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1. Introduction

The injection of waves in the ion cyclotron frequency range 
is a well-established method of heating and driving current in 
magnetically confined toroidal plasma. A straightforward esti-
mate suggests that, at RF power levels which are sufficiently 
high that finite enhancements in temperature or current are 
achieved, the ion velocity distribution functions are expected 
to be significantly modified from a thermal, Maxwellian 
shape [1]. Since the absorption of energy and momentum 

are mainly through collisionless wave-particle interactions, 
local in velocity space, these distribution function modifica-
tions will, generally, result in finite changes in the amount and 
spatial location of absorption. Inclusion of these modifica-
tions, ultimately computed self-consistently together with the 
wave fields, is required to more faithfully model experimental 
results and to more accurately design future devices.

There has been substantial progress recently to address 
these considerations. More recently, the all-orders (in Larmor 
radius to wavelength) global-wave solver AORSA [2] has been 
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Abstract
At the power levels required for significant heating and current drive in magnetically-confined 
toroidal plasma, modification of the particle distribution function from a Maxwellian shape is 
likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in 
the location and amount of absorption. In order to study these effects computationally, both 
the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, 
hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 
41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow 
the prescription of arbitrary velocity distributions of the form ( )∥ ψ θ⊥f v v, , , . For hydrogen 
(H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, 
the fractional H absorption varies significantly with changes in parallel temperature but is 
essentially independent of perpendicular temperature. On the other hand, for HHFW regime 
with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies 
mainly with changes in the perpendicular temperature. The evaluation of the wave-field and 
power absorption, through the full wave solver, with the ion distribution function provided by 
either a Monte-Carlo particle and Fokker–Planck codes is also examined for Alcator C-Mod 
and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with 
respect to the equivalent Maxwellian distribution.
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coupled to the CQL3D Fokker–Planck code [3, 4]. The combi-
nation has been iteratively solved to self-consistently compute 
wave-fields and ion distribution functions [5]. Similar work 
has been done with other RF numerical tools, such as METS 
[6, 7], GNET-TASK/WM [8], SSPQL/TORIC v.6 package 
[9, 10], CYRANO [11] ORBIT-RF/AORSA [12], VENUS-
LEMan in the SCENIC package [13], EVE [14, 15], and 
SELFO-light [16].

Here, we describe the extension of both the finite Larmor 
radius (FLR) and the high harmonic fast wave (HHFW) ver-
sions of the TORIC code [17, 18] to include non-Maxwellian 
distribution functions. The version of TORIC used in this 
work corresponds to the TORIC’s version also named TORIC 
v.5 and currently implemented in the TRANSP code [19]. 
Indeed, this work is a starting point to be able to treat self-
consistently in TRANSP the evolution of the H minority and 
beam ion population in the presence of RF heating. As men-
tioned above, there are two versions of the code: (i) FLR and 
(ii) HHFW regimes. The former makes use of the assump-
tion that the ion Larmor radius ρi is small-but-finite com-
pared to the scale of wave field variation perpendicular to the 
local magnetic field direction, b̂, i.e. ˆ / �ρ | ×∇ |A Ab 1i , for 
any field component A. This approximation greatly reduces 
the computational burden while still accurately reproducing 
results obtained from the more general codes when the small-
Larmor-radius approximation is verified a posteriori. More 
specifically, TORIC takes into account FLR corrections only 
up to ω = Ω2 c,i (where ω and Ωc,i are the angular frequency 
and the ion cyclotron angular frequency, respectively). On the 
other hand, in the HHFW version of the code, coefficients of 
the wave equation are replaced by the corresponding elements 
of the full hot-plasma dielectric tensor where the k (k is the 
wave-vector) value in the argument of the Bessel functions is 
obtained by solving the local dispersion relation for the fast 
wave (FW) root.

The code extensions are presented in detail in section  2 
together with a brief description of the code. The numerical 
implementation is presented in section 3. Results of applica-
tions are presented in section 4 for both isotropic and aniso-
tropic distribution functions in Alcator C-Mod [20] and NSTX 
[21] plasmas. Finally, a discussion and the main conclusions 
of the work are summarized in section 5.

2. Code description

2.1. The finite-Larmor-radius full-wave TORIC version

The TORIC code solves the vector wave equation

( )
⎡
⎣⎢

⎤
⎦⎥

ω π
ω

∇×∇× = + +
c

E E J J
4 i2

2
P A (1)

for the vector electric field E (assuming a harmonic depend ence 
on time, namely, ( )∝ ω−E e ti ). The undriven plasma is assumed 
time independent and toroidally symmetric. Therefore, the 
response to a prescribed antenna current density ( )φ tJ x , ,A

p  as 
a function of poloidal position xp, toroidal angle φ, and time 

t, can be obtained by summation of responses to each Fourier 
component ( ) [ ( )]ω φ ω−φ φn n tJ x , , exp iA

p  with frequency ω 
and toroidal mode number φn . The plasma cur rent density JP,

