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1. Introduction

The effect of Alfvén modes on energetic particles in tokamaks 
is important in general, and could be of significance for ITER 
[1]. It has been demonstrated that high energy injected beam 
driven Alfvén modes can significantly modify the beam 
particle distribution, either through profile modification or 
induced loss [2–6]. Previous work concerning the induced loss 
of beam particles due to Alfvén modes has used exper imental 
values for mode amplitudes. Work is needed to be able to cor-
rectly predict mode amplitudes in current devices and in ITER 
in order to understand the presently observed beam density 
reduction and predict expected fast ion transport due to Alfvén 
modes. Significant loss can greatly diminish plasma heating 
and thus compromise the ability to achieve a burning plasma. 
When a sufficient number of modes reach a critical amplitude, 
stochastic transport of beam ions takes place. Thus the effect 
of the modes on beam density is a sensitive function of the 
mode saturation amplitudes. Mode saturation is a function of 
collisionality, since collisions move particles in and out of res-
onances responsible for instabilities, and there are several pre-
vious theoretical studies of the dependence of mode saturation 

on particle collisionality [7–10]. These studies however make 
use of analytic particle distributions, usually a simple bump 
on tail distribution, and also employ nonlinear fluid equa-
tions and a simple model mode eigenfunction. In this work 
we examine the dependence of mode saturation amplitudes on 
particle collisionality for a particular discharge in NSTX [11], 
making use of the numerical high energy beam particle distri-
bution, and the full mode structure as predicted by a stability 
code, including many poloidal harmonics.

Solving the drift kinetic equation in the presence of Alfvén 
modes driven unstable by a distribution of high energy parti-
cles and advancing the mode amplitudes and phases in time 
is done with the use of a fδ  formalism, whereby the initial 
distribution f0 is assumed to be a steady state high energy par-
ticle distribution in the absense of the modes, and f f f0 δ= +  
describes the particle distribution in the presence of the modes. 
The Hamiltonian is written as H H H0 1= +  with H0 giving 
the unperturbed motion, conserving particle energy E, toroidal 
canonical momentum Pζ, and magnetic moment µ. The fδ  for-
malism and the construction of the initial high energy particle 
distribution are described in detail in another publication [12]. 
It is important to ascertain whether the scaling predictions 
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arising from idealized models is reproduced with a particle 
code using a fδ  formalism, actual mode eigenfunctions, and 
representations of the full equilibrium particle distribution.

In figure 1 is shown the NSTX equilibrium used, the q pro-
file, and the potential associated with toroidal rotation. Plasma 
rotation, by modifying local toroidal velocities, can change 
the existence and location of mode-particle resonances.

In section 2 we briefly present the guiding center formalism, 
the representation of the mode used along with equations for 
advancing the modes in time, and the fδ  formalism used to 
find mode growth. In section 3 we give the numerical results. 
In section 4 we present a rapid means of determining single 
mode saturation amplitudes and a comparison with theor etical 
expressions. In section 5 are the conclusions.

2. Guiding center equations

We use units of time given by 0
1ω− , where eB mc0 /( )ω =  is the 

on-axis gyro frequency, B the magnetic field strength, e the 
charge and m the particle mass, and units of distance given by 
the major radius R. The basic unit of energy becomes m R0

2 2ω , 
which can also be written as mv R2 22 2 2( / )( / )ρ , the gyro radius 
is v B 1/ρ = ≪ , and the magnetic moment v B22 /( )µ = ⊥  is of 
order 2ρ  [13].

Kinetic Poincaré plots, made following high energy particle 
orbits in the presence of a perturbation with a single toroidal 
mode number and frequency, and recording points whenever 
n t k2ζ ω π− =  with k integer, indicate mode-particle reso-
nances and the island structure of these resonances. Location 
of mode-particle resonances is also a very delicate process 
requiring high accuracy [14–16]. The time scales of interest 
in mode saturation are given by the linear growth rate, the 
collision rate, the diffusion rate of particles in the vicinity of 
the resonance, and the resonance bounce frequency, giving the 
mixing time for particles trapped within a resonance. Because 
of the dependence of bounce time within a resonance on the 
distance from the resonance O-point, after a few bounce times 
the distribution within the resonance is irreversibly flattened, 
giving a final mixed state of higher entropy. This mixing time 
is thus a distribution averaged bounce time for particles within 
the resonance, giving the time scale for the flattening of the 
distribution at the resonance.

