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1. Introduction

The effect of Alfvén modes on energetic particles in toka-
maks is important in general, and could be of significance 
for ITER [1]. It is necessary to examine mode evolution to 
saturation to predict the effect of such modes on high energy 
particle transport and to assist in constructing hybrid models 
for such transport. Previous work [2–6] using experimentally 
determined mode spectra and amplitudes has shown that a 
spectrum of Alfvén modes can cause a reduction of the beam 
profile to a critical gradient level corresponding to the onset 
of stochastic particle loss due to the mode spectrum, with the 
mode amplitudes held at a level just above that producing such 
loss. This work reports numerical simulation of mode evo-
lution of unstable Alfvén modes to saturation levels and the 
resulting effect on beam particle distributions using equilibria 
and beam particle distributions generated by TRANSP [7] and 
Alfvén eigenfunctions generated by NOVA [8, 9].

Solving the drift kinetic equation in the presence of Alfvén 
modes driven unstable by a distribution of high energy parti-
cles and advancing the mode amplitudes and phases in time 
is done with the use of a fδ  formalism, whereby the initial 
distribution f0 is assumed to be a steady state high energy par-
ticle distribution in the absense of the modes, and f f f0 δ= +  
describes the particle distribution in the presence of the 
modes. The Hamiltonian is written as H H H0 1= +  with H0 
giving the unperturbed motion, conserving particle energy E, 

toroidal canonical momentum Pζ, and magnetic moment µ. 
By writing the initial particle distribution in terms of these 
variables, a simple means of calculating mode-particle energy 
and momentum transfer results, giving a very accurate means 
of advancing the modes in time. The numerical beam deposi-
tion code NUBEAM in TRANSP produces a list of particles, 
giving energy, pitch, and location, which can be used to find the 
unperturbed distribution f E P, ,0 ( )µζ . This steady state equilib-
rium distribution is thus constructed using beam deposition 
analysis, and no assumptions are made regarding how closely 
it resembles a Maxwellian [10]. Furthermore, particle classi-
fication in terms of co- and counter- passing, trapped, banana, 
confined or lost, etc, is easily given in terms of these variables 
[11]. The unstable mode spectrum and eigenfunctions in the 
plasma studied are given by NOVA, which has been shown to 
agree well with the modes observed in discharges.

High energy particle destabilized Alfvén modes generally 
saturate at amplitudes small enough so that the linear eigen-
functions provide a good approximation to the mode structure 
for amplitudes up to saturation. We restrict this study to a case 
exhibiting saturated mode amplitudes at a well defined mode 
frequency, although the formalism can also describe mode 
chirping.

In this work we will use as a test case of the method devel-
oped discharge 141711 in NSTX [12] at a time of 470 ms. 
In figure  1 are shown the equilibrium, q profile, and radial 
potential giving plasma rotation for this case. This discharge 
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provides an example in which modes grow to a level which 
modifies the particle distribution without significant change 
in mode frequency, and with amplitudes which permit the 
use of linear eigenfunctions. Nonlinear mode–mode cou-
pling is completely negligible, although the particle dynamics 
involved in driving the modes is fully nonlinear, with modes 
coupled through their modification of the particle distribution. 
However, the present work is restricted to the consideration of 
single modes, mode coupling through the modification of the 
particle distribution will be addressed in a future publication.

In section 2 we review the guiding center formalism used 
for the simulation and the low noise method for finding mode-
particle energy and momentum transfer. Section 3 shows the 
important resonances for each of the ten modes present in the 
discharge. In section 4 the fδ  formalism used is derived, and 
in section 5 the equations for advancing the mode amplitudes 
and phases are given. Section  6 gives the means by which 
energy is transfered from the high energy distribution to the 
modes, and section 7 is the construction of a splined represen-
tation of the beam particle distribution present in the experi-
ment and the results of the simulations. Section 8 shows the 
method for finding the mode induced modification of the par-
ticle distribution with examples for these modes, and section 9 
is the conclusion.

2. Guiding center equations

We use units of time given by 0
1ω− , where eB mc0 /( )ω =  is the 

on-axis gyro frequency, B the magnetic field strength, e the 
charge and m the particle mass, and units of distance given 
by the major radius R, which was 100 cm, as seen in figure 1. 
The basic unit of energy becomes m R0

2 2ω , which can also be 
written as mv R2 22 2 2( / )( / )ρ , the gyro radius is v B 1/ρ = ≪ , 
and the magnetic moment v B22 /( )µ = ⊥  is of order 2ρ . Particle 
motion both along and across the field lines is of order ρ but 
to leading order the cross field motion is the cyclotron motion, 
and cross field drift is of order 2ρ  [11].