( )∫∑ ω≡ q fJ v v x vd , ;
s

s s
P

 (2)

requires the solution for the particle distribution functions 
( )ωf x v, ;s , for each species s, which is computed by solving the 

linearized Vlasov equation with several assumptions: the par-
ticle gyro-radii are small compared to the scale of field variation 
perpend icular to the local magnetic field direction, /≡ | |b B B ; the 
effects of drifts across the magnetic flux surfaces are negligible; 
multiple resonant wave-particle interactions are uncorrelated. 
The small-Larmor-radius approximation reduces the response 
to cross-field variations of E from an integral to a differ ential 
form. Spatial dependence is further decomposed into variation 
within and across poloidal flux surfaces, ( )ψ =x const. Fourier 
decomposition of variation within surfaces,

( ) ( )∑ ψ= θA r z A, e
m

m
mi

 (3)

and projection of the wave equation onto test functions ( )ψF  
with compact support transforms the system into a dense 
block (in m)—tridiagonal (in ψ) system which is soluble using 
standard numerical methods. By virtue of this decomposition, 
the local parallel component of the wave-vector is explicitly 
represented as

( ) ( )∥ θ ψ θ φ≡ ⋅ = ∇ + ∇ ⋅φk m nk b b, . (4)

This representation facilitates the required computation of the 
elements of the local susceptibility tensor χs relating the cur-
rent Js

P in species s, to the driving electric field

ω
π
χ= − ⋅J E

i

4
.s s

P (5)

In the original version of TORIC code, the elements of the 
local susceptibility tensor χs are restricted to the Maxwellian 
case. Here, following the derivation and notation of [17, 22], 
we generalize the essential terms ( ˆ ˆ ( ) ( )ρ λR L, , ,2 2 ) originally 
implemented in the IC minority version of TORIC for arbitrary 
velocity distribution functions of the form ( ) ( )∥= ⊥f f v vv ,s s :

ˆ
ˆ
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where the coefficients A are

∫

∫

ω

π

=
− − Ω

×

−∞

∞

+∞
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A v
k v n

v v H v v

d
1

2 d ,

n j

j

,
c

0
( )

∥
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∥

 
(8)

for j  =  0, 1, with
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and

( )∥ ∥∫ ∫ π≡⊥
−∞

∞ +∞

⊥ ⊥ ⊥ ⊥w v v v v f v vd 2 d , .2

0

2
0 (10)

The derivation of these equations  is based on the gener-
alization of the plasma dielectric tensor for non-Maxwellian 
distributions in the FLR limit shown in [23]. Equations  (6) 
and (7) have been implemented in the new code extension (see 
section 3) in order to deal with arbitrary distribution functions 
and its applications are shown in section 4.

2.2. The high-harmonic fast wave full-wave TORIC version

The HHFW version of the code makes use of the so-called 
‘Quasi-local’ approximation (see details in [18]). The  
0th-order FLR coefficients of the wave equation are replaced 
by the corresponding elements of the full hot-plasma di electric 
tensor in which the k2 value in the argument of the Bessel 
functions is obtained by solving the local dispersion relation 
for FWs. At each point the resulting wave equation, which is 
still in differential form along the radial coordinate, has the 
same dispersion relation as the full integral wave equation, 
although only for FWs.

Similarly to the FLR case described above, the extensions 
of HHFW version consists mainly in the implementation of 
the full-hot susceptibility tensor χ for arbitrary velocity distri-
bution functions instead of the original implementation which 
was restricted to the Maxwellian case. In particular, the ele-
ments of the local susceptibility tensor χ for arbitrary velocity 
distribution functions are of the form [24]
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∥
∥ ∥
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cs
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3. Numerical implementation

The perpendicular velocity integrals produce smoothly 
varying functions of ∥v  whose product with the singular func-
tion ( )∥ ∥ω= − − Ω −S k v n 1 must then be integrated in ∥v . For 
a non-drifting Maxwellian parallel-velocity distribution func-
tion with thermal velocity vth, these integrals can be repre-
sented in terms of the plasma dispersion function ( / )ζZ vth  [25] 
where ( )/ ∥ζ ω= − Ωn k . For more general distributions, the 
integrations must be done numerically. Since these integrals 
are computed numerous times in forming the matrix system of 
field equations, efficient evaluation is essential. Further, since 
the co-factor of S is smooth, the resultant parallel integral’s 
dependence on ζ will be smooth as well. We use this obser-
vation by evaluating the integrals at uniformly spaced points 
ζk and then interpolating the results to the desired value of ζ. 
Efficiency is gained by specifying the distribution function, 
and thus the co-factors, on the same, uniform, parallel velocity 
mesh, = ∆v k vk . Specifically, at a mesh point k, the integrals 
are of the form

( )
∫= −

I v
C v

v v
d .k

k
 (13)

We approximate the cofactors

( ) ∑=C v c T ,
j

j j (14)

where ( )=c C vj j  and where Tj is a linear tent function sur-
rounding vj

= −
| − |

∆
| − | ∆

⎧
⎨
⎪

⎩⎪
T

v v

v
v v v1 if ,

0 otherwise.
j

j
j ⩽

 (15)

Then

∫∑ ∑ ∑=
−

= =− +I v
c T

v v
c K c Kd .k

j

j j

k j
j j k j k j (16)

where the kernel

∫

π

=
−| |
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(17)
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The convolutions incur modest computational cost.
The approach described here has been originally used for 

the non-Maxwellian extension of the TORIC code in the lower 
hybrid frequency regime [26]. Furthermore, such method also 
motivated an improvement of the algorithm reducing the com-
plexity from ( )O N2  (which is what we use in this work) to 

( )O N Nlog , with N being the dimension of the core matrix 
[9, 27].

