) shows time-lag 
cross-correlations between the similar and dissimilar ELMs 
events for the level 2 detail signals and level 5 approximation 

Figure 5. ((a), (b)) Similar ELMs exhibit a large maximum time-lag cross-correlation, and ((c), (d)) dissimilar ELMs exhibit a small 
maximum time-lag cross-correlation. (e) The maximum time-lag cross-correlation for all ELM pairs can be visualized as a symmetric 
dissimilarity matrix.

Plasma Phys. Control. Fusion 58 (2016) 045003
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signals. The similar ELM events show larger peak correlations 
in both detail and approximation signals.

With several dissimilarity metrics at hand, we can now 
compare hierarchical clustering results for different metrics. 
Figure  9 shows hierarchical clustering results with average 
linkage for (b)–(e) four dissimilarity metrics and (a) the geo-
metric mean of the four dissimilarity metrics. Like figure 6, 
three clusters of similar ELM events emerge for the geo-
metric mean clustering. The identified clusters are linked at 
low linkage values and are largely preserved for different 
dissimilarity metrics. The metrics for (b) time-lag cross- 
correlation, (c) TLED, and (d) dynamic time warping produce 
similar results that are largely consistent with (a) geometric 
mean clustering. Cluster results for (e) wavelet decomposi-
tion, however, are the least consistent with other metrics and 
the geometric mean clustering. Hierarchical clustering with 
the wavelet metric split cluster 1 and barely catches any hint 
of cluster 2. Consistent clustering results from three metrics 
in figures  9(b)–(d) is encouraging despite low consistency 
from the wavelet metric in (e). Next we examine k-means 

clustering, and we find that k-means clustering results are con-
sistent with figures 9(a)–(d) which further boosts confidence 
that the evolution patterns represent meaningful variations in 
ELM dynamics.

Like hierarchical clustering, k-means clustering is an 
unsupervised learning algorithm that identifies structure, 
patterns, or association in data. A key difference between the 
clustering techniques is that k-means clustering assigns all 
data objects to a cluster. In contrast, hierarchical clustering 
can yield outliers that do not belong to a recognizable cluster. 
Finally, hierarchical clustering operates on relative distance 
metrics, but k-means clustering requires absolute coordi-
nates. Here, we designate a set of benchmark ELMs, and 
dissimilarity metrics for the benchmark ELMs function as 
absolute coordinates in the k-means algorithm. Figure 10(a) 
shows the geometric mean of the four dissimilarity metrics 
(correlation, Euclidean, DTW, and wavelet) for six bench-
mark ELMs.

The number of clusters is a specified parameter in the k-means 
algorithm, and the optimum cluster number is found through 

Figure 6. (a) Dendrogram showing hierarchical clustering in the ELM database with the time-lag cross-correlation dissimilarity metric 
and complete linkage, and (b) the dissimilarity matrix reordered for the ELM sequence in the dendrogram. Clusters 1 (red), 2 (blue), and 3 
(green) denote groups of ELMs with similar evolution characteristics. (c)–(h) Examples of similar ELMs from the clusters. Digital data for 
the ELM database can be found in [13].

Figure 7. Dendrogram showing hierarchical clustering in the ELM database with the time-lag cross-correlation dissimilarity metric and 
average linkage.
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trial-and-error. The ‘silhouette’ value for each data object meas-
ures similarity to objects in its own cluster relative to objects in 
other clusters. For data object i, the silhouette value is

( )
≡ −

s
b a

a bmax ,
i

i i

i i
 (10)

where ai is the average dissimilarity with other objects in 
the same cluster and bi is the minimum dissimilarity with 
other clusters. Large si values indicate the data object is 
appropriately clustered. The optimum cluster number for the 
k-means algorithm is the cluster number J that maximizes

( )≡S smean .J i (11)

The SJ values in table  2 indicate that four clusters are 
optimum. Visualizing four clusters of six-dimensional 
data is difficult, but plotting results in a subspace of two 
or three principle components aids visualization. Principal 
component analysis in figure  10(b) indicates that the first 
three principal components capture nearly 95% of variation 
in the six-dimensional data in figure  10(a) for the bench-
mark ELMs. Figure  11 illustrates the optimum four clus-
ters plotted in terms of principal components. Clusters 1, 