Equilibrium field quantities are given by ζ= ∇ +B g
→   

θ δ ψ∇ + ∇I pwith pψ  the poloidal flux, θ a poloidal angle 
coordinate, ζ a toroidal angle coordinate, and g, I and δ are 
equilibrium functions. The Hamiltonian is

H
B

B
2

0

2 2
∥ρ µ= + + Φ (1)

with v B/∥ ∥ρ = , µ the magnetic moment and Φ the electric 
potential [11]. The toroidal and poloidal canonical momenta 
are

P g P, ,p p( ) ∥ ∥ψ ρ ψ ρ ψ= − = +ζ θ (2)

with ψ the toroidal flux, and qd d p p/ ( )ψ ψ ψ= , the field line 
helicity.

Guiding center equations  advance the variables pψ , θ, ζ, 
and ∥ρ , leaving µ a constant of the motion. The energy E must 
be recalculated after each time step and the accuracy of energy 
conservation in the absense of time dependent modes is used 
to control the time step.

Introduce a magnetic field perturbation of the form 
B B
→ →
δ α= ∇× . This form also requires introducing an electric 
potential Φ, discussed in section 5. We then find [13]3 for the 
exchange of energy and momentum between the particle dis-
tribution and the modes

ρ α ρ α= ∂ =− ∂ + ∂Φ =−∂ = ∂ − ∂ Φζ
ζ ζ ζ

H
t

H B
P

t
H B

d
d

,
d

d
.t t t

2 2
∥ ∥

 

(3)

Because of the small value of α, the terms in equations (3) are 
typically four orders of magnitude smaller than those for step-
ping the four particle variables pψ , θ, ζ, and ∥ρ , and thus these 
equations are much more accurate than the numerically found 
energy and momentum changes calculated from the stepped 
variables, which depend on the cancellation of large terms. 
In particular, a time independent perturbation will result in a 
lack of particle energy conservation due to numerical error, 
whereas the energy transfer by equation  (3) is exactly zero. 
Similarly, an axisymmetric perturbation will erroneously 
result in modification of Pζ but equation (3) will give exactly 
zero. With a general perturbation the values of particle energy 
and canonical momentum obtained by stepping pψ , θ, ζ, and 

∥ρ , will always contain a significant amount of noise as com-
pared to the values given by equations (3). Of course to eval-
uate equations (3) the particles must be advanced in the four 
dimensional space of pψ , θ, ζ, ∥ρ , and the energy transfer is 

Figure 1. Equilibrium, showing the poloidal cross section with X and Z in centimeters, the q profile, and radial potential for NSTX 
discharge 141711.

3 See also equation (3.102) in [3].
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evaluated at the particle location in this space, the improved 
accuracy is only in the value of the energy transfered to the 
modes, not in the particle orbits. But to study mode growth 
and saturation, it is precisely the energy and momentum trans-
fered to the modes which is of interest. Using changes in par-
ticle energy and momentum to find the transfer to the modes 
depends on subtracting terms of order one to obtain terms of 
order α, typically four orders of magnitude smaller.

Kinetic Poincaré plots, made following high energy particle 
orbits in the presence of a perturbation with a single toroidal 
mode number and frequency, and recording points whenever 
n t k2ζ ω π− =  with k integer, indicate mode-particle reso-
nances and the island structure of these resonances. Location 
of mode-particle resonances is also a very delicate process 
requiring high accuracy [14–16]. In the presence of a single 
mode, with α and the Hamiltonian functions of n tζ ω−  we have

P nH˙ ˙ .ω =ζ (4)

For a single mode this condition restricts the motion of par-
ticles in the Pζ, E plane to a line nE P constantω− =ζ , (E, the 
energy, is the value of the Hamiltonian) due to the action of a 
mode, defining the possible diffusion in this plane.

Including collisions µ is not constant, and using v B22 /( )µ = ⊥  
and v v/∥λ =  we find

E
B

d
2

dµ λ λ= (5)

and a simple energy conserving pitch angle scattering oper-
ator can be used for the changes in λ. In addition, a slowing 
down operator giving the slowing of high energy particles due 
to collisions with electrons can easily be included.

3. Resonance determination

A general method for numerically determining the existence 
of or the destruction of good KAM [17] surfaces can be 
obtained using the method of phase vector rotation [14–16]. 
Consider following two orbits located nearby one another. 
Examine a Poincaré section in P , θζ  and define the angle χ to 
give the orientation of the vector joining them in this plane. If 
good KAM surfaces exist χ can change by at most an angle 
of π, due to their relative velocity in the angular coordinate. 

However two orbits within an island rotate around one another 
with χ increasing with the rotation about the island O-point, 
also referred to as the bounce frequency of a particle trapped 
in the wave, which increases with the size of the island. The 
rate of change of χ is a function of distance from the island 
O-point, dropping to zero at the separatrix.