4. Applications

4.1. Parameters used when distribution function is provided 
by an analytical functional form

To validate the algorithm, calculations are presented of both 
minority hydrogen heating in a plasma equilibrium constructed 
from Alcator C-Mod tokamak data and HHFW heating regime 
in an NSTX plasma equilibrium. The electron density profile 
as a function of the square root of the nor malized poloidal flux 
for the Alcator C-Mod discharge is shown in figure 1(a). The 
electron and ion temperature profiles are shown in figure 1(b). 
The corresponding plots for the NSTX plasma are shown 
in figure 2. The main parameters of these two machines are 

shown in table 1, indicating the toroidal field at magnetic axis 
(BT), the toroidal plasma current (Ip), the magnetic axis major 
radius (R0), the wave frequency ( f ), and the toroidal wave 
number ( φn ).

Moreover, for Alcator C-Mod case: the plasma consists of 
7% fractional number density of hydrogen and 93% deute-
rium. For NSTX case: the plasma consists of 86.5% fractional 
number of density of (thermal) deuterium and 8% of beam 
deuterium (fast ions). An effective temperature of the beam 
ions (Tbi) given by [28]

=T
u

n

2

3
bi

bi
 (18)

is used. In equation (18) u and nbi are the total energy density 
profile and the density of the beams ions, respectively, evalu-
ated by NUBEAM [29, 30].
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Figure 1. (a) The electron density profile, ne as a function of the square root of the normalized poloidal flux, ρpol for an Alcator C-Mod 
plasma. (b) The electron and (common) ion temperature profiles as a function of ρpol.
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Figure 2. (a) The electron density (ne) and beam ion ( −nD NBI) profiles as a function of the square root of the normalized poloidal flux (ρpol) 
for an NSTX plasma. (b) The electron (Te), thermal deuterium (TD) and beam ion temperature ( −TD NBI) (rescaled by a factor 10) profiles as 
a function of ρpol.

Table 1. Toroidal field at magnetic axis (BT), toroidal plasma 
current (Ip), magnetic axis major radius ( R0), wave frequency ( f ), 
and toroidal wave number ( φn ) for Alcator C-Mod and NSTX.

BT (T) Ip (kA) R0 (cm) f (MHz) φn

Alcator C-Mod 5 627 68.26 78 10
NSTX 0.53 868 101.34 30 8
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4.2. Isotropic Maxwellian distributions

4.2.1. IC minority heating regime. The reference calculation 
assumes isotropic Maxwellian distributions, using the Z func-
tion to evaluate χ. Several qualitative features are clearly vis-
ible in the surface plot of ( )−ERe , where ≡ −−E E Eix y (in 
Stix coordinates) shown in figure 3. The long wavelength 
fast wave, launched from the low-field side midplane is con-
verted near the magnetic axis into a combination of moderate 
wavelength ion cyclotron waves (ICW, emanating rightward, 
toward the low field side) and short wavelength ion Bernstein 
waves (IBW, emanating leftward, toward the high field side). 
The relative power absorbed by second harmonic D, funda-
mental H and by the electrons for each wave branch is pre-
sented in table 2 in the column labeled ‘Reference’. To check 
the accuracy of the method, the results were re-computed 
with the minority H susceptibility calculated numerically 
as described in section 3 for a Maxwellian distribution pre-
scribed on a uniform numerical mesh of ∥=N 500v  points and 
=⊥N 100v  points. The mesh range is / ⩽ ⩽ /∥−c v c100 100 and 

⩽ ⩽ /⊥v c0 100 where = ×c 3 1010 cm s−1 is the speed of light. 
As shown in table 2, the power flow channels are well conv-
erged to the reference case with differences less than 1–2%. 
A more discriminating measure of convergence is shown 
in  figure 4. Figure 4 shows the real part of the three comp-
onents of the wave electric field (E−, E+ , and ∥E ) on the mid-
plane both in high (left column) and low (right column) field 
regions. There, one can see an excellent agreement between 
the ‘Reference’ (solid (black) curve) and ‘Numerical’ (dashed 
(red) curve) cases.

Other cases with different resolutions in ∥v  and ⊥v  (not 
shown here) have been performed always obtaining an excel-
lent agreement between reference and numerical cases in 
terms of electric field propagation, power density profiles, and 
total absorbed power.