Figure 8. (a) Similar (blue) and dissimilar (red) ELMs, and (b) the associated Euclidean distance similarity metrics. (c) Similar ELMs and 
(d) the DTW calculation. (e) Dissimilar ELMs and (f) the DTW calculation. (g) Similar (blue) and dissimilar (red) ELMs, and (h) the time-
lag cross-correlations for the level 2 db4 detail signals (solid) and level 5 db4 approximation signals (dashed). Digital data for the ELM 
database is available in [13].
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2, and 3 in figure  11 correspond to the same clusters in 
figure 9, but the cyan cluster in figure 11 has no corresp-
onding low-linkage cluster in figure  9 For this reason,w 
e are reluctant to attached cluster ‘4’ designation to the 
cyan cluster in figure 11. Later in this section, we will find 
that clusters 1–3 in figure  11 map to corresponding clus-
ters with low linkage values from hierarchical clustering  
(figures 6, 7, and 9), plus the significance of the cyan cluster 
in figure 11 will be explained.

To validate the cluster results in figure 11, we repeat the 
calculation with additional benchmark ELMs. Table  3 lists 
the optimal cluster number and SJ values for 6, 9, 11, and 
14 of benchmark ELMs, and the results indicate four clus-
ters are optimal for all benchmark scenarios. In all bench-
mark scenarios, principal components 1–3 captured at least 
87% of variation in the benchmark data, so plotting results in 
principal component space is still effective for visualization.  

The four clusters for each benchmark scenario are illustrated 
in figure 12 in terms of principal components, and the clus-
ters’ memberships are nearly identical across the benchmark 
scenarios. Therefore, k-means clustering calculations yield 
four clusters of ELM events, and the clusters’ memberships 
are robust for different sets of benchmark ELMs.

Now we tie together results from k-means clustering and 
hierarchical clustering. The k-means clustering results in 
figures 11 and 12 indicate four clusters are optimal, but the 
hierarchical clustering results in figures  6, 7 and 9 point to 
three clusters of ELMs with similar evolution. The apparent 
discrepancy is resolved by mapping k-means results to the 

Figure 9. (a) Hierarchical clustering using the geometric mean of four dissimilarity metrics: (b) time-lag cross-correlation, (c) TLED, (d) 
dynamic time warping, and (e) cross-correlation of wavelet-transformed signals.
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Table 2. SJ values for the six benchmark ELMs in figure 10.

Number of clusters, J 2 3 4 5 6 7

SJ 0.49 0.51 0.52 0.48 0.46 0.45
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hierarchical results. As shown in figure 13, the clusters from 
k-means clustering largely map to clusters previously identified 
from hierarchical clustering. The cyan cluster from k-means 
analysis in figures 11 and 12 maps to a group of ELMs that 

are largely unlike all other ELMs from hierarchical analysis 
in figures 6, 7 and 9. In other words, k-means clustering cap-
tures the three clusters identified in hierarchical results plus 
a fourth cluster of ELMs (cyan) that defied grouping in the 
hierarchical results. Finally, figures 13(c)–(e) shows example 
ELMs from the identified clusters, and note that the cluster 
descriptions from figures 6(c)–(h) remain valid. We deliber-
ately do not ascribe a number to the cyan cluster from k-means 
analysis because the cluster did not emerge as a low linkage 
cluster in hierarchical analysis. In other words, k-means and 
hierarchical analysis do not produce consistent results with 
regard to the cyan cluster in figure 13. In the next section, we 
explore parameter regimes for ELM clusters 1, 2, and 3 identi-
fied from hierarchical and k-means clustering.

Figure 11. k-means cluster results with four clusters for six benchmark ELMs in figure 10. The clusters are plotted in principal component 
(PC) space to aid visualization: (a) clusters plotted in terms of PC 1 and PC 2, and (b) clusters plotted in terms of PC 1 and PC 3.  
The colors denote cluster membership.
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Table 3. Optimal cluster number and SJ values with 6, 9, 11, and 14 
of benchmark ELMs for k-means clustering.

No. of benchmark ELMs Optimal no. of clusters SJ

6 4 0.52
9 4 0.52
11 4 0.53
14 4 0.52

Note: For all benchmark scenarios, four clusters were optimal.