In figures 2–11 are shown the harmonic content, the location 
of resonances in the Pζ, E plane determined by this method, as 
well as a Poincaré plot shown along the line E P n E0/ω− =ζ  
in this plane for the ten modes of the discharge. The constant 
E0 is simply the particle energy in the frame rotating with 
the mode. The points in the Pζ, E plane clearly indicate the 
major resonances shown in the Poincaré plots. For this evalu-
ation the magnetic moment was constant, with B 20µ =  keV, 
where the distribution is strongly peaked. Here and in the fol-
lowing, B in these expressions refers to the value at the magn-
etic axis, so Bµ  is a constant, simply converting the value of 
the magnetic moment to units of energy. This method can be 
used to examine the resonance locations for any value of Bµ , 
and sometimes this can be instructive. The method of phase 
vector rotation can be used with many values of µ present, but 
for comparison with a Poincaré plot a single value of µ must 
be selected, and the Poincaré plot shows the resonances only 
along the line E P n E0/ω− =ζ .

The modes differ significantly regarding the location of the 
major resonances. In figure 2 we see that there is a major reso-
nance in mode 1, seen both in the Pζ, E plane and in the Poincaré 
plot near the left bounding surface, which corresponds to the 
plasma edge. The right hand edge corresponds to the magnetic 
axis. The triangle shaped region at the bottom of these plots 
is the domain of trapped particles. Mode 2, shown in figure 3, 
also has a significant resonance near the plasma edge, but a 
stronger one more near the plasma center. These plots give 
insight as to what kinds of beam particle redistribution each 
mode is capable. Modes 2,4,6,7,9,10 have strong resonance in 
the center of the domain of canonical momentum, extending 
over a large range of energy. Modes 1,5,8 and 9 have strong 
resonances very near the magnetic axis.

The domains of broken KAM surfaces depend on the exist-
ence of a resonance, but this is not sufficient. It is also neces-
sary that a relevant harmonic be reasonably large at the radius 
at which the resonance occurs. Particle orbits, because of drift 
motion, do not stay on a particular flux surface. But harmonic 

Figure 2. Harmonics, resonance domains, and a sample Poincaré plot, mode 1, n  =  2, 103 kHz, µ =B 20 keV.
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amplitudes are functions of the flux surface, and can be local-
ized, thus a particle can move in and out of the region where 
the amplitude is large in a single orbital transit. Thus analytic 
estimates of resonance are not reliable, and methods which 
exist [18, 19] depend on integration over actual particle orbits.

4. Delta f formalism

Now consider mode evolution using a fδ  procedure. We 
assume the initial particle distribution is in steady state 
through the processes of slowing down, collisions, and a 
continuous source, which could be either beam injection or 
alpha particle production. Write the particle distribution as 
f f f0 δ= +  where the distribution in the absence of the modes 
f0 is a function of E, Pζ, µ, and is independent of time, and 
the modification of the distribution fδ  is due to the modes. 
Following particle orbits

t
f

d
d

0.= (6)

Then to order α, ν, using the fact that Ė and Ṗζ are order alpha 
and µ̇ is of order ν

t
f f E f P f R

d
d

˙ ˙ ˙ ,E P0 0 0[ ]δ µ= − ∂ + ∂ + ∂ = −ζ µζ (7)

where Ė and Ṗζ refer to a single eigenmode, N, with definite 
values of n and ω, but which may consist of many poloidal 
harmonics. The full change in the distribution is given by the 
sum over all eigenmodes present. However, we assume that 
the distribution f0 is in steady state through the combination of 
collisions and beam injection, and thus for the time evolution 
of fδ  we do not include the term µ∂µ f ˙0 . The modification of the 
particle distribution of interest is that due to the modes only.

Now define a marker distribution function in extended 
phase space [20], F w t, , , , ,p( )∥ψ θ ζ ρ  with w the particle 
weight, and

t
F wF

d
d

˙ 0.w( )+ ∂ = (8)

In the simulation F has the Klimontovich representation

( )
( ( )) ( ( )) ( ( )) ( ) ( ( ))

∥

∥ ∥∑
ψ θ ζ ρ

δ ψ ψ δ θ θ δ ζ ζ δ ρ ρ δ= − − − − −

F t

t t t w w t

, , , ,

,
j

j j j j j

p

p p, ,

 (9)

with j the particle index and g t wF, , , , dp( )∥ ∫ψ θ ζ ρ =  is the 
numerically loaded and evolved distribution function and fδ  
is represented by

( )
( ( )) ( ( )) ( ( )) ( ( ))

∥

∥ ∥∑
δ ψ θ ζ ρ

δ ψ ψ δ θ θ δ ζ ζ δ ρ ρ= − − − −

f t

w t t t t

, , , ,

.
j

j j j j

p

p p, ,

 
(10)

Integrating equation  (8) over w we confirm that g 0
t

d
d
= . 

Multiply equation (8) by w and integrate by parts. We then find

wwF wwFd ˙ d ˙ .∫ ∫= (11)

Thus

t
f wwF wwF R

d
d

d ˙ , d ˙ .∫ ∫δ = = − (12)

Try a solution of the form w a bw R˙ ( )( )= − − , giving 
ag E P t b f E P t, , , , , , 1( ) ( )µ δ µ− =ζ ζ . Write g g f0 δ= + , giving 
a  =  b  =  1/g0, so

w
t

w
g

R
d
d

1
, , , , 0

.
p( )∥ψ θ ζ ρ

= −
 (13)

This formulation is extremely useful, as it does not require 
consideration of the time evolution of the marker distribution, 
and using the form of R the evolution of w is given by the 
expressions ∂E g f˙ E0 0( / )  and P g f˙ P0 0( / )∂ζ ζ . Normally simulations 
assume that the initial perturbation of the distribution fδ  is 
zero, so initially w(0)  =  0.