4.2.2. HHFW heating regime. Figure 5 shows the sur-
face plot of ( )−ERe  where the long wavelength fast wave is 
launched from the low-field side midplane. The relative power 
absorbed by D, fast ions (D-NBI), and electrons is presented 
in table  3 in the column labeled ‘Reference’. As similarly 
done for IC minority heating regime, in order to assess the 
accuracy of the method, the results were re-computed with 
fast ions susceptibility calculated numerically as described 
in section  3 for a Maxwellian distribution prescribed on 
a uniform numerical mesh of ∥=N 100v  points, =⊥N 50v  
points, and =

⊥
N 35N2 . The mesh range is / ⩽ ⩽ /∥−c v c20 20, 

⩽ ⩽ /⊥v c0 20, and ⩽ ⩽− × ×⊥N3 10 9.5 104 2 4. Unlike the IC 
minority heating regime, the ⊥N2  mesh has been added here 
to avoid multiple evaluations of the dispersion relation. As 
shown in table 3, the power flow channels are well converged 
to the reference case with differences less than 1%. Moreover, 
figure 6 shows the real part of the three components of the 
wave electric field (E−, E+ , and ∥E ) on the midplane both in 
high (left column) and low (right column) field sides. There, 
one can see an excellent agreement between the ‘Reference’ 
(solid (black) curve) and ‘Numerical’ (dashed (red) curve) 
cases.

As done in IC minority heating regime, other cases with 
different resolutions in ∥v , ⊥v  and ⊥N2  (not shown here) have 
been performed always obtaining an excellent agreement 
between reference and numerical cases in terms of electric 
field propagation, power density profiles, and total absorbed 
power. These additional tests have also shown a smooth 

⊥N2  dependence of the components of χ, which allow us to 
decrease 

⊥
NN2  mesh points significantly reducing the computa-

tional time in evaluating the full hot plasma χ tensor.

4.3. Anisotropic Maxwellian distributions (bi-Maxwellian)

4.3.1. IC minority heating regime. The sensitivity of the prin-
cipal absorption channel at the fundamental hydrogen reso-
nance to changes in the shape of the hydrogen distribution was 
investigated by performing two series of computations, assum-
ing an anisotropic Maxwellian form for the H distribution

π=

× − −
⊥

−
⊥
−

⊥ ⊥

f v v v v

v v v v

, 2

exp
H

3 2
th, th,

2 1

th,
2

th,
2

( ) ( ) ( )
[ ( / ) ( / ) ]

∥
/

∥

∥ ∥
 

(19)

with ( ( )/ )∥ ∥ ψ=v C T m2 Hth, ,

Figure 3. Real part of the right-handed wave electric field, Re(E−), 
for an Alcator C-Mod plasma described in section 4.1.

Table 2. Alcator C-Mod: power flow to each species. The 
reference simulation corresponds to the original Maxwellian case 
while the numerical simulation numerically computed minority 
H susceptibility χH (equations (6)–(10)) assuming a Maxwellian 
functional form of the representation of the distribution function.

Absorbed fraction Reference Numerical

2nd Harmonic D 10.18% 10.28%
Fundamental H 69.95% 68.81%
Electrons—FW 11.35% 11.91%
Electrons—IBW 8.53% 9.00%
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( )/ )ψ=⊥ ⊥v C T m2 Hth, , with constants ∥C  and ⊥C  param-

eterizing the scans. The fundamental H absorption fraction, 

PH varied by less than two percent when ⊥C  was varied from 
0.5 to 5, with ∥C  held fixed at unity. In contrast the second 
series, in which ⊥C  was fixed at unity and ∥C  was varied 
showed a significant variation. For { }∥=C 0.5, 1., 3., 5. , the 

corresponding { }=P 61.27, 70.50, 90.46, 94.18H . In addition, 
while the absorption profile is localized to the resonant layer 
for small ∥C  it is significantly broadened radially at for large 

∥C . This is clearly demonstrated in figure 7 where the absorp-
tion versus (R,Z) is shown for ∥=C 0.5 (figure 7(a)), ∥=C 1.0 
(figure 7(b)), and ∥=C 5. (figure 7(c)). Similar results and dis-
cussion are presented, for instance, in [31].
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Figure 4. Figures (a) and (b): real part of the right-handed wave electric field, Re(E−), both in the high field side region (figure (a)) 
and in the low field line region (figure (b)) on the midplane for an Alcator C-Mod plasma described in section 4.1. The solid (black) 
curve represents the ‘Reference’ case while the dashed (red) curve represents the results re-computed with the minority H susceptibility 
calculated numerically. Figures (c) and (d): real part of the left-handed wave electric field, Re(E+ ), both in the high field side region (figure 
(c)) and in the low field line region (figure (d)). Figures (e) and ( f ): real part of the parallel wave electric field, Re(E∥), both in the high field 
side region (figure (e)) and in the low field line region (figure ( f )).
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4.3.2. HHFW heating regime. As similarly done above, two 
series of computations assuming an anisotropic Maxwellian 
form for the fast ions (D-NBI) population in NSTX plasma 
have been performed. The fast ion absorption fraction, −PD NBI, 
showed a significant variation when ⊥C  was varied from 0.5 to 5, 
with ∥C  held fixed at unity. In particular, for { }=⊥C 0.5, 1., 3., 5. , 
the corresponding { }=−P 70.06, 73.56, 62.84, 48.48D NBI . In 
contrast, when ⊥C  was fixed at unity and ∥C  was varied, −PD NBI, 
varied by less than one percent. This behavior is the opposite 
with respect to what has been found in the IC minority heating 
regime. However, the absorption profile tends to be localized 
to the resonant layer for small ∥C  as shown in figure 8 in agree-
ment with the results shown in the previous section. In this 
figure the absorption versus (R,Z) is shown for ∥=C 0.5 (figure 
8(a)) ∥=C 1.0 (figure 8(b)), and ∥=C 5. (figure 8(c)).