Figure 10. (a) Input data (geometric mean of four dissimilarity metrics) for k-means clustering with six benchmark ELM events.  
(b) Principal component analysis indicates the first three principal components capture nearly 95% of variation in the input data.
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Figure 12. k-means clustering results with (a) 6, (b) 9, (c) 11, and (d) 14 benchmark ELMs. The clusters are nearly identical for all 
benchmark scenarios.
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Figure 13. Comparison of (a) hierarchical and (b) k-means clustering results for the geometric mean of metrics with average linkage. The 
cyan cluster in (b) corresponds to the group of poorly matched ELMs in (a). The ELM number color in (a) corresponds to k-means cluster 
membership from (b). Example ELMs from (c) cluster 1, (d) 2, and (e) 3 and (f) the cyan group from k-means cluster results. Digital data 
for the ELM database can be found in [13].
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4. Parameter regimes for ELM clusters

Unsupervised clustering techniques identified three clusters of 
ELMs with similar evolution patterns in the previous section, 
and now we search for parameter regimes among ELM-relevant 

parameters that correlate with the identified ELM clusters. The 
observed evolution patterns reflect the nonlinear processes 
that impact ELM dynamics, and the corresponding para meter 
regimes can motivate theoretical or computational invest-
igations of nonlinear ELM dynamics. Stored energy loss [18] 

Figure 14. Stored energy losses for the ELM clusters in (a) kJ and (b) % loss. The small crosses (×) are individual ELMs, the solid bars are 
mean, 20th, and 80th percentile values, and colors and cluster numbers are consistent with figure 13. The 20th–80th percentile range captures 
typical parameter values. Digital data for the ELM database is available in [13].
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Figure 15. Solid bars denote mean, 20th, and 80th percentile values for equilibrium parameters for ELM clusters, and small crosses (×) 
denote values for individual ELMs: (a) plasma current, (b) q95 safety factor, (c) elongation at last-closed-flux-surface, (d) lower triangularity 
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null). The 20th–80th percentile range captures typical parameter values. Digital data for the ELM database is available in [13].
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is a key metric for ELMs, but figure 14 indicates the identified 
ELM clusters exhibit similar stored energy losses. Some ELMs 
in figure 14 exhibit small or negative stored energy loss values 
due to ELM events with up to 15 ms of recovery time until 
the post-ELM magnetic reconstruction and Thomson scat-
tering measurement (see figure 2(b)). The parameter ranges in 
figure 14 can be compared to table 1, but recall that table 1 
covers approximate minimum and maximum values for the 
entire ELM dataset while figure 14 shows typical parameter 
ranges for clusters of ELMs with similar time-evolution char-
acteristics. The ELM clusters do not appear to correlate with 
stored energy loss, but we continue the investigation with equi-
librium parameters and pedestal profile characteristics.

Figure 15 shows equilibrium and magnetic reconstruction 
parameters for the ELM clusters [18]. Most notably, cluster 
3 with prolonged elevated signals (see figures  6(c)–(h)) 
corresponds to higher Ip, and clusters 1 and 2, with shorter 
durations, correspond to lower Ip. The clustering with Ip is 
reminiscent of the fast and slow post-ELM pedestal temper-
ature gradient recoveries observed in DIII-D [19]. Consistent 
with Ip patterns, cluster 3 also corresponds to lower safety 
factor q95, lower magnetic shear, higher stored energy, and 
higher confinement time; clusters 1 and 2 correspond to the 
opposite parameter regimes. Large lower triangularity (δL) 
is a stabilizing factor for the linear peeling-ballooning mode 
[6], and we find cluster 3 preferentially occurs at higher δL 
values. In terms of geometry and magnetic balance, cluster 
3 occurs preferentially at higher elongation (κ) and in lower 
single null configurations ( −!dR 0.5sep  cm), and clusters 1 
and 2 occur preferentially at lower elongation and double null 
configurations. The variations in ELM evolution could be due 
to geometry or magnetic topology variations, but regardless 
an accurate nonlinear model of ELM dynamics should capture 

variations in ELM evolution due to any factor including geom-
etry or topology. Note, however, that the ELM database lacks 
observations in the upper single null configuration.