5. Mode stepping

The equilibrium magnetic field is given by

B g I ,p
→

ζ θ δ ψ= ∇ + ∇ + ∇ (14)

Figure 3. Harmonics, resonance domains, and a sample Poincaré plot, mode 2, n  =  3, 104 kHz, µ =B 20 keV.

Plasma Phys. Control. Fusion 58 (2016) 115007
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and in an axisymmetric equilibrium using Boozer coordi-
nates g and I are functions of pψ  only. The perturbation has 
the form

∑ ∑α α ψ ψ= Ω Φ= Φ ΩA Asin , sin ,
m n

n m n mn
m n

n m n mn
,

,
,

,( ) ( ) ( ) ( )

 (15)

where n refers to a single mode with definite toroidal mode 
number and frequency, but many poloidal harmonics m and 

n m tmn n nζ θ ω φΩ = − − − , with nφ  the mode phase, and for 
ideal modes the electric potential Φ is chosen to cancel the 
parallel electric field induced by B td d/→

, requiring

B B Bcos 0.
m n

m n mn
,

, ( ) /→
∑ω α Ω − ⋅ ∇Φ =

and in Boozer coordinates

gq I nq m .mn mn( ) ( )ωα+ = − Φ

The perturbation α is related to the ideal displacement 
→
ξ ,

m q n
mg nI

.mn mn
( / )
( )

α ξ=
−
+

ψ

The numerically produced eigenfunctions are normalized with 
the largest harmonic mn p( )ξ ψψ  having maximum amplitude 1.  
Thus the amplitude An is the magnitude of the ideal dis-
placement caused by this harmonic, normalized to the major 
radius R.

Stepping equations  for modes were previously derived 
[20], but in that derivation the mn

→
ξ  formed an orthonormal 

basis, not a possible choice for the case of a single mode com-
prising several poloidal harmonics with fixed relative ampl-
itudes. Stepping in time of the displacement

A sin
mn

n mn mnp( ) ( )→ →
∑ξ ξ ψ= Ω (16)

is given by

A A S2 ˙ cos ˙ sin
mn

n mn n mn n n mnp A
2( )[ ( ) ( )]→ →

∑ ω ξ ψ φ νΩ + Ω = − (17)

where the frequency Aν  is the local Alfvén frequency and 
the source S

→
 is related to mode-particle energy transfer 

through

( ) ( )

( ) ( )

→ → → →

→ → → →

∑

∑

ω ξ ψ

ω ξ ψ

⋅ = ⋅ Ω

⋅ ∂ = ⋅ Ω

v E A S

v E A S

cos ,

sin

n n n
m

mn mn

t n n n
m

mn mn

p

2
p

 
(18)

and En
→

 is the electric field corresponding to the displacement 
sinn m mn mn( )→ →

ξ ξ= ∑ Ω ,

E A B cos .n n n n mn( ) ( )→ → →
ω ξ= × Ω (19)

Multiply equation  (17) by cosm mn mnp( ) ( )→
ξ ψ∑ Ω  and 

sinm mn mnp( ) ( )→
ξ ψ∑ Ω  and integrate over , ,pψ θ ζ, giving

D A S˙ cos d d d ,n n n
m

mn mnA
2

p p( ) ( )→ →

∫∑ω ν ξ ψ ψ θ ζ= − ⋅ Ω (20)

D A S˙ sin d d dn n n n
m

mn mnA
2

p p( ) ( )→ →

∫∑ω φ ν ξ ψ ψ θ ζ= − ⋅ Ω (21)

with D 4 dn m mn
2 2

p p( )∫π ξ ψ ψ= ∑ . Now use equations  (18) 
and the fact that v En

→ →
⋅  is the energy transfer between mode 

and particle, given by H t Bd d t t
2/ ∥ρ α= − ∂ + ∂Φ, and use the 

Klimontovich representation for the particle distribution to do 
the integrals, giving

[ ( ) ( )] ( )∥∑ν
ω

ρ α ψ ψ γ=
−

− Φ Ω −A
t D A

w B A
d
d

cos ,n

n n n j m
n mn mn mn n

A
2

,

2
p p d

 (22)

t D A
w B

d

d
sin ,n

n n n j m
n mn mn mn

A
2

2
,

2
p p[ ( ) ( )] ( )∥∑

φ ν
ω

ρ α ψ ψ=
−

− Φ Ω

 (23)
with j the particle index and , ,pψ θ ζ is the position of particle 
j. The linear damping rate dγ  is due to the continuum, elec-
tron and thermal ion Landau damping, and radiation, and all 
terms in the sums are evaluated at the coordinates of particle 
j, and wn the weight of particle j for mode n. Note that there 
are extra factors of An in the denominator compared to [20] 
because also the weight wn is proportional to An. Note also that 
particle collisions and slowing down refer to collisions with 
a background particle species, not to particle-mode transfer. 
Thus for use in the mode stepping equations the weights are 
not stepped using the drive resulting from fµ̇∂µ . Collisions and 

Figure 4. Harmonics, resonance domains, and a sample Poincaré plot, mode 3, n  =  4, 155 kHz, µ =B 20 keV.