The duration of resonance and the replenishment of that 
part of the distribution within resonance is modified by par-
ticle collisions. Pitch angle scattering collisions, due to col-
lisions with the background ions, are given by a simple energy 
conserving operator [17].

The equilibrium magnetic field is given by

B g I ,p
→

ζ θ δ ψ= ∇ + ∇ + ∇ (1)

with pψ  the poloidal flux, ζ a toroidal angle coordinate, and 
θ a poloidal angle coordinate. The equilibrium is axisym-
metric, thus independent of ζ. In an axisymmetric equilibrium 
using Boozer coordinates g and I are functions of pψ  only. The 
Hamiltonian is

H
B

B
2

0

2 2
∥ρ µ= + + Φ (2)

with v B/∥ ∥ρ = , µ the magnetic moment and Φ the electric 
potential [13]. Guiding center equations  advance the vari-
ables pψ , θ, ζ, and ∥ρ , leaving µ a constant of the motion. The 
toroidal canonical momentum is

P g .p p( ) ∥ψ ρ ψ= −ζ (3)

The perturbation has the form B B
→ →
δ α= ∇×  with

A Asin , sin ,
m n

n m n mn
m n

n m n mn
,

,
,

,( ) ( ) ( ) ( )∑ ∑α α ψ ψ= Ω Φ = Φ Ω

 
(4)

where each mode has a given value of n and frequency, but 
many poloidal harmonics m, n m tmn n nζ θ ω φΩ = − − − , 
where nφ  is the mode phase, and for ideal modes the electric 
potential Φ is chosen to cancel the parallel electric field induced 
by B td d/→

, requiring

B B Bcos 0.
m n

m n mn
,

, ( ) /→
∑ω α Ω − ⋅ ∇Φ =

and in Boozer coordinates

gq I nq m .mn mn( ) ( )ωα+ = − Φ

The perturbation α is related to the ideal displacement 
→
ξ ,

m q n
mg nI

.mn mn
( / )
( )

α ξ=
−
+

ψ

Figure 1. Equilibrium, showing the poloidal cross section with X and Z in centimeters (left), the q profile (center), and radial potential 
(right) for NSTX discharge 141711.
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The numerically produced eigenfunctions are normalized with 
the largest harmonic mn p( )ξ ψψ  having maximum amplitude 1. 
Thus the amplitude An is the magnitude of the ideal displace-
ment caused by this harmonic, normalized to the major radius 
R, which is 100 cm, as seen in figure 1.

Stepping equations [18] for modes, with j the particle index 
are given by

⎡⎣ ⎤⎦A
t D A

w B A
d
d

cos ,n

n n n j m
n mn mn p mn n

A
2

,

2
p d∑ν

ω
ρ α ψ ψ γ=

−
− Φ Ω −( ) ( ) ( )∥

 (5)

t D A
w B

d

d
sin ,n

n n n j m
n mn mn mn

A
2

2
,

2
p p[ ( ) ( )] ( )∥∑

φ ν
ω

ρ α ψ ψ=
−

− Φ Ω

 (6)

with D 4 dn mn
2

m
2

p p( )∫π ξ ψ ψ= ∑ . dγ  is a linear damping rate 
including damping due to the continuum, radiation, thermal ion 
Landau damping, and electron Landau damping, and all terms in 
the sums are evaluated at the coordinates of particle j. The fre-
quency Aν  is the local Alfvén frequency and wn is the weight of 
particle j for mode n. Collisions alter the mode evolution through 
the modification of the particle distribution, which of course 
modifies the values of equations  (5) and (6). Mode saturation 
occurs when the distribution has been suficiently flattened in the 
vicinity of the resonances that the effective mode drive, including 
the damping and the effect of collisions, is reduced to zero.