The pedestal width, height, and gradient are key quantities 
that impact pedestal stability, and the EPED model predicts 
the height and width of the pressure pedestal from constraints 
established by the peeling-ballooning mode and the kinetic 
ballooning mode (KBM) turbulence [20, 21]. Figure 16 shows 
pedestal heights and widths from tanh fits [22] to profiles for 
electron density, temperature, and pressure from multi-point 
Thomson scattering measurements [23]. The pedestal density 
gradient, for instance, is ∇ ≡ ∆n n R/e e n

ped ped
,ped. Figure 17 shows 

modest overlap in pedestal parameters for the ELM clusters, 
but we see that cluster 3 generally exhibits lower ne

ped, higher 
∆ne

ped, and smaller ∇ne
ped values. In strongly shaped plasmas, 

higher density shifts the dominant peeling-ballooning mode 
to higher-n ballooning modes [6]. The dominance of clusters 
1 and 2 at higher pedestal density values could be associated 
with a shift to higher-n ballooning modes. Recent results from 
JET indicate the post-ELM pedestal collapse time is longer 
in low Te

ped, high collisionality regimes with the ITER-like 
wall [24]. The clusters in figure 17 exhibit similar ranges for 
Te

ped and νei, so the cluster results do not indicate Te
ped and νei 

are critical parameters for ELM evolution dynamics. Also, 
cluster 3 in figure 17(g) exhibits a larger ratio of temperature 
gradient to density gradient (∇ ∇T n/e e

ped ped). The parameter 
patterns illustrated in figures 15 and 17 are consistent linear 
stability trends for the peeling-ballooning mode. For instance, 
lower pedestal density, higher triangularity, and higher plasma 
current are stabilizing for the peeling-ballooning mode [1]. 
In figures 15 and 17, the same parameter limits correspond 
to cluster 3, and the opposite parameter limits correspond to 

Figure 16. Example tanh fits to ne, Te, and pe pedestal profiles from multi-point Thomson scattering measurements.
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clusters 1 and 2. Finally, parameters listed in table 1 but not 
shown in figures 15 and 17 exhibited similar ranges for the 
identified clusters.

Finally, we note that the clusters 1 and 2 correspond to sim-
ilar parameter regimes in figures 15 and 17. Likewise, some 
clustering results (e.g. figure 9(d)) did not clearly distinguish 
clusters 1 and 2. Therefore, clusters 1 and 2 are perhaps best 
considered as a single cluster despite initial clustering results 

that pointed to distinct clusters. Nonetheless, clustering results 
and parameter regimes unambiguously point to at least two 
clusters of ELMs with distinct evolution patterns: (1) cluster 3 
with longer ELM event duration and corresponding to higher 
plasma current, higher triangularity, lower-single-null con-
figuration, lower ne

ped, and higher ∇Te
ped, and (2) clusters 1/2 

with shorter ELM event duration and corresponding to lower 
plasma current, lower triangularity, balanced double-null 

Figure 17. Solid bars denote mean, 20th, and 80th percentile values for pedestal parameters for ELM clusters, and small crosses (×) 
denote values for individual ELMs: (a) electron density pedestal height, (b) electron density pedestal width, (c) electron temperature 
pedestal height, (d) electron–ion collisionality, (e) density pedestal gradient (∇ ≡ ∆n n R/e e n

ped ped
,ped), (f) temperature pedestal gradient, (g) 

ratio of temperature to density pedestal gradients, and (h) pressure pedestal gradient. The 20th–80th percentile range captures typical 
parameter values. Digital data for the ELM database is available in [13].
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configuration, higher ne
ped, and lower ∇Te

ped. Based on the 
observed evolution patterns and parameter regimes, we expect 
the identified parameters will influence the evolution patterns 
and nonlinear dynamics in nonlinear simulations of ELM 
events.

5. Discussion of machine learning applications in 
fusion science

The preceding analysis demonstrates that unsupervised 
machine learning techniques can identify patterns or struc-
ture in data generated at data-rich fusion facilities. Pattern 
identification, a key step in scientific discovery, is typically 
accomplished with visual inspection of data, but visual 
inspection is not scalable to large or high-dimensional data-
sets. Unsupervised machine learning algorithms, however, 
can identify patterns or structure in large, complex datasets 
with computational speed and scalability. In addition, large, 
diverse datasets are less susceptible to selection bias and can 
generate results with broader relevance. Supervised machine 
learning techniques, on the other hand, quantify relationships 
among ‘labeled’ data, that is, data in which all relevant quanti-
ties or parameters are known. Supervised machine learning 
was recently applied to high-dimensional pedestal turbu-
lence observations to quantify dozens of scaling relationships 
between turbulence quantities and plasma parameters [25, 26]. 
Coupling unsupervised and supervised machine learning tech-
niques can, in principle, automate large portions of the scien-
tific discovery workflow. For instance, unsupervised machine 
learning can identify patterns in data and a supervised learning 
algorithm can quantify relationships among the identified data 
groups. In fact, the entire analysis sequence in the previous 
sections for ELM pattern identification and parameter regimes 
could have been automated. Also, classification techniques 
from machine learning can scour data archives to identify 
new instances of an event or phenomenon prior to analysis 
with supervised learning algorithms. Machine learning tech-
niques spanning pattern discovery, relationship quantification, 
and data classification present new opportunities to enhance 
the scientific productivity at data-rich experimental fusion 
facilities.