Plasma Phys. Control. Fusion 58 (2016) 115007
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slowing down only affect the mode evolution by moving par-
ticles in and out of the resonances.

The time evolution of the phase nφ  produced by the particle 
distribution is equivalent to a modification of the mode fre-
quency through ṅω φ+ , and can describe mode chirping.

6. Mode-particle energy exchange

In figure 12 is shown the result of a simulation showing the 
evolution of the mode growth rate with a given initial dis-
tribution, no particle source, collisions or slowing down. 

The mode amplitude was fixed at a value giving a large 
resonance. It is seen that the growth rate drops to zero in 
the bounce time of trapped particles in the mode, at which 
point the energy and momentum densities in the island have 
been completly flattened, leaving nothing to further drive 
the mode. The first Poincaré plot shows the resonant island 
structure, using 1000 toroidal transits to make the structure 
clear. The transit time is simply the time for a toroidal transit 
of a particle with characteristic energy at the magnetic axis 
with pitch equal to one. The second Poincaré plot shows two 
particle trajectories trapped in the resonance for the time 
it takes for the growth rate to drop to zero, forty transits, 

Figure 5. Harmonics, resonance domains, and a sample Poincaré plot, mode 4, n  =  4, 158 kHz, µ =B 20 keV.

Figure 6. Harmonics, resonance domains, and a sample Poincaré plot, mode 5, n  =  4, 125 kHz, µ =B 20 keV.

Figure 7. Harmonics, resonance domains, and a sample Poincaré plot, mode 6, n  =  5, 157 kHz, µ =B 20 keV.

Plasma Phys. Control. Fusion 58 (2016) 115007
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showing that this is simply the mean bounce time in the reso-
nance. The bounce time is shorter for larger islands, and thus 
larger islands flatten the distribution more quickly. Because 
the bounce time sepends on distance from the resonance 
elliptic point, rotation about this point produces fine scale 
mixing, leading irreversibly to a state of higher entropy. The 
time scale for mode saturation is much shorter than the time 
scale for equilibrium changes. But a steady state high energy 
distribution, because of slowing down and collisions, must 
be continually maintained by a source. In the case of a beam 
profile the source is beam injection, in the case of alpha par-
ticles it is the fusion source.

The fδ  formalism produces the same result through the par-
ticle weights. In figure 13 is shown the kinetic Poincaré plot 
of a particle trapped in resonance, for fixed mode amplitude 
and no particle collisions or slowing down. Also shown is the 
particle weight as a function of time. The weight grows rapidly 
until the particle has completed a bounce time, after which it 
no longer changes, the total mode drive having been extracted. 
Additional drive to the mode can come only from new particles 
entering the resonance, through scattering, energy loss through 
drag, or through mode growth, increasing the size of the island.

Note that these simulations are very different from simu-
lations of electrostatic or electromagnetic turbulence, where 

Figure 10. Harmonics, resonance domains, and a sample Poincaré plot, mode 9, n  =  5, 120 kHz, µ =B 20 keV.

Figure 8. Harmonics, resonance domains, and a sample Poincaré plot, mode 7, n  =  5, 111 kHz, µ =B 20 keV.

Figure 9. Harmonics, resonance domains, and a sample Poincaré plot, mode 8, n  =  5, 116 kHz, µ =B 20 keV.

Plasma Phys. Control. Fusion 58 (2016) 115007
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resonances are continually appearing and disappearing as 
the fields change. In the present situation the resonances are 
very stable results of the high energy particle distribution and 
are essentially constant over the whole simulation except for 
becoming larger as the amplitudes grow, unless nearby reso-
nances overlap, producing larger stochastic domains. In this 
case it is not simple resonance bounce time that determines 
the time scale for distribution flattening, but the time scale for 
stochastic transport.

7. Numerical method for the general case

The variables determining mode growth and saturation are 
the drive, given by partial derivatives of f and the slowing 
down and collision frequencies and the damping. Growth is 
determined by an imbalance between the rate at which free 
energy is introduced into the island and the mixing rate, and 
satur ation occurs when the island grows to a point where 
these rates are balanced [21]. Saturation occurs because the 

Figure 11. Harmonics, resonance domains, and a sample Poincaré plot, mode 10, n  =  6, 116 kHz, µ =B 20 keV.