The steady state distribution f0 is a function only of the par-
ticle energy E, the canonical momentum Pζ, and the magnetic 
moment µ. Since the mode frequencies under consideration 
are much below the cyclotron frequency, the modes do not 
change µ. The particle weights, which record the effect of the 
modes on the distribution, are stepped according to

w
t

w
h

E f P f
d
d

1
, , , , 0

˙ ˙ .E P
p

0 0( )
[ ]

∥ψ θ ζ ρ
= − ∂ + ∂ζ ζ (7)

with h t, , , ,p( )∥ψ θ ζ ρ  the distribution of marker particles, and 
the exchange of energy and momentum between the particle 
distribution and the modes is given by

E
t

H B

P

t
H B

d
d

,

d

d
.

t t t
2

2

∥

∥

ρ α

ρ α

= ∂ = − ∂ + ∂Φ

= −∂ = ∂ − ∂ Φζ
ζ ζ ζ

 
(8)

The full particle distribution is given by f f f0 δ= +  and

Figure 2. Harmonics of the 111 kHz, n  =  5 mode with ⩽ ⩽m5 13 (left). Modes with m  <  8 are too small to be seen, and the peaks, from 
left to right, correspond to modes with m  =  8,9,10,11,12,13, in that order. The beam particle distribution in µ, (right) with particle density 
in arbitrary units, is seen to be strongly peaked at µ =B 20 keV.

Figure 3. Time evolution of 111 kHz n  =  5 TAE mode with 
collisionality of 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10 times the NSTX 
value of ν0 . Shown is the amplitude of the largest harmonic in units 
of the major radius R, versus time.

Plasma Phys. Control. Fusion 58 (2016) 125006
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∑δ ψ θ ζ ρ δ ψ ψ δ θ θ

δ ζ ζ δ ρ ρ

= − −

× − −

( ) ( ( )) ( ( ))

( ( )) ( ( ))

∥

∥ ∥

f t w t t

t t

, , , ,
j

p j j

j j

p p ,

,
 

(9)

with the summation over j, the particle index. More detail 
 concerning the fδ  formalism is given in [12].

3. Numerical results

We examine an unstable TAE mode in NSTX shot 141711 at 
470 ms, with n  =  5 and a frequency of 111 kHz. In distinc-
tion to previous simulations [7–9, 19–21], this work makes 
use of a numerical fit to the high energy beam distribution as 
given by TRANSP [22] rather than an analytic approx imation. 
Details of the method for constructing the representation of 
the high energy beam distribution f0 are given in reference 
[12]. The mode radial structure for the eigenvalues was sup-
plied by NOVA [23, 24].

The radial structure of the poloidal harmonics of this 
111 kHz, n  =  5 mode are shown in figure 2. Poloidal mode 
numbers range from m  =  8 to m  =  13. Also shown is the 
beam particle distribution in the variable Bµ , in keV. The dis-
tribution is fairly strongly peaked at B 20µ =  keV, as seen in 
figure 2, and we will use this value to examine the resonances. 
The obtained time evolution is shown for several different 
values of collisionality in figure 3 using 200 000 marker parti-
cles. A convenient unit of time for particle motion is the time 
for one toroidal transit of a particle on the magnetic axis with 
pitch 1 and a characteristic energy. The mode initially over-
shoots the final saturation amplitude, obtained in a little over 
1000 toroidal transit times, or 3.3 ms. Initially the mode grows 
with 0.028/γ ω = , and the damping, supplied by NOVA, was 

0.0014d/γ ω = . The linear growth rate observed numerically 

is larger than that predicted by NOVA, given as 0.017/γ ω = . 
Thus this damping rate is much smaller than the linear growth 
rate, and has little if any effect on the simulation results. The 

Figure 4. Plot of the ζP  E plane showing the domain of broken KAM surfaces in red, and the line along which the Poincaré plot is made 
in blue (left), and the Poincaré plot (right). The mode amplitude was = × −A 6 10 4 for a 111 kHz n  =  5 TAE mode. The plots are made for 
µ =B 20 keV, where the distribution is strongly peaked, as seen in figure 2. The domains of passing and trapped particles have been labeled 
with P and T respectively.

Figure 5. Local determination of ⟨ ⟩ζdP2  versus time, in units of 
toroidal transits, with and without collisions. The plot approaching 
a constant in time is collisionless (long dashes), and that becoming 
linear in time is collisional (short dashes). In the collisionless case 
the width of the domain of broken KAM surfaces is given by the 
constant asymptotic value = × −W 2 102 5 and in the collisional case 
the collisional diffusion rate is given by the asymptotic slope, a rate 
of = × −D 9.8 10 8. Shown in red are linear least square fits to the 
data, and with a solid vertical red line, the time taken as the mixing 
time, at t  =  50. The parameters for the simulation were E  =  40 keV, 
µ =B 20 keV, and /ψ = −ζP 0.27w , with amplitude A  =  × −3 10 4 
and collision rate ν = 0.003 ν0.