6. Summary

The linear peeling-ballooning stability boundary can capture 
ELM onset conditions, but ELM characteristics like intensity, 
filament dynamics, saturation mechanisms, and multi-mode 
interactions require nonlinear models and measurements with 
Alfvén-scale time resolution. Customary diagnostic tools, 
like multi-point Thomson scattering and filterscopes, cannot 
resolve dynamics on the Alfvén timescale. Also, heuristic 
ELM classification schemes (Type I, III, etc) based on extrinsic 
ELM properties, like secular edge emission and inter-ELM 
period, do not address the nonlinear dynamics and Alfvén-
scale evolution of ELM events. In this paper, we investigated 
Alfvén-scale evolution patterns in ELM events captured 

by BES measurements on the National Spherical Torus 
Experiment, and digital data for this research activity are avail-
able in [13]. We implemented unsupervised machine learning 
algorithms that identified characteristic evolution patterns 
in a database of ELM events. Time-series similarity metrics 
(figures 5 and 8) quantified the similarity among ELM time-
series data, and clustering algorithms (figures 9 and 11–13)  
identified two and possibly three clusters of ELMs with similar 
evolution characteristics. The ELM selection criteria for the 
database most likely admitted only Type I ELMs and excluded 
Type III and small, grassy ELMs. The identified ELM clusters 
triggered similar stored energy loss (figure 14), but the clusters 
occupied distinct parameter regimes for ELM-relevant para-
meters like plasma current, magnetic balance, triangularity, and 
pedestal height (figures 15 and 17). Notably, the pedestal elec-
tron pressure gradient is not an effective parameter for distin-
guishing the ELM groups, but the ELM groups are segregated 
in terms of electron density gradient and electron temperature 
gradient. Specifically, a cluster of ELM events (cluster 3 in 
figure 13) corresponds to longer ELM event duration, higher 
plasma current, higher triangularity, lower-single-null configu-
ration, lower ne

ped, and higher ∇Te
ped, and another cluster of 

ELM events (clusters 1 and 2) correspond to shorter ELM event 
duration, lower plasma current, lower triangularity, balanced 
double-null configuration, higher ne

ped, and lower ∇Te
ped. The 

parameter regimes for the identified clusters connect to linear 
stability trends for the peeling-ballooning mode. Specifically, 
lower pedestal density, higher triangularity, and higher plasma 
current are stabilizing for the peeling-ballooning mode. The 
distinct evolution patterns and parameter regimes point to gen-
uine variations in the underlying nonlinear dynamics. Based 
on the observed evolution patterns and parameter regimes, we 
expect the identified parameters will influence the evolution 
patterns and nonlinear dynamics in ELM simulations.

The analysis present here can be extended in several direc-
tions in future work. For instance, the evolution patterns can 
be templates for classification algorithms that automatically 
identify ELM instances in the data archive or a real-time data 
stream. Automated classification algorithms could populate 
an ELM database larger than anything possible with visual 
data inspection. Also, the algorithms and techniques could be 
extended or modified for other fast ELM-relevant measure-
ments, such as magnetic or temperature fluctuations (though 
electron cyclotron emission measurements of temperature 
were not feasible in the low-field NSTX device). Extending 
hierarchical clustering to multiple fields (e.g. density and 
magnetic fluctuations) would require exploration of algo-
rithms that combine multiple dissimilarity metrics into a 
single metric, but extending k-means clustering to multiple 
fields would be straightforward. Finally, the algorithms and 
techniques could be extended to other events such as Alfvén 
avalanches or disruptions. In summary, the analysis and results 
presented here demonstrate an application of unsupervised 
machine learning at a data-rich fusion facility, and a previous 
effort demonstrated a applications of supervised machine 
learning [25, 26]. Several scientific fields leverage machine 
learning techniques to automate discovery tasks in datasets 
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too large or complex for comprehensive visual inspection. 
Machine learning techniques covering pattern identification, 
data classification, and relationship quantification offer new 
strategies for scalable and automated scientific discovery at 
data-rich fusion facilities.
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