Figure 12. /γ ω versus time, Poincaré plots with 1000 transits and 40 transits. In one bounce time the distribution in an island is flattened, 
and if the amplitude is fixed and there are no collisions or slowing down of particles, causing them to enter or leave resonance, the mode 
drive stops.

Figure 13. Evolution of particle weight in resonance.

Plasma Phys. Control. Fusion 58 (2016) 115007
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mixing rate increases with island size and eventually equals 
the energy source rate, allowing a local flattening of the distri-
bution within the island and eliminating the mode drive.

To carry out simulations of actual discharges, we need 
representations of the magnetic equilibrium, the high energy 
particle distribution, the spectrum of modes along with the 
eigenfunctions m n, p( )ξ ψ  and frequencies supplied by NOVA 
[9], values for collisional drag and scattering rates, and the 
drive terms resulting from partial derivatives of the particle 
distribution f0. In NSTX typical beam injection is 6 10 s20 1 × −  

and slowing down is from 20 to 100 ms, so the number in the 
beam is about 6 1019× . Transit time is typically three micro-
seconds, so complete redeposition through beam injection 
occurs in 30 000 transits. Typical simulations are shorter than 
this, and also short compared to the pitch angle scattering 
time.

To advance the particle weights, we need the partial deriva-
tives of f0. The numerical method used is the following. 
Divide the space of E P B, ,µζ  into bins. With Monte-Carlo 
methods, develop a list of particles and construct a numerical 

Figure 14. Example NSTX beam distribution for shot 141711. The energy E ranges from 20 to 70 Kev, and the value of µB from 0 to  
70 Kev. The canonical momentum /ψζP w ranges from  −.5 to .5. In each plot the third variable is summed over.

Figure 15. Examples of the two dimensional spline fits to f0 for fixed µ. In the first plot µ =B 49 keV, so particle energy is restricted to 
above this, and in the second µ =B 7 keV. The energy ranges from 20 keV to 70 keV. Canonical toroidal momentum ζP , normalized to ψw, 
ranges from  −.5 to .5.
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distribution fE P, ,µζ . This can be done once at the beginning of 
the simulations, and it can be made smoother by advancing 
the initial distribution in time with a small collision frequency 
and slowing down operator, recording particle locations in 
bins every time step. However this distribution is not time 
independent. In any Hamiltonian system H(p,q), the invariant 
phase space volume element is given by p qd d . In our case it is 
given for each value of µ by

P Pd d d dθ ζζ θ (24)

so the time independent distribution function is the distribution 
in this space. Distributions are axisymmetric, so the variable ζ 
will be ignored. To find the correct time independent distribu-
tion function we must construct the Jacobian for the contrac-
tion from the space of P Pd d d dθ µζ θ  to E Pd d dµζ . Note that this 
is an irreversible contraction to a space of smaller dimension. 
The full particle distribution cannot be reconstructed given 

f E P, ,( )µζ , which gives the space of all particle orbits but not 
the position of particles on the orbits. This Jacobian is found 
by loading particles uniformly in the space given by equa-
tion (24) and then finding their distribution in E Pd d dµζ , which 
we donote by J E P, ,( )µζ . The correct time independent distri-
bution function is then

f E P f E P J E P, , , , , ,E P0 , ,( ) ( )/ ( )µ µ µ=ζ µ ζ ζζ (25)

This reduction is possible because only the changes in E and 
Pζ are necessary to find the modification of the mode. Of 
course for evaluations of mode-particle energy transfer these 
quantities are evaluated at each particle location in the full 
four dimensional guiding center phase space pψ , θ, ζ, and ∥ρ , 
plus the value of µ.

An example is shown in figure 14 for the NSTX distribu-
tion for shot 141711 obtained from NUBEAM in TRANSP. 
An initial deposition of 300 000 particles was loaded and 

Figure 16. An example of time evolution of individual modes using 
NOVA damping rates with collision time of 200 ms. Shown is the 
amplitude versus time, with time in units of toroidal transits.

Figure 17. Numerical and NOVA growth rates.

Table 1. Modes observed in NSTX shot 141711 at t  =  470 ms.

N n m ω kHz /γ ω /γ ωN /γ ωd A103
sat Harmonics

1 2 1–7 103 .138 .06 −.0047 1 1–7
2 3 2–10 104 .025 .016 −.0047 0.4 8–16
3 4 3–11 155 .027 .006 −.0039 0.15 17–25
4 4 3–11 158 .008 .005 −.001 68 0.8 26–34
5 4 2–10 125 .023 .05 −.0021 5 35–43
6 5 5–13 157 .008 .002 −.000 25 0.9 44–52
7 5 5–13 111 .017 .025 −.0014 1.5 53–61
8 5 3–11 116 .01 .08 −.0013 3 62–70
9 5 3–11 120 .013 .034 −.0031 1.9 71–79
10 6 7–15 116 .017 .018 −.0009 2 80–88