Plasma Phys. Control. Fusion 58 (2016) 125006
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collisionality ranged from 0.003 times a characteristic value 
of t10 0/ν =  with t0  =  30 ms to 10 times this, giving a range 
of over three orders of magnitude. The resulting saturation 
amplitudes ranged from 10−4 to 6 10 3× − , almost two orders of 
magnitude. The largest collisionality value, 10 0ν ν=  is seen 
to result in a saturation level approximately equal to the next 
smaller value, 3 0ν ν= , indicating that the collision rate has 
exceeded the resonance mixing time, not allowing particles to 
transfer energy and momentum to the mode before scattering 
out of resonance. For very low collisionality the saturation is 
less well determined, as there are large oscillations in the final 
mode amplitude.

There are several pieces of data useful for checking theor-
etical predictions for mode saturation amplitude. They include, 
beside mode amplitude and collision frequency, the inital 
linear growth rate and damping, the bounce or mixing time 
within a resonance island at saturation, the island width, or in 
cases of large amplitude, the extent of the stochastic domain, 
and the local collisional diffusion rate due to the mode.

The domain of broken KAM surfaces [25] is determined by 
the method of phase vector rotation [14]. This method is used 
to determine the significant resonances. The island width for 
significant resonances is further envisioned using a Poincaré 
plot. In figure 4 is shown the Pζ, E plane with the dominant 
resonance seen to be at P 0.1w/ψ = −ζ  for a particle energy 
of 55 keV. There are of course no collisions present for the 
construction of this plot. The resonance is in the domain of co-
passing orbits, labelled P, bounded on the right by the magn-
etic axis, on the left by the plasma edge, and on the bottom 
by the triangular domain of trapped orbits, labelled T. The 
canonical momentum Pζ is normalized to the value of poloidal 
flux at the plasma edge, wψ . This Poincaré plot is also made 
for B 20µ =  keV, along the path shown in blue in the Pζ, E 
plane, where the distribution is strongly peaked, and for the 
particle energy of 55 keV. There are of course resonances at 

all values of µ and particular values of Pζ and E in the distribu-
tion. Nevertheless an examination of the single strong reso-
nance seen in figure 4 is sufficient to discover the saturation 
amplitude and mechanism.

The resonant island can be shown in the variables E,θ or 
pψ ,θ, or Pζ,θ. Poloidal flux as a choice is not useful, because 

even without a perturbation due to a mode, this quantity varies 
strongly in an orbit due to drift motion. It is convenient to 
choose a variable that is conserved in the absense of perturba-
tions, and we have chosen the canonical momentum Pζ.

4. A rapid means of determining mode saturation

In this section  we introduce a means of determining single 
mode saturation amplitude without going through a lengthy 
simulation of mode growth. The method hinges on the simple 
recognition that particles within the resonance give their 
energy to the mode on the time scale of the particle bounce fre-
quency. Since the bounce frequency is a function of distance 
from the resonance O-point, the resulting motion produces a 
mixing of different particle energies resulting in a partial flat-
tening of the distribution. This is a collisionless process. On 
the other hand new particles are diffusing into the resonance 
from the nearby distribution at the local collisional diffusion 
rate, attempting to reestablish the density gradient. Thus one 
can hypothesize that mode saturation occurs when the reso-
nance island has grown to the point where these two rates 
are balanced. But these two rates can be quickly numerically 
determined for a given mode amplitude, giving a means of 
finding the saturation amplitude without a lengthy simulation.

In figure  5 is shown a determination of the local col-
lisional diffusion rate, the local collisionless mixing time, 
and the approximate extent of the domain of broken KAM 
surfaces, for toroidal canonical momentum Pζ with a mode 
amplitude of A 3 10 4= × −  using 5000 particles. This is not 

Figure 6. Time for local collisional diffusion across island width, /=T w Dd
2 , and collisionless mixing time Tm, for ν = 0.003 ν0, ν = 0.01 

ν0, (left) and ν = 0.03 ν0, ν = 0.1 ν0 (right). The crossing of the curves for Td and Tm gives a reasonably accurate determination of the 
saturation amplitude. The mixing times are fit approximately with /=T c A , as is shown in the smooth black curves with no markings.