For the fast ion distributions in NSTX plasma, an additional 
application has been performed assuming a slowing down dis-
tribution function as described in the following section.

4.4. Slowing down distributions for beam ion species in 
HHFW heating regime

Another functional form of the distribution function for the 
beam ion species which has been implemented in the gener-
alization of TORIC v.5 is a slowing-down distribution [32]

( ) ( / )
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⎪
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>
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3
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 (20)

where ∥= + ⊥v v v2 2  and /≡ −v E m2m D NBI D is the maximum 

velocity corresponding to the injected energy −ED NBI of the 
beam ions. Also, /[ ( )]π δ= + −A 3 4 ln 1 3  with δ≡ v

v
c

m
, and

( / )π=v m m Z v3c
3

e D eff th
3  where /≡∑Z Z n neff ions i

2
i e

. The 
fast ion absorption fraction, −PD NBI, showed a significant 
variation when −ED NBI was varied from 30 to 120 keV, with 
=Z 2eff . In par ticular, for { }=−E 30, 60, 90, 120D NBI  keV, the 

corresponding { }=−P 77.84, 75.85, 70.97, 64.71D NBI . This 
result recalls the behavior found in bi-Maxwellian case when the 
parameter ⊥C  was varied indicating that the interaction between 
fast ions and fast waves occurs mainly in the perpendicular 
direction with respect to the magnetic field [1] . However, the 
absorption profile tends to be localized to the resonant layer 
for small −ED NBI as shown in figure 9 in agreement with the 
results shown in the bi-Maxwellian case for both IC minority 
and HHFW heating regimes (see figures 7 and 8). In particular, 
figure 9 shows the power density versus (R, Z) for =−E 30D NBI  
keV (figure 9(a)), =−E 60D NBI  keV (figure 9(b)), =−E 90D NBI  
keV (figure 9(c)),and =−E 120D NBI  keV (figure 9(d )).

4.5. Numerical distributions

The main goal of this extension of TORIC is to enable the 
code to deal with (numerical) distribution functions provided 
by either Monte-Carlo particle or Fokker–Planck codes. In this 
section we describe our calculations by using (i) a distribu-
tion function obtained from the Fokker–Planck code CQL3D  
[3, 4] for an Alcator C-Mod plasma and (ii) a distribution func-
tion obtained from the Monte-Carlo particle code NUBEAM  
[29, 30] for an NSTX plasma.

4.5.1. IC minority heating regime. The TORIC extension can 
also utilize numerical distribution functions obtained from the 
Fokker–Planck code CQL3D for IC minority heating regime. 
This is a crucial step in ultimately closing the loop between 
RF and Fokker–Planck solvers and the evolution of the dis-
tribution of the H minority. Indeed, this will be shown in a 
future paper where a RF quasi-linear diffusion operator will 
be implemented in the TORIC code [33].

Figure 10 shows an example of distribution function of the 
H minority obtained from the iteration between the full wave 
code AORSA and the Fokker–Planck code CQL3D for Alcator 
C-Mod plasma [34, 35]. More specifically, figures 10(a) and 
(b) correspond to the distribution functions at 0th and 4th 
iteration, respectively. Both distribution functions are plotted 
at ρ = 0.2pol . It is important to note that at 0th iteration the 
distribution function is a Maxwellian distribution (we refer to 
as ‘Maxwellian case’) while at the 4th iteration the RF tail 
is formed (see, four energy levels—10, 250, 500, and 1000 
keV—for reference). We refer to this as ‘non-Maxwellian 
case’. In order to evaluate the impact of the non-Maxwellian 
effects in the power deposition of the H minority, we compute 
numerically χ for both the numerical distributions shown in 

Figure 5. Real part of the right-handed wave electric field, Re(E−), 
for an NSTX plasma described in section 4.1.

Table 3. NSTX: power flow to each species. The ‘Reference’ 
simulation corresponds to the original Maxwellian case while 
‘Numerical’ simulation uses a numerically computed susceptibility 
χ −D NBI (equation (11)) assuming a Maxwellian functional form of 
the representation of the distribution function.