Note: Listed is the toroidal mode number n, the range of poloidal mode numbers, the frequency in kHz, the growth rates given by NOVA and by the present 
simulation, the damping due to the continuum and electron Landau damping, the saturated amplitudes, and the range of the harmonics included.
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advanced for 105 steps or 2000 toroidal transits, resulting in 
3 1010×  entries in the 50 50 50× ×  bins for f E P, ,E P, , ( )µµ ζζ

. 
During the time evolution, very small values of collision and 
drag were employed in order to produce smoothing in the vari-
ables E and /mu. The particle energy ranges from 20 to 70 keV 
and Bµ  from 0 to 70 keV. Note that the obtained distribution 
naturally attenuates above this energy, no significant popula-
tion of high energy particles has been omitted. The canonical 
momentum Pζ is normalized to wψ  and ranges from  −0.5 to 
0.5. The Jacobian is then constructed by loading particles uni-
formly in P P, , ,θ µθ ζ  with Monte Carlo techniques and then 
binning them in E P, ,µζ  to give J E P, ,( )µζ . This method pro-
duces a time independent initial distribution which, with addi-
tional smoothing, can be used to construct a spline fit.

The spline fit is made possible by observing that partial 
derivatives are needed only in the variables Pζ and E, so for 
each value of µ a two dimensional spline is constructed. The 
spline representation requires nine coefficients at each of 
the 50 50×  grid points, giving with 50 values of µ, a total 
of 1.125 106×  coefficients to store for a given distribution. 
Examples of the obtained two dimensional splines are shown 
in figure 15. In the first plot B 49µ =  keV and in the second 

B 7µ =  keV. The energy range is from 20 keV to 70 keV, but 
since E must be greater than Bµ  it is restricted to larger ener-
gies in the first plot. Canonical toroidal momentum Pζ, nor-
malized to wψ , ranges from  −0.5 to 0.5. The marker particles 
were loaded uniformly in P P, , ,θ µζ θ , giving a time independent 
distribution g E P, ,( )µζ  which is also uniform in E P, ,µζ , since 
this loading simply reproduces the Jacobian. Thus the step-
ping equation for the weight becomes

w
t

w
g E P

f E f P
d
d

1
, ,

˙ ˙ .E P0 0( )
[ ]

µ
= − ∂ + ∂

ζ
ζζ (26)

The use of a uniform distribution for g is much more accu-
rate than having the marker distribution reproduce the actual 
particle distribution f0 because there are large domains in the 
space of E P, ,µζ  where f0 is very small, and f fE 0 0/∂  can possess 
noise of order one.

The evolution of each mode was carried out separately, 
so there was no mode–mode interaction in these simulations. 
The simulations included pitch angle scattering and slowing 
down with time scales of 200 ms, probably somewhat higher 
than actual. Saturation amplitudes scale as 2 3/ν  so the obtained 
saturation levels are probably large, but in any case all modes 
must be advanced together in order to include mode–mode 
coupling and to compare with experimental values. The ini-
tial growth rate is given in the first 50 transits, and by 300 
transits the growth rates for most modes have dropped to very 
small values. In this case the transit time is about three micro-
seconds. The growth rate and the mode amplitude evolution 
are much smoother than in previous simulations [20, 22], in 
spite of the use in that case of analytic representations of the 
particle distributions, due to the noise free properties of equa-
tions (3) as well as the use of splined partial derivatives of the 
distribution.

Time evolution of individual modes is shown in figure 16, 
using 200 000 marker particles. All modes evolve to stable 

saturated levels. The final time for these simulations, equal to 
5 ms, corresponds to a small fraction of a collision time, with 
T .0025ν =

As seen in figures 2–11 a single mode produces resonance 
islands typically at several different locations in the plasma. 
Linear theory uses analytic resonance positions and it is not 
clear that all are completely or correctly given. But all reso-
nance islands, unavoidable in a full simulation, and existing 
in the real plasma, can contribute either to the stabilization or 
destabilization of the mode, depending on the nature of the 
particle distribution.

In table 1 is shown the mode spectrum, giving the mode 
number N, the toroidal mode number n, the range of poloidal 
mode numbers, the mode frequency, and growth rate from 
linear theory as well as damping from the continuum and 
electron Landau damping. The entry Nγ  is the numerically 
observed growth rate. All these simulations were carried 
out with collision and slowing down times of 200 ms, a col-
lision rate somewhat larger than that in the NSTX discharge 
examined.

Figure 17 is a comparison of the growth rates given by 
NOVA and those obtained in the present simulation. The 
values of growth rate found by NOVA are often in disagree-
ment with the values given in these simulations, with agree-
ment for some modes only within a factor of five. The largest 
discrepancy in growth rate occurs for mode 8, which has prin-
ciple resonances near the magnetic axis. Part of this disagree-
ment can perhaps be ascribed to the fact that the distribution 
function used in NOVA was an analytic slowing down dis-
tribution. Thus it is perhaps the case that the present values 
are more reliable than those given by NOVA. But it is not 
clear that the present analysis of mode damping is sufficiently 
accurate to properly give the experimentally observed growth 
rates. As final results depend on collision rates, slowing down 
rates, and damping values, this must be regarded as a weak-
ness of the present analysis as regards comparison with exper-
iment. In addition, modes were advanced separately, there was 
no mode–mode coupling through modification of the particle 
distribution. Thus comparison of saturation amplitudes is not 
relevant at this point in the development of the model.