Plasma Phys. Control. Fusion 58 (2016) 125006
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the saturation amplitude for any of the chosen values of col-
lisionality, simply an arbitrary amplitude to demonstrate the 
method. The plots are obtained by launching particles with 
values of Pζ, E, and Bµ  all near the resonance location shown 
in figure  4, but with a distribution of phase relations with 
respect to the mode.

The collisional plot gives, with a collisionality of 
0.003ν =  0ν , a value of diffusion D, with dP Dt2⟨ ⟩ =ζ , of 

D 9.8 10 8= × − , units of normalized canonical momentum to 
transit time. The brackets ⟨⟩ refer to a mean over the whole 
particle distribution, and the value of D is of course the slope 
of the large time asymptotic value, fit with the red line. The 
collisionless plot gives the time evolution of particles in the 
resonance as the distribution asymptotically approach flat-
tening. There is an initial large change in P2⟨ ⟩ζ  as particles on 
the high energy side of the resonance move to the low side, 
and vice versa, with a time given by the particle bounce time 
in the resonance. This can be used as a definition of the mixing 
time, made precise by using the first crossing of dP2⟨ ⟩ζ  with the 
final saturation value, after the initial overshoot, of T 50m = . 
The final value of dP2⟨ ⟩ζ  gives a determination of the extent 
of the broken KAM surfaces, given by its asymptotic value, 
seen to be W 2 102 5= × − . Here island width W is given in 
terms of canonical momentum. The time for particles to dif-
fuse across W is then given by T W Dd

2/= . Times are given in 
toroidal transit times and distances in the space of canonical 
momentum.

In figure 6 are shown the values of the collisional diffusion 
time Td and the mixing time Tm as a function of mode ampl-
itude, for collision rates of 0.003ν =  0ν , 0.01ν =  0ν , 0.03ν =  

0ν  and 0.1ν =  0ν . In all these cases as the mode amplitude 
increases the mixing time decreases, indicating a more rapid 
resonance bounce, and the scaling is given by T c Am /= , as 

is shown with the black lines giving an approximate fit for 
amall amplitude. The collisional diffusion rate D is approx-
imately linear in the mode amplitude, but the width of the 
domain of broken KAM surfaces is proportional to A2, as 
seen in figure 5, so the diffusion time T W Dd

2/=  increases 
with A. The crossing of these two curves gives a determi-
nation of the saturation amplitude. These values are seen 
to cross at the observed saturation amplitude of the mode 
within numerical error of the determinations, indicating that 
the balance between collisional diffusion across the domain 
of broken KAM surfaces and the mixing time within this 
domain is a good method of determining saturation width. 
In reference [21] a similar method is elaborated using orbital 
dynamics within an island, but this kind of analysis depends 
on detailed information regarding the resonance and is of 
course not simply applicable when the distribution is not 
given analytically.

However for larger collisionality the qualitative nature of 
these plots changes. In figure  7 is a Poincaré plot showing 
large scale stochasticity, and local determination of dP2⟨ ⟩ζ  
versus time, with and without collisions, with mode ampl-
itude A 2.2 10 3= × − . In the collisionless case the width of the 
domain of broken KAM surfaces is approximately W 102 3= −  
and the mixing time is about T 25m = , but in fact the collision-
less value does not asymptote to a constant, it is unbounded, 
the last KAM surface has been broken and there is collision-
less diffusion leading to loss. Shown in red are linear least 
square fits to the data. In figure  8 are shown the values of 
the collisional diffusion time Td and the mixing time Tm as a 
function of mode amplitude, for collision rates of 0.3ν =  0ν , 
ν = 0ν , 3ν =  0ν  and 10ν =  0ν . In all these cases the mixing 
time Tm is taken to be the value of the first crossing shown 
in figure  5, which is an arbitrary but precise determination 
of the internal equilibration time. For values of ν = 0ν  and 

Figure 7. Poincaré plot showing large scale stochasticity (left), and local determination of ⟨ ⟩ζdP2  versus time (right), mode amplitude 
= × −A 2.2 10 3. In the collisionless case (long dashes) the width of the domain of broken KAM surfaces is approximately = −W 102 3 and 

the mixing time is about =T 25m , but in fact the last KAM surface has been broken and there is collisionless diffusion leading to loss. The 
collisional case is shown with short dashes. Shown in red are linear least square fits to the data.