Absorbed fraction Reference Numerical

D 0.22% 0.22%
D—NBI 73.88% 73.58%
Electrons 25.90% 26.21%
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figure 10 on a uniform numerical mesh of ∥=N 500v  points 
and =⊥N 200v  points and the anisotropic Maxwellian distribu-
tion with the same energy content in the parallel and perpend-
icular directions as the actual distribution. The mesh range 

/ ⩽ ⩽ /∥−c v c100 100 and ⩽ ⩽ /⊥v c0 100. Table  4 shows that 
the power flow to H minority increases when the RF tail at 

higher energy is formed with respect to the Maxwellian case, 
both using the actual distribution function and the anisotropic 
Maxwellian distribution (‘bi-Maxw’ case). Furthermore, 
figure 11 shows the contour plot of the power density of the 
H minority for both the Maxwellian case (figure (a)) and 
the non-Maxwellian case (figure (b)). One can note that the 
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Figure 6. Figures (a) and (b): real part of the right-handed wave electric field, Re(E−), both in the high field side region (figure (a)) and in 
the low field line region (figure (b)) on the midplane for an NSTX plasma described in section 4.1. The solid (black) curve represents the 
‘Reference’ case while the dashed (red) curve represents the results re-computed with the susceptibility calculated numerically. Figures (c) 
and (d): real part of the left-handed wave electric field, Re(E+ ), both in the high field side region (figure (c)) and in the low field line region 
(figure (d)). Figures (e) and ( f ): real part of the parallel wave electric field, Re(E∥), both in the high field side region (figure (e)) and in the 
low field line region (figure ( f )).
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non-Maxwellian effects tend to broaden the power deposition 
profile as clearly seen in figure (b). This result reflects what 
has been shown for a bi-Maxwellian by varying the parallel 
temperature (see figure 7).

4.5.2. HHFW heating regime. Besides the capability to 
deal with numerical distribution functions obtained from the 
Fokker–Planck code CQL3D for IC minority heating regime, 
the extension of TORIC is also able now to use directly the 

(a) (b) (c)

C⊥ = 1, C = 0.5 C⊥ = 1, C = 1 C⊥ = 1, C = 5.0

W/cm3/MW

Figure 7. Contour plots of fundamental absorption by minority hydrogen (zoomed around the resonance), represented by a bi-Maxwellian 
distribution function (see equation (19)) in an Alcator C-Mod plasma for =⊥C 1.0 and for =C 0.5∥  (a), =C 1.0∥  (b), and =C 5.0∥  (c). The 
white curve represents the last closed flux surface. Units are Watts cm−3 at 1 MW incident power.

)c()b()a(

C⊥ = 1, C = 0.5 C⊥ = 1, C = 1 C⊥ = 1, C = 5.0

W/cm3/MW

Figure 8. Contour plots of the absorption by beam ions (zoomed around the cyclotron resonances) represented by a bi-Maxwellian 
distribution function in an NSTX plasma for =⊥C 1.0 and for =C 0.5∥  (a), =C 1.0∥  (b), and =C 5.0∥  (c). The white curve represents the 
last closed flux surface. The white arrows in figure (a) indicate the deuterium cyclotron resonance layers (n  =  7, 8, 9, and 10). Units are 
Watts cm−3 at 1 MW incident power.

(a) (b) (c) (d)

ED−NBI = 30 KeV ED−NBI = 60 KeV ED−NBI = 90 KeV ED−NBI = 120 KeV

W/cm3/MW

Figure 9. Contour plots of the absorption by beam ions represented by a slowing down distribution function (see equation (20)) in an 
NSTX plasma for different NBI injected energy −ED NBI (shown in the plots). The white curve represents the last closed flux surface. The 
white arrows in figure (a) indicate the deuterium cyclotron resonance layers (n  =  7, 8, 9, and 10).
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particle lists generated by the Monte-Carlo particle code 
NUBEAM. This feature is particularly important for the study 
of the interaction between fast waves and energetic particles, 
such as fast ions generated by NBI as in NSTX [36].

Here the coupling of a particle based code (NUBEAM) with 
a continuum code (TORIC) is handled by P2F [37, 38]. The 

P2F5 code converts a discrete particle list to a 4-D continuum 
distribution function. The 4 dimensions are 2 cylindrical in 
space (R, z) and 2 cylindrical in velocity space ( ⊥v , ∥v ) with 
parallel being along the local B field direction of the corre-
sponding spatial grid point. Conceptually P2F generates a 
histogram of the input particles in it’s 4-D grid. However, 
since the full-wave code takes velocity space derivatives of 
the beam distribution function, that function must be smooth 
enough for the derivatives to be robust. This means that a box-
function style histogram, even at 106 particles, produces a his-
togram where noise dominates the derivatives, especially at 
the larger velocities. To resolve this issue P2F implements two 
smoothing techniques. The first is a velocity space Gaussian 
particle shape with user defined width (see [38] for details), 
and the second is to distribute each computational particle 
along its unperturbed guiding center bounce orbit weighted 
according to time spent in each of the 4-D histogram bins. 
While the unperturbed orbit method results in robust velocity 
space derivatives, it will not reveal velocity space gradients 
sharper than those defined by the Gaussian particle width, i.e. 
we must choose the minimum Gaussian width necessary to 
ensure robustness of the velocity space derivatives for a par-
ticular number of computational particles, and also choose a 
number of computational particles in the NUBEAM calculation 
to ensure insensitivity of the resulting full-wave calculation to 
that number. In the work presented here we make use of both 
the two smoothing techniques implemented in P2F.

As done in the previous sections, to test our implementation 
we first check the Maxwellian distribution case by making use 
of the P2F code. First, we have artificially generated a par-
ticle list representing a Maxwellian distribution in an NSTX 
plasma geometry with analytical temperature and density pro-
files given by analytical kinetic profiles for electron and fast 
ion population. More specifically, the parameters were:

( )  ρ = = × −n 0 2.5 10 cme pol
13 3 (21)

( )  ρ = = × −n 1 2.5 10 cme pol
12 3 (22)

( ) ( )  ρ ρ= = = =T T0 1keV; 1 0.1 keVe pol e pol (23)

( )  ρ = = × −n 0 2.0 10 cmFI pol
12 3 (24)

( )  ρ = = × −n 1 2.0 10 cm ;FI pol
11 3 (25)

with parabolic profiles and for the fast ion temperatures 
employed are given by

( ) ( )( )ρ ρ= − − +T T T T1FI pol FI,0 FI,1 pol
2 5

FI,1 (26)

with

( )  ρ≡ = =T T 1 20 keV;FI,0 FI pol (27)

( )  ρ≡ = =T T 1 5 keVFI,1 FI pol (28)

Table 4. Power flow to each species. The Maxw. case corresponds 
to the numerical Maxwellian distribution from CQL3D at  
step 0 while the Non-Maxw. case corresponds to the numerical  
non-Maxwellian distribution obtained by CQL3D after 4 iteractions 
(see figure 10 as an example). Finally, the bi-Maxw. case 
corresponds to the anisotropic Maxwellian (see equation (19))  
with the same energy content in the parallel and perpendicular 
directions as the actual distribution for the ‘non-Maxw’ case.

Abs. fraction Maxw. Non-Maxw. bi-Maxw.

2nd Harmonic D 18.38% 11.85% 15.86%
Fundamental H 58.82% 72.89% 67.83%
Electrons—FW 12.94% 9.40% 11.64%
Electrons—IBW 9.85% 5.86% 4.67%
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Figure 10. Minority H distribution function from the iteration 
between AORSA and CQL3D for Alcator C-Mod at ρ = 0.2pol . 
Figures (a) and (b) show the distribution at 0th and 4th iteration 
respectively.

5 Available at https://github.com/ORNL-Fusion/p2f
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Second, we have run P2F by using the Maxwellian particles 
list to obtain a continuum distribution function. Third, we have 
numerically evaluated χ and we have run TORIC. Finally, we 
have compared the results with the reference case. Figure 12 
shows indeed the results of this comparison. In particular, in 
figure 12 the black curve indicates the reference case. In addi-
tion, there are other four cases which are obtained assuming 
a particles list with ×2 103 (red curve), 104 (green), 105 
(magenta curve), and 106 (cyan curve) particles. The numer-
ical case converges to excellent agreement with the reference 
case as the number of particles is increased. It is also important 
to note two points: (i) the total power to the fast ions among 
the three cases with 104, 105, and 106 number of particles dif-
fers by less than 1%; (ii) good convergence is already achieved 
with 104 particles. This is an important point for the future 
application in time dependent modeling frameworks, such as 
TRANSP simulations. Finally, it is important to mention that, 
during the process to test P2F for a Maxwellian distribution 

function, particular attention have been given on the impact 
of the values of the Gaussian particle width comparing 
the input temperature profile adopted with the simulation  
(equations (26)–(28)) with the temperature profiles obtained 
from the distribution function calculated by P2F. Different 
values of Gaussian particle width marginally affect the lower 
energy tails of the temperature profile with respect to the input 
profile. Therefore, in the end, the Gaussian particle width was 
fixed to the value of 0.15 keV for all cases shown in figure 12. 
This value is very small with respect to the maximum temper-
ature value, which is 20 keV (see equation (27)).

(a)

W/cm3/MW

(b)

Figure 11. H minority absorption profile from the TORIC solver for: (a) CQL3D Maxwellian case (initial step); (b) CQL3D  
non-Maxwellian case (final step).
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Figure 12. RF power deposition on fast ions from TORIC using 
P2F distributions as a function of ρpol. Black curve represents the 
reference case whereas the color curves indicate different particle 
number adopted in the calculations as shown in the legend.
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Figure 13. Fast ion distribution function at R  =  1 m and z  =  0 
m obtained from the P2F code starting from a NUBEAM particles 
list for an NSTX plasma without HHFW (shot 141 711 at 
time  =  0.47 s).

Table 5. Power flow to each species. The Maxw. case corresponds 
to an equivalent Maxwellian temperature for the fast ions 
population (see equation (18)), the Non-Maxw. case corresponds 
to the numerical non-Maxwellian distribution obtained by P2F 
starting from a NUBEAM particles list. Finally, the bi-Maxw. case 
corresponds to the anisotropic Maxwellian (see equation (19)) with 
the same energy content in the parallel and perpendicular directions 
as the actual distribution.

Abs. fraction Maxw. Non-Maxw. bi-Maxw.

D 4.26% 3.89% 10.27%
D-NBI 53.94% 58.12% 55.55%
Electrons 41.80% 37.99% 34.18%
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Finally, figure 13 shows the fast ion distribution function 
at R  =  1 m and z  =  0 m obtained from the P2F code starting 
from a NUBEAM particles list for a NSTX shot 141 711 at 
time  =  0.47 s without HHFW. The number of particles used 
for this case in NUBEAM are 531 15. For reference, the 90 keV 
beam injection energy is represented by the white curve while 
the half (45 keV) and third energy (30 keV) components are 
represented by red and magenta curves, respectively. As done 
for the minority heating regimes, power flow to the different 
species is shown in table 5. As expected, a larger power flow 
to fast ions is found when a realistic distribution is considered 
with respect to the equivalent Maxwellian case. It is worth 
noting that the relatively small differences in the power flow to 
fast ions between equivalent Maxwellian and the realistic case 
shown in table 5, are due to the fact that the distribution func-
tion in the case considered here is not affected by RF therefore 
the distribution function does not have a large RF tail to higher 
energies. Furthermore, in table 5 is shown the power flow to 
the fast ions for an anisotropic Maxwellian distribution (see 
equation  (19)) with the same energy content in the parallel 
and perpendicular directions as the actual distribution shown 
in figure 13. Figure 14 shows the comparison of the equivalent 
Maxwellian distribution and the realistic distribution starting 
from NUBEAM, in terms of the 2D fast ion power density. For 
equivalent Maxwellian distribution we mean that we use an 
effective temperature of the beam ions temperature (Tbi) given 
by equation  (18). From figure 14, one can only see a slight 
change (a slight broadening) in the profile when the realistic 
distribution is adopted although there is a variation in the 
power flow shown in table 5. The consideration of a realistic 
distribution obtained starting from NUBEAM and affected by 
RF, will be part of a future work which requires the study of a 
quasi-linear RF diffusion operator (also called RF kick oper-
ator) in NUBEAM. In this scenario, we might expect a larger 
amount of power deposited to the fast ions population due to a 
larger distribution function tail formed by the RF application. 
This could have a strong impact in the recent NSTX exper-
imental observations where HHFW was able to fully suppress 
Alfvén activities, such as Toroial Alfvén Eigenmodes (TAEs) 
and Global Alfvén Eigenmodes (GAEs) [39].

5. Conclusions

The ICRF wave simulation code TORIC has been general-
ized to allow prescription of arbitrary particle distribution 
functions of the form ( )∥ θ ψ⊥f v v, , ,  in the computation of the 
plasma susceptibility in both the minority and HHFW heating 
regimes. The algorithm was validated by recovering results 
for RF heating in Alcator C-MOD and NSTX obtained by 
computing χ using analytic approximations to the plasma dis-
persion function for the case when all species are Maxwellian. 
The application of bi-Maxwellian distribution function shows 
a different behavior in the total absorbed power between the 
most common IC minority and HHFW heating regimes. In 
particular, for IC minority heating regime, the total absorbed 
power at the H fundamental is insensitive to variations in 
the perpendicular temperature ( ⊥T ), but varies with changes 
in parallel temperature ( ∥T ), whereas for HHFW regime, the 
behavior is reversed, namely, the total absorbed power by fast 
ions is insensitive to variations in ∥T , thus reflecting the well-
known Doppler broadening effect of parallel temperature on 
the absorption profile. However, for both heating regimes, 
the power density profiles vary with changes in ∥T . Similar 
results have been found and shown for HHFW heating regime 
assuming a slowing-down distribution function. The impact 
of the non-Maxwellian effects with respect to the Maxwellian 
case has been evaluated in both IC minority heating regime by 
using a distribution function obtained from a Fokker–Planck 
code CQL3D and HHFW heating regime by using a distribu-
tion function obtained from the Monte-Carlo particle code 
NUBEAM. Both cases indicate that the use of a realistic dis-
tribution function tends to increase the power flow to the H 
for the minority heating and to the fast ions for the HHFW 
heating regime.

This work represents a first step towards closing the loop 
between the extension of TORIC in a self-consistent way and 
the CQL3D code for the IC minority heating regime as used, 
for instance, in Alcator C-MOD experiments and the NUBEAM 
code for HHFW heating regime as used in NSTX-U experi-
ment. This work is done with the aim to be able to make time 
dependent simulations in TRANSP in a self-consistent way. 

(a) (b)

W/cm3/MW

Figure 14. Fast ion absorption profile for: (a) equivalent Maxwellian case; (b) NUBEAM non-Maxwellian case.
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Work on the quasilinear diffusion coefficients for the finite 
Larmor radius (FLR) approximation (valid for the IC minority 
regimes) and on the RF kick-operator in NUBEAM are in pro-
gress and the results will be presented in a future paper.
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