Figure 18. Distribution modification, for µ =B 21 keV, mode 5, 
n  =  4 and 125 kHz.
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A simple model for mode saturation [23] gives

b
eff L

d

ω
ν γ
γ

= (27)

with bω  the bounce frequency in the resonance, Lγ  the linear 
growth rate, dγ  the damping, and eff b

2( / )ν ν ω ω=  is the effec-
tive collision frequency. This expression is useful to compare 
scaling of saturation for a fixed mode with different values of 
collision frequency or damping. But in the present case each 
mode has its own unique resonance, and hence bω , and there 
is little information to extract using this expression. A sepa-
rate publication [21] discusses saturation of a single mode as 
a function of collision frequency. See also [22].

8. Distribution modification

To find the distribution modification construct fδ  by sorting 
the test particles into bins in E P, ,µζ  using weight w

f t

w t t t t

, , , ,

,
j

j j j j

p

p p, ,

( )
( ( )) ( ( )) ( ( )) ( ( ))

∥

∥ ∥∑
δ ψ θ ζ ρ

δ ψ ψ δ θ θ δ ζ ζ δ ρ ρ= − − − −

and obtain good statistics by averaging over a number of steps.
We then have

f E P f E P f E P, , , , , ,0( ) ( ) ( )µ µ δ µ= +ζ ζ ζ

where the two terms must be weighted acccording to the 
number of entries in each.

There is obviously an enormous amount of data available 
in the 50 50 50× ×  data points for the initial and the modi-
fied distribution functions, giving detailed information con-
cerning the change of the distribution for each value of µ. 
Figures 2–11 give examples of the harmonics and the prin-
ciple resonances, as well as example Poincaré plots. These, as 
well as the magnitude of the saturation amplitude, can be used 
to select domains of interest for distribution modification. 

Figure 19. Distribution modification, for µ =B 28 keV, and the change in the energy distribution for /ψ = −ζP 0.4w , mode 8, n  =  5 and 
116 kHz.

Figure 20. Distribution modification, for µ =B 21 keV, mode 9, 
n  =  5 and 120 kHz.

Figure 21. Distribution modification, for µ =B 21 keV, mode 10, 
n  =  6 and 116 kHz.

Plasma Phys. Control. Fusion 58 (2016) 115007



R White et al

13

Examples of distribution modification are shown for modes 
5, 8, 9 and 10 in figures 18–21. These show only the modi-
fication near B 20µ =  keV, where the distribution is peaked. 
Similar plots can be obtained for all 50 values of Bµ . Other 
modes that satur ate at small amplitude do not produce noti-
cable modification of the beam distribution. In addition to 
these two dimensional plots, a distribution can be obtained 
in a single variable with the other two variables fixed. As an 
example in figure 19 is shown the initial and modified ditribu-
tion in energy, for fixed P .4w/ψ = −ζ , B 28µ =  keV.

A future publication will consider simulations with mul-
tiple modes present, interacting through the mutual modifica-
tion of the distribution function. From the present results we 
conclude that modes saturating at low levels will probably not 
significantly affect other modes.

9. Conclusion

Alfvén modes driven unstable by energetic particles, either 
injected beam particles or fusion generated alpha particles, 
can evolve to amplitudes which produce large scale modifi-
cation of the original high energy particle distribution. Thus 
it is critical to be able to estimate the saturation amplitudes 
of such modes in order to predict their effect on attempts to 
reach fusion producing temperature and density. This paper 
presents the initial development of a formalism and code 
capable of predicting saturation amplitudes using actual 
numerically generated equilibria, high energy particle distri-
butions, and unstable mode eigenfunctions. A reduced noise 
means of evolving a spectrum of Alfvén modes up to satur-
ation has been developed, using a spline representation of 
the observed particle beam distribution given by TRANSP 
and the spectrum of eigenmodes for this distribution given by 
NOVA. The beam distribution is fit with a spline function of 
E and Pζ for each value of µ, allowing smooth partial deriva-
tives in these first two variables. The low noise level of the 
simulations comes from the use of this representation of the 
beam distribution as well as the use of the exact mode-par-
ticle energy and momentum transfer given by equation  (3). 
The method is illustrated using NSTX shot 141711. Poincaré 
plots and plots of phase vector rotation are used to understand 
and illustrate the resonance locations, and the fδ  method is 
used to examine the modified particle distribution. Several 
of the modes do not produce a significant modification of the 
initial beam particle distribution. These simulations represent 
only an initial exploration of the method. The modes were 
evolved one at a time, so mode–mode coupling through the 
particle distribution was not included. A future publication 
will explore multi-mode simulations, and also use improved 

values of col lisions, drag, and damping, to better allow com-
parison with experiment.
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