Plasma Phys. Control. Fusion 58 (2016) 125006
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larger there is no interception of Td and Tm, also indicating 
that no saturation occurs. This is the case for all higher values 
of collisionality. Clearly the destruction of bounding KAM 
surfaces, allowing particles to leave the resonance domain, 
decreases the mixing rate, and Tm increases or remains con-
stant with increasing mode amplitude, instead of decreasing 
as in figure 6.

In table 1 is given the saturation data, including the col-
lision frequency, the saturation amplitude in units of major 
radius, the width W of the domain of broken KAM surfaces 
squared, with width in units of canonical momentum P w/ψζ , 
the local mixing time Tm as given by the second crossing 
of the collisionless time history with the final steady state 
width, the local collisional diffusion rate D, and the derived 
time for diffusion across the width of the domain, T w Dd

2/= . 
The times are given in units of the transit time. Also shown 
is the constant k relating the amplitude A to the collision-
ality through equation  (11). It is seen that this number is 
reasonably constant for amplitudes for which the resonance 
is well defined, but begins to fail as the stochastic domain is 
approached.

Some work has been done on determining mode satur-
ation [7–9, 19]. In particular, a simple model gives for 
satur ation [8]

L
b

eff

d

ω
ν γ
γ

= (10)

where eff d b
2( / )ν ν ω ω=  and bω  is the bounce frequency in the 

resonance, Lγ  the linear growth rate, dν  the pitch angle scat-
tering frequency, and dγ  the damping due to background dis-
sipation. Substituting the fact that T2b m/ω π=  is proportional 
to A , upon writing A Ab 0

1 2/ ( / ) /ω ω =  we find

A A kL0
2 3

d
2 3

d
2 3( / ) ( / )/ / /ν ω γ γ ν= = (11)

where for all the simulations in this paper, A0 and k are con-
stants. Other important parameters are the mode frequency, 

111ω =  kHz, the damping 0.0014d/γ ω = , and the linear 
growth rate 0.028/γ ω = . Inserting 20L d/γ γ =  and for 

0.01 11 s0
1 ν ν= = −  we find A0  =  0.067. Similarly substi-

tuting the value for the mixing time for this value of ν and 
writing C T2b m/ω π=  we find C  =  1.2, i.e. the mixing time 

Figure 8. Time for local collisional diffusion across island width, /=T w Dd
2 , and collisionless mixing time Tm, for ν = 0.3 ν0, ν ν= 0 (left), 

and ν ν= 3 0, ν ν= 10 0 (right). The collisionless mixing time values are of course independent of the collision value, the curves are labelled 
merely to denote the domain of amplitude range for comparison with the collisional values. For all values of collisionality equal or larger 
than ν = ν0 there is no steady state, the plots of Tm and Td do not cross.

Table 1. Mode saturation data.

ν ν s−1 A w2 Tm D Td k

0.003 0.10 0.000 13 × −2.716 10 6 78 × −3.53 10 8 77 × −6.3 10 3

0.01 0.33 0.000 31 × −2.19 10 5 49 × −2.97 10 7 59 × −6.6 10 3

0.03 1.00 0.0006 × −1.02 10 4 45 × −1.9 10 6 52 × −6.0 10 3

0.1 3.33 0.0014 × −3.25 10 4 34 × −8.51 10 6 38 × −6.5 10 3

0.3 10.0 0.0022 × −1 10 3 25 × −2.87 10 5 27.8 × −4.9 10 3

1 33.3 0.0042 × −2.2 10 3 22 × −9.75 10 5 22.5 × −4.2 10 3

3 100 0.0055 × −4.3 10 3 22 × −1.78 10 4 18.5 × −2.6 10 3

10 333 0.0055 × −4. 10 3 22 × −2.6 10 44 15.4 × −1.2 10 3
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numerically observed very accurately gives the resonance 
bounce frequency.

5. Conclusion

The saturation of a toroidal Alfvén mode is studied using the 
numerical beam particle distribution given by TRANSP, as 
a function of the pitch angle scattering rate, and is found to 
scale with the predicted 2 3/ν  dependence. The major mode-
particle resonance is found, and local collisional and col-
lisionless transport properties near this resonance give a 
novel means of determining saturation levels. Although this 
work considers a single mode, and the situation in a typical 
discharge includes many modes, the single mode saturation 
values can probably serve as good intial values for a multi 
mode simulation, with subsequent mode amplitude modifica-
tion through the change of the particle distribution perturbing 
these values. This will be investigated in future work. Multi 
mode simulations also require a multi-processor extension of 
the present code.
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