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1. Introduction

High-harmonic fast-wave (HHFW) heating is a promising 
heating scheme for the National Spherical Torus Experiment 
Upgrade (NSTX-U). HHFW heating complements neutral 
beam injection by heating discharges without particle or 
momentum input and would enable experiments in trans-
port [1], low-rotation scenarios, and fast-particle modes [2]. 
Furthermore, as the plasma-facing tiles of NSTX-U trans ition 
from graphite to high- Z metal walls in the coming years, 
HHFW heating may play a crucial role in impurity expulsion 
via central RF heating, as demonstrated in conventional toka-
maks [3, 4].

Unfortunately, efficient fast-wave heating is difficult to 
achieve in certain NSTX scenarios. Poor heating efficiency 
has been observed for lower antenna phasing and lower 
toroidal fields [5, 6] but improves with the lower scrape-off 

layer (SOL) density provided by lithium wall conditioning, 
provided that the machine is not vented to produce lithium 
compounds [7]. The lower heating efficiency is likely caused 
by a direct loss of wave power to the SOL, as evidenced by 
the bright spirals that formed in the upper and lower diver-
tors [8] along field lines passing in front of the antenna [9]. 
The heat flux under the spirals is about 2 MW m−2 for an 
applied HHFW power of 1.8 MW. The losses are now thought 
to be caused by significant fast-wave propagation in the SOL 
when the right-hand cutoff layer, defined by n2

‖ = R with n‖ 
denoting the parallel refractive index and R the cold-plasma 
dielectric component from Stix notation [10], is positioned 
close to the antenna [6]. Subsequent conversion of the wave 
power to a heat flux is believed to be caused by RF rectifi-
cation [11]. Full-wave simulations of NSTX using the full-
wave code AORSA [12] with the solution domain extended 
to include the SOL [13] show the wave amplitude in the SOL 
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growing to large values when the SOL density exceeds the 
cutoff density in front of the antenna [14]. We believe that 
NSTX-U discharges can be tailored to achieve efficient 
HHFW heating, as there have been several instances of suc-
cessful HHFW operation, including record-high Te obtained 
from HHFW-only discharges [15], and plasmas that are up to 
70% non-inductive [16].

We have developed a cylindrical cold-plasma model to 
identify scenarios where significant wave power is trapped 
in the edge plasma. The model lacks many details included 
in full-wave codes but provides a simplified framework for 
studying wave propagation across a steep-edge density gra-
dient. We previously identified a peculiar class of modes, 
called annulus resonances (AR), that have enhanced loading 
resistance and propagate significant power at the edge [17]. 
They are thus strong candidates for explaining edge losses in 
NSTX, and the present paper studies the influence of ARs on 
the reconstructed wave fields. The role of the slow wave in 
ARs is minimal, contrary to the common perspective that the 
slow wave plays a major role in interactions between the edge 
plasma and ICRF systems [18].

This paper is structured as follows. Section  2 describes 
the model and the parameters chosen to represent NSTX dis-
charges. Section 3 explores properties of the AR with respect 
to m, the azimuthal mode number. In section  4, the impact 
of the AR on the wave field reconstruction is evaluated for a 
scan of the edge density. We find instances where the annulus-
resonant modes dominate the spectrum and over half the wave 
power is trapped at the edge. We find other instances where 
the annulus-resonant modes are less dominant and over 80% 
of the wave power propagates in the core. Despite this, the 
scaling of the edge power percentage with the edge density 
obtained in the model does not always match experimental 
trends, and section 5 discusses the potential influence of field 
pitch on this discrepancy.

2. Description of the model and the choice 
of parameters

The model geometry, illustrated in figure 1, consists of three 
radial regions: a core plasma, a lower-density annulus, and 
an outer vacuum region. The annulus region represents the 
SOL, and the vacuum region represents the extremely low 
density region behind the limiter and inside the antenna box. 
The core extends to radius rc with constant density nc. The 
annulus extends from r = rc to ra with constant density na. 
The vacuum region extends from r = ra to a conducting wall 
of radius rw. The two-step density profile surrounded by 
vacuum is a coarse approximation of the actual density but 
is partially justified on the basis that SOL density profiles are 
relatively steep near the separatrix but become nearly flat in 
the mid-to-far SOL [19, 20]. The perpendicular wavelength 
of the fast wave in the SOL is shortest around 7 cm and is 
typically much longer; therefore, approximating a gradient of 
scale length of 1–2 cm [21] as a step function is not unreason-
able. A uniform axial magnetic field is used throughout. The 

use of a uniform axial magnetic field is partially justified since 
the focus of our study is the SOL, of which the magnitude and 
direction of the magnetic field do not change appreciably, at 
least not as much as the density. The larger error comes from 
neglecting the poloidal field, which is substantial in NSTX. 
Field angles tan−1(Bpol/Btor) up to 40° have been measured 
during HHFW experiments. The potential impact of this siz-
able tilt is discussed in section 5, but we note that large RF 
field amplitudes were observed in simulations using only a 
toroidal field [22]. The antenna is modeled as current straps in 
the θ direction at r = rs with a Faraday screen at r = rF .

We choose values for the model parameters that resemble 
NSTX discharges as much as possible. For the radii, we 
use a core radius of rc = 0.88 m, an annulus outer radius 
of ra = 0.915 m, a Faraday screen radius of rF = 0.9315 m, 
and a wall radius of rw = 0.9715 m. The model core radius 
is chosen to keep the plasma cross-section area roughly the 
same as shot 120740, yielding an effective circular radius 
of 0.88 m. The annulus width ra − rc is chosen to be 3.5 cm 
based on average values of the experimental ‘outer gap’ as 
determined from equilibrium magnetics for the L-mode dis-
charges studied in [6]. The distance from the edge of the 
annulus to the Faraday screen is fixed at 1.65 cm, the distance 
between the outer boron nitride limiter and the Faraday screen 
on the midplane. The distance from the Faraday screen to the 
antenna strap is likewise fixed at 2 cm, as is the distance from 
the antenna to the vacuum wall. Also, we fix the core density 
at nc = 5 × 1019 m−3, the frequency at f = 30 MHz, and the 
equilibrium magnetic field at B = 0.32 T  (approximate field 
at the edge for a 0.55 T on-axis field) for all calculations made 
in this paper.

A ‘mode’ refers to a global solution which satisfies  
the wave equation  in each region and is matched at  
interfaces. Modes assume the form Ez(r, θ, z) = Ẽz(r, m, k‖) 
exp(imθ + ik‖z − iωt), based on Fourier analysis in the axial 
and azimuthal directions. With k‖ given, k⊥ is fixed in each 
region by the plasma regions by the cold-plasma dispersion: 
we use the notation kfast

⊥,c and kslow
⊥,c  for the fast/slow-wave k⊥ 

in the core and the corresponding notation kfast
⊥,a and kslow

⊥,a  in 
the annulus. The slow-wave and vacuum k⊥ are always cut 
off. The radial RF field profiles are obtained by the method 
detailed in [23]. Each region admits four independent solu-
tions. In plasma, there are two fast-wave solutions and two 
(cutoff) slow-wave solutions; in vacuum there are exponen-
tially decaying and growing Ez (transverse magnetic) and 
Hz (transverse electric) modes. By specifying the boundary 
conditions at each interface, a system of equations  is devel-
oped, whose simultaneous solution only exists when a deter-
minant, denoted by the function F(k‖), vanishes, as described 
in [17]. As might be anticipated for oscillation in a bounded 
system, the roots of F(k‖) are such that an integral number of 
half wavelengths occur in the radial profile of Eθ. Thus, we 
can label modes with two numbers, (m, n), with m denoting 
the azimuthal wavenumber and n the radial mode number. 
Because the fast-wave dispersion gives k⊥ as a decreasing 
function of k‖, lower n corresponds to larger k‖.

Nucl. Fusion 57 (2017) 116062
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The total wave fields excited by the antenna can be 
expressed as a sum of the modes described above. The total 
wave fields are obtained by the inverse Fourier transform:

Eθ =
∑

m

∫
Ẽθ(r, m, k‖)J̃ant(m, k‖)eimθ+ik‖zdk‖. (1)

In equation  (1), J̃ant(m, k‖) is the antenna spectral cur-

rent density and Ẽθ is the azimuthal electric field per unit 
antenna spectral current density. For any k‖ not equal a root 

of F(k‖), Ẽθ(r, m, k‖) has a discontinuity at the antenna 

strap radius associated with an infinite current sheet of unit 
magnitude and wavenumber k‖. The expression for Ẽθ con-
tains F(k‖) in the denominator, so that the integral reduces 
to a sum of residues, one for each pole. The amplitude of 

each mode is thus given by two factors: (i) the amplitude of 
J̃ant(m, k‖) at the k‖ and m of the mode, and (ii) the size of 
the residue, which is proportional to (dF(k‖)/dk‖)−1. The 
latter is a property inherent to the mode and independent 
of antenna geometry; indeed, we could study the ‘bare’ or 
‘unweighted’ ampl itude of modes by using a uniform antenna 
spectrum (e.g. a delta-function excitation Jant = I0δ(z)δ(θ)). 
As described in [17], the large amplitude of an AR is due to a 
near vanishing of dF(k‖)/dk‖ independent of the particulars 
of the antenna configuration.

The antenna strap current distribution is modeled as 12 
infinitely thin filaments. The Fourier spectrum in the axial 
direction is therefore a sum of 12 plane waves. Given that 
the height of the antenna straps is 68.9 cm, and using the 
effective plasma radius above, we approximate the antenna 
angular span as 0.724 radians in the model. We assume a 
uniform current distribution in the azimuthal (poloidal) 
direction due to the long vacuum wavelength compared 
to the strap length. Given a phase difference of φ between 
straps, a strap spacing of d, a current for each strap of I0 and 
an angular span of α,

Jant(r, θ, z) = I0δ(r − ra) [Θ(θ + α/2)−Θ(θ − α/2)]

×
12∑

i=0

δ(z + (11 − 2i)d/2)e−iφ(11−i)/2 
(2)

where Θ is the Heaviside step function. Jant can be decom-
posed into a Fourier series in the azimuthal direction and a 
Fourier transform in the axial direction:

J̃ant(r, m, k‖) = I0δ(r − ra)J̃θ(m)J̃‖(k‖) (3)

J̃θ(m) =
sin(mα/2)

mπ
 (4)

J̃‖(k‖) =
12∑

i=0

eik‖(11−2i)d/2e−iφ(11−i)/2. (5)

We note that J̃θ  scales as 1/m and is nearly zero whenever 
mα/2 is an integer multiple of π. This clearly favors low-m 

modes. On the other hand, J̃‖ peaks around k‖ = φ/d . For 
NSTX, d = 21.5 cm, and typically phasings are π/6, π/2 and 
5π/6. This model clearly ignores (i) the finite width of the 
antenna straps, (ii) the radial feeds, (iii) the effects of the side-
walls [24], and (iv) changes in current along the length of the 
straps.

In this paper, the term ‘mode amplitude’ refers to the 
amount of wave power a mode conducts axially along the cyl-
inder. We denote the amplitude of the (m, n) mode as Pm,n 
but will also express this as a loading resistance Rm,n defined 
by Rm,nI2

0/2 = Pm,n, with I0 defined in equation (2). Pm,n can 
be calculated by two methods. First, we compute the power 
output of the antenna, P, using the induced EMF method [25]:

P =

∫
〈E · Jant〉 dV , (6)

where < . . . > denotes the time-averaging of complex quanti-
ties. Using equation (1), this can be expressed as

P =
1
2
(2π)2rs

∑
m

∫
Ẽθ(r, m, k‖)

∣∣J̃ant(m, k‖)
∣∣2 dk‖. (7)

Again, the integral over k‖ reduces to a sum of residues, each 
term being the individual mode power. Equivalently, P can 
be computed by integrating the axial Poynting flux over the 
cross-section of the cylinder, and the orthogonality of modes 
allows this expression to be written as a sum of individual 
Poynting fluxes for each mode:

Figure 1. (a) Illustration of the model showing the two-step density profile and orientation of the antenna straps. (b) Radial density profile 
(not to scale) along with radial position of antenna.
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Pm,n =

∫ r=rw

r=0

∫ θ=2π

θ=0
ẑ ·

〈
Ẽ(r, m, k‖)× H̃(r, m, k‖)∗

〉
rdrdθ.

 (8)
Equation (8) is independent of the axial position z, and both 
equations (7) and (8) yield the same result, as expected for a 
system without dissipation. Similar to the discussion of mode 
amplitudes given below (equation (1)), the individual loading 
resistance of each mode is determined by (i) the antenna spec-
tral power at the wavenumber of the mode and (ii) the ampl-
itude of the residue. In this paper, we use the term ‘bare’ or 
‘unweighted’ loading resistance to denote loading obtained 
with a uniform antenna spectrum, Jant(m, k‖) = constant .

We emphasize that this cylindrical model is a response to 
the need for qualitative understanding and is not intended for 
precise calculations of loading resistances. The model is cylin-
drical, so toroidal effects are clearly excluded. With a realistic 
magnetic-field profile, poloidal symmetry is broken, and modes 
of different azimuthal mode numbers m may couple, poten-
tially transferring power from ARs to other modes. The model 
does not include any of the antenna structures surrounding the 
strap and Faraday screen; considerable research has been con-
ducted to study the effects of such components [26], especially 
when they are misaligned with the magnetic field, and their 
possible excitation of an electric field component parallel to 
the background magnetic field [27]. Finite-temperature and 
non-linear effects are omitted, including conversion to ion 
Bernstein waves, parametric decay instability, and RF rectifi-
cation. Indeed, no form of dissipation is included; wave energy 
coupled from the antenna propagates out of the ends of the 
cylinder without absorption. The actual mechanism converting 
HHFW power in the SOL to a divertor heat flux has not yet 
been definitively determined, but dissipation by far-field RF 
sheaths is a leading candidate [11]. Core absorption is the 
usual Landau damping and transit-time magnetic pumping, 
which are anticipated to be quite large for high-beta plasmas 
such as those found in the NSTX core [28, 29]. These hot-
plasma effects may also be strong enough to substantially 
change the wave fields from their cold-plasma solutions found 
here. We presume that the high edge field amplitude of the 
AR will drive a high rate of edge absorption relative to core 
absorption once the proper SOL damping mechanism is iden-
tified and included, but this remains a crucial future step to 
verify by comparing core and edge damping rates. We also 
observe that this model treats the tokamak as a plasma-filled 
waveguide, whereas AORSA simulations including that of the 
SOL resemble a plasma-filled cavity. We emphasize again that 
the cylindrical model allows for relatively short computation 
time and faster exploration of the parameter space as well as 
provides the ability to resolve individual modes and to separate 
the contributions from fast and slow waves.

3. Properties of ARs over several azimuthal mode 
numbers

The AR condition is one where a half-wavelength structure 
in Eθ fits into the combined annulus/vacuum region, which 
we refer to as the ‘edge’ region. The modes that most nearly 

satisfy this condition have a greatly enhanced ‘bare’ or 
unweighted loading resistance and propagate over half of their 
wave power at the edge. The concept of ‘bare’ mode ampl-
itude is discussed above (equation (1)). What we call ‘annulus- 
resonant modes’ are the modes, for each m, that most closely 
satisfy this condition and consequently have the highest bare 
loading resistance among all modes of the same m. Indeed, 
when the bare loading resistances for all modes of a single 
m are plotted against k‖, the AR modes, if present, appear as 
a peak in an otherwise monotonically decreasing curve, as 
shown in figure 2. For the typical SOL parameters modeled 
here, one generally finds at most one AR per m. It is possible 
that there is no AR present, as shown in figure 2. An analytic 
expression for the AR condition is cumbersome due to the 
matching of annulus fields to vacuum fields, but we can gen-
erally understand its dependence on certain model parameters 
as follows. kfast

⊥  decreases with k‖ but increases with plasma 
density. When plasma density in the annulus increases, the k‖ 
of the AR condition decreases to keep kfast

⊥  approximately the 
same. Likewise, increasing the width of the annulus region 
decreases the k‖ of the AR condition. Perkins et  al [17] 

Figure 2. (a) Bare loading resistance for m = 6 (black) and m = 0 
modes (red) for an annulus density of 1.5 × 1018 m−3, showing 
typical loading resistance curves with and without an AR mode. 
(b)–(e) Field profiles for the m = 6 annulus resonance (black 
curves) and for the m = 6, k‖ = 6.98 m−1 non-annulus resonance 
(red curves) shown in (a). The difference in amplitude, especially at 
the edge, is clear. Also, the abrupt changes in Hθ shown in  
(c) indicate the slow-wave layers and associated axial RF currents. 
The modes persist even when the slow wave is removed from the 
model, as the axial currents become infinitely thin current sheets.
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contains a more detailed discussion and figures regarding the 
dependence of the AR condition on these parameters.

The ARs are dominated by fast-wave fields with little 
contrib ution from the slow wave. This is mostly due to the fact 
that, for these parameters, the slow wave is cut off with a radial 
length scale of millimeters, which confines the slow wave to 
very narrow layers at the core–annulus and annulus–vacuum 
interfaces. Still, the slow wave could, in principle, be essential 
if it joins fast-wave solutions across the interfaces in a fashion 
that would otherwise violate boundary conditions without 
the slow-wave solution. However, inspection of the field pro-
files for the AR shows that removing the slow wave (making 
it more and more evanescent) only causes a discontinuity in 
Hθ at the annulus–vacuum interface, which is indicative of an 
infinitely thin current sheet. Hence the role of the slow wave in 
the AR mode is simply to broaden this current sheet by over a 
few millimeters, and the existence of the AR cannot be attrib-
uted to the inclusion of the slow-wave solution. We note that 
the slow wave may play a more prominent role at the lower 
hybrid resonance layer or at antenna-box components, neither 
of which are included in the model. However, the lower hybrid 
resonance density is very low for these parameters, typically 
1016 m−3, and is probably confined within the antenna box 
and is not expected to influence the far fields [30]. Slow-wave 
excitation at the antenna box may influence sputtering and 
heat loads but is outside the scope of the present study.

This section will focus on the behavior of AR modes for 
different m. As mentioned, there is typically at most one AR 
per m, but the k‖ of the resonance increases with m. This is 
demonstrated in figure 3(a), where the bare loading resistance 
is plotted against k‖ for select azimuthal mode numbers m. 
There is one AR for every m, and the k‖ value of this peak 
increases with increasing m. For low enough m (in this case, 
m � 0), this peak begins to disappear into the vacuum cutoff 
k‖ = ω/c. In figure 3(b), the k‖ value of the largest mode for 
each m is plotted against m; there appears to be a functional 
relationship. Figure 3(c) is similar to figure  3(b) except the 
vertical axis is kfast

⊥,c, the fast wave k⊥ in the core. This last plot 
appears piecewise linear with ‘breaks’, consecutive modes 
that have similar kfast

⊥,c.
Figure 3(b) is important to understand. The ‘trajectory’ 

of the AR condition through the k‖ − m space determines 
whether or not these modes will intercept the peaks in the 
antenna spectrum. It is also important to understand how 
parameters such as the magnetic field and annulus density 
affect this ‘trajectory’.

3.1. Mode spacing

In section 2, we introduce the radial mode number n as the 
number of zeros in the radial profile of Eθ. We now derive 
approximate analytic expressions for the k‖ spacing between 
modes of consecutive n and fixed m and between those of 
consecutive m and fixed n. Most of the zeros in the radial Eθ 
profile occur in the core because the core is the largest region 
and also because kfast

⊥  is relatively large there due to the high 
density. The core fast-wave fields are linear combinations of 
the Bessel functions Jm(kfast

⊥,c(m, n)r) and Jm+1(kfast
⊥,c(m, n)r), 

where the notation kfast
⊥,c(m, n) denotes the value of kfast

⊥,c for a 
mode of azimuthal number m and radial mode number n. The 
Bessel functions can be approximated by their asymptotic 
forms:

Jm(kfast
⊥,c(m, n)r) ≈ cos

(
kfast
⊥,c(m, n)r − m

π

2
− π

4

)
. (9)

If we define φm,n  as the phase argument in equation (9),

φm,n ≈ kfast
⊥,c(m, n)r − m

π

2
− π

4
, (10)

then φm,n  is an approximation to the fast-wave phase at the 
core–annulus boundary. We then conjecture that φm,n+1 is 
greater than φm,n  by a value of π to produce an extra zero in 
the radial profile of Eθ in the core (a similar analysis is used 
in [31]). Then

kfast
⊥,c(m, n + 1) = kfast

⊥,c(m, n) +
π

rc
. (11)

Similarly, we conjecture that φm+1,n ≈ φm,n, since both modes 
have the same number of zeros. This conjecture leads to

kfast
⊥ (m + 1, n) = kfast

⊥ (m, n) +
π

2rc
. (12)

Increasing kfast
⊥,c means decreasing k‖. In either case, changes in 

k‖ are found by solving the fast-wave dispersion:

Figure 3. (a) Loading resistance versus k‖ for m = 1 (black), 
m = 4 (blue), m = 7 (red), and m = 10 (orange) modes. The k‖ of 
the AR modes increases with increasing m. (b) The k‖ value of the 
largest mode for each m. (c) As in (b) but with kfast

⊥,c as the abscissa. 
na = 1.5 × 1018 m−3 for all three plots.
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n2
⊥ =

(R − n2
‖)(L − n2

‖)

S − n2
‖

 (13)

with n denoting the refractive index n = ck/ω.
Both conjectures assume that any change in radial phase 

between modes occurs primarily in the core and that the phase 
change in the combined annulus–vacuum region is small. The 
impact of the phase change will be shown below. We acknowl-
edge that the term ‘radial phase’ is a poorly defined concept 
for the edge; the wave fields are radially cut off in the vacuum 
and sometimes also in the annulus. Moreover, discontinuous 
jumps in phase occur at sharp interfaces such as the ones used 
in this model.

We now compare the predictions made by equations (11) 
and (12) to the modes computed by the model. Figure 4(a) 
plots the asymptotic core fast-wave phase for m = 14 modes, 
φ14,n, as a function of n. The resulting plot is remarkably linear 
with slope π as predicted above. At n = 65, there is a joggle 
in the linear trend. The n = 65, m = 14 mode is an AR and 
will be discussed below. Figure  4(b) plots φm,65 versus m 
from m = 1 to m = 18; for larger m, the AR disappears into 
the vacuum cutoff k‖ = ω/c. For m < 14, the curve is very 
flat; the percent change in φm,65 from m = 1 to m = 13 is 
0.37%. This insensitivity of φm,n  to n is consistent with equa-
tion (12). The deviation from flatness is likely due to the much 
smaller variation in phase across the annulus/vacuum regions.  

Like figure  4(b), there is an abrupt change in phase at AR 
m = 14, n = 65. AR modes have a unique fast-wave phase at 
the core–annulus boundary; whereas most other modes have 
a phase separation of π, AR modes are separated by approxi-
mately π/2 from their nearest neighbors (nearest in k‖) [17]. 
This explains the abrupt phase change in both figures.

If the plot in figure 4 is extended to m < 1, the phase φm,65 
will increase linearly. This, however, is an artifact of the 
asymptotic phase φm,n . Because J−m(x) = (−1)mJm(x) for 
integral m, the negative m modes exhibit behavior similar to 
that of their positive counterparts.

3.2. Mode families and the AR condition

This section explains the piecewise linear dependence of the 
kfast
⊥,c of annulus-resonant modes versus m seen in figure  3. 

Figure  5(a) is a scatter plot of loading resistance versus k‖ 
for all modes from m = 0 to m = 40. Figure 5(a) is similar to 
figure 3 but has a logarithmic vertical scale, more azimuthal 
mode numbers, and no coloring to distinguish the m values of 
the modes. These annulus-resonant modes lie at the top of this 
figure; the abrupt end of these modes at k‖ ≈ 14 m−1 is due 
to the truncation of higher-m modes at m = 40. Certain sets of 
modes appear to lie on smooth curves in figure 5; these curves 
rise to a crest and then decrease with increasing k‖, with the 

Figure 5. (a) Scatter plot of loading resistance versus k‖ for all 
modes. (b) Same as (a) with m = 4 (blue), m = 7 (red), and m = 10 
(orange) modes joined by colored lines. (c) Same as (a) with 
m + n = 78 (blue), m + n = 80 (red), and m + n = 82 (orange) 
modes joined by colored lines.

Figure 4. (a) Core phase φ14,n for the m = 14 mode as a function of 
n. A straight line with slope π is drawn for reference. (b) Core phase 
φm,65 for the n = 65 radial mode as a function of m; note the change 
in vertical scale. For both figures, na = 1.5 × 1018 m−3.
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envelope of these curves being the set of annulus-resonant 
modes. These smooth curves are not defined by modes of 
the same m value; figure 5(b) demonstrates this by repeating 
the scatter plot with modes of the same m joined by colored 
curves. Here, the smooth curves are defined by all modes 
whose sums of m + n are equal; we refer to such sets as fami-
lies. In figure 5(c), modes with equal m + n are joined by col-
ored lines to differentiate families. For the simulation used for 
figure 5, the m + n = 78 family is the dominant family for k‖ 
between 4 and 8 m−1 and contains the AR modes for m = 4 
to m = 12. Above k‖ ≈ 8 m−1, the loading resistance of the 
m + n = 78 family declines as the loading of the m + n = 79 
family increases. The AR modes between k‖ = 8 m−1 and 
k‖ = 9.7 m−1 belong to the m + n = 79 family. The trans-
ition of maximal loading between families is emphasized by 
the m = 4 modes, colored blue in figure 5(b). The AR peak in 
loading resistance for these modes is broader than usual (com-
pare the m = 4 modes to the m = 7 and m = 10 modes in the 
same figure, or to figure 2). This peak consists of two closely 
spaced and nearly equal modes, each coming from a different 
family as the AR condition transitions from the m + n = 77 
curve to the m + n = 78 curve.

Within a family, the outermost half wavelength varies rela-
tively slowly across modes. Figure 6 shows this variation for 
two cases: for fixed m and varying n, and for fixed m + n. In 
the left-hand panels, m is fixed at 6, and n decreases by one 
from 73 (figure 6(a)) to 72 (figure 6(b)) to 71 (figure 6(c)). 
The outermost half wavelength grows and sweeps across the 
annulus–core boundary. The n = 72 mode most nearly sat-
isfies the AR condition and correspondingly has the largest 
amplitude. In the right-hand panels of figure 6, n decreases 
by one and m increases by one, going from m = 5 and n = 73 

(figure 6(d)) to m = 6 and n = 72 (figure 6(e)) to m = 7 and 
n = 71 (figure 6( f )). The outermost half wavelength now 
varies almost imperceptibly and closely satisfies the AR con-
dition. As one continues to increment m and decrement n 
keeping m + n constant, the outermost half wavelength even-
tually grows longer than the edge width, losing the AR condi-
tion and leading to a falloff in mode amplitude. However, as 
the m + n = 78 family falls off, the m + n = 79 family begins 
to satisfy the AR condition more closely. It is currently not 
clear why holding m + n constant slows the variation of the 
width of the outermost half wavelength.

The dependence of the kfast
⊥,c and k‖ of the AR on m, 

 figures 3(c) and (b) respectively, can be obtained by applying 
equation (12) within a family, so that m + n = constant:

kfast
⊥,c(m + 1, n − 1)rc = kfast

⊥,c(m, n)rc −
π

2
, (14)

from which the k‖ dependence follows from the fast-wave dis-
persion, equation (13). Increasing m within a family decreases 
kfast
⊥,c and increases k‖. Equation  (14) is only valid within a 

family; when the AR condition transitions from one family to 
the next, there exists a discontinuity in kfast

⊥,c, which explains 
the piecewise linear behavior seen in figure 3(c).

4. The role of ARs in wave field reconstructions

In this section, we evaluate the role that AR modes play in 
wave field reconstructions, anticipating that strong excita-
tion of AR modes will result in a large fraction of the total 
wave power being localized in the edge. The excitation of AR 
modes, relative to non-AR modes, depends on how closely 
the k‖ and m values of the AR modes match the spectral peaks 
of the antenna spectrum. Thus, the dependence of the k‖ of 
AR modes for different m studied in section 3 (see figure 3) 
plays a central role: it defines the ‘trajectory’ of the AR modes 
through the k‖ − kθ plane and how closely it overlaps with 
the antenna spectral peak. Because the AR modes have a very 
high unweighted loading resistance (see discussion under 
equation (1)), we expect that, when this trajectory intercepts 
the antenna spectral peak, the AR modes will dominate the 
non-AR modes in the wave field reconstructions.

Section 4.1 develops the mathematics for how wave power 
is partitioned between different regions in the model and 
defines the amount of power that is exchanged between the 
core and edge regions. Sections 4.2 and 4.3 present loading 
resistance calculations for an inter-strap antenna phasing of 
π/2 and 5π/6 respectively for various annulus densities, 
with the core density kept fixed. While quantitative results 
are presented, we emphasize the qualitative behavior of the 
AR modes and their k value relative to the antenna spectrum. 
We find instances where (i) the AR modes account for a 
large fraction of the total wave power, and (ii) a large frac-
tion of the total wave power, over 50%, is ‘trapped’ at the 
edge. Indeed, the two features are fairly well-correlated, as 
expected. We also find instances where the percentage of core 
loading is much larger, around 80%, and where the power 
at the edge can propagate into the core. These findings are a 

Figure 6. Radial profiles of Eθ for various modes. In the left 
column, m is fixed at m = 6 and n decreases by one down the 
panels. In the right column, m increases by one while n decreases 
by one down the panels.
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promising explanation for the edge loss of HHFW power in 
NSTX. However, the case of π/2 phasing shows the oppo-
site trend of fraction edge loading with increasing annulus 
density—namely, in this model, power trapping at the edge 
tends to decrease with increased annulus density. In the 5π/6 
phasing case, though, the power trapping is observed to ini-
tially increase with annulus density. The discrepancy between 
the model and the experimental results may be explained by 
magn etic pitch, as discussed in section 5.

4.1. The partition of wave power between core and edge

The expression for the time-averaged (active) Poynting flux 
Γz through a surface normal to the axial direction is given as a 
double sum over all modes:

〈Γz〉 =
∑

m,n,m′,n′

∫ ∫ 〈
Ẽr(r, m, n)H̃∗

θ (r, m′, n′)− . . .

Ẽθ(r, m, n)H̃∗
r (r, m′, n′)

〉
ei(k‖−k′‖)z+i(m−m′)θrdrdθ.

In this sum, k‖ is the axial wavelength for the (m, n) mode, and 
k′‖ is for the (m′, n′) mode. The cross-terms indicate interfer-
ence between modes. When integrating over the entire azi-
muthal angle, we can apply orthogonality between the two 
azimuthal mode numbers m and m′. When integrating over the 
entire radial domain, we have the orthogonality of n and n′. In 
the case of both, the expression for axial wave power reduces 
to the sum of individual fluxes from each mode, each of which 
is axially constant with no interference between modes.

When integration occurs over the entire azimuthal angle but 
not over the entire radial domain, the Poynting flux becomes

〈Sz〉 = 2π
∑

m,n,n′

∫ 〈
Ẽr(r, m, n)H̃∗

θ (r, m, n′)− . . .

Ẽθ(r, m, n)H̃∗
r (r, m, n′)

〉
ei(k‖−k′‖)zrdr.

For each m, these terms are categorized as either diagonal 
terms (n = n′) or cross-terms (n �= n′). Diagonal terms do not 
have z dependence, but cross-terms do. If we integrate over 
the core, then the diagonal terms define a fixed amount of 
power that remains in the core, but each cross-term describes 
a power flux between the core and the edge that varies sinu-
soidally with z. We refer to this as ‘oscillating’ power, which 
should not be confused with reactive (time-oscillating) power. 
Likewise, when integrating over the edge, the diagonal terms 
describe power that remains at the edge, which we refer to as 

‘trapping’ at the edge. The oscillating power must be com-
puted numerically at each z location of interest. A convenient 
and z-independent metric of the power available for oscilla-
tion is

Posc = 2π
∑
n�=n′

∣∣∣∣
∫

〈Er(r, m, n)H∗
θ (r, m, n′)− . . .

Eθ(r, m, n)H∗
r (r, m, n′)〉| rdr.

 

(15)

Note that no power oscillates between modes of different m 
values. Also, if there is one dominant mode for a given m, then 
the oscillating power will be a small fraction of the total wave 
power contained in these m modes.

4.2. Current-drive phasing

The results of changing the annulus density na in the range 
of 5.0 × 1017 to 2.0 × 1018 m−3 are summarized in table  1 
and shown graphically in figure  7. The general trend with 
increasing na over this density range is that (i) the total loading 
increases, (ii) fractional loading to the core increases, and 
(iii) the percent contribution of the AR modes decreases. The 
increase in total loading with na results from increases in both 
AR and non-AR modes. Non-AR loading steadily increases 
with increasing na, which improves core loading. Meanwhile, 
AR loading does not monotonically increase with na for the 
reasons discussed below, and the AR contribution decreases 

Table 1. Loading resistance by region and the contribution of AR modes for each na. The left-hand columns show the total loading, its 
partition into edge and core power, and the power that oscillates between the core and edge (equation (15)). In the right-hand columns, 
‘total’ denotes the percent contribution of the AR modes to the total loading, while the ‘edge’ and ‘core’ columns denote the percent 
contribution to each region. For instance, 97% in the ‘edge’ column means that the AR edge power is 97% of the total edge power.

Annulus
Density

Loading resistance (Ω) AR loading

Total Core (%) Edge (%) Oscillating Core (%) Edge (%) Total (%)

0.5 × 1018 2.31 1.02 (44%) 1.29 (56%) 0.21 14 97 60

1.0 × 1018 3.96 1.91 (48%) 2.04 (52%) 0.74 27 94 63

1.5 × 1018 3.93 2.68 (68%) 1.25 (32%) 0.85 23 81 42

2.0 × 1018 5.58 4.18 (75%) 1.41 (25%) 1.31 19 76 34

Figure 7. Trend in loading resistance as na increases: circles, total 
loading; diamonds, core loading; crosses, edge loading; triangles, 
oscillating power.
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as na rises. Also, the amount of power that oscillates between 
the edge and the core, equation  (15), steadily increases 
from a small fraction (∼10%) to nearly the full power at the 
edge. We might say that the power at the edge is no longer 
trapped there. Figure 8 plots the percent loading in the core 
and edge as a function of z moving away from the antenna. 
For na = 5.0 × 1017 m−3 (figure 8(a)), the oscillating power 
is low, and the edge power is close to its fixed value. For 
na = 2.0 × 1018 m−3 (figure 8(b)), the power at the edge is 
lower, and a greater portion of it can propagate into the core. 
Absorption is not included in this model, but is predicted to be 
strong for NSTX core plasmas [29]; we expect that any wave 
power that penetrates the core will be absorbed there.

A more detailed perspective is afforded by figures 9(a) and 
(b). Each figure contains a contour plot of the antenna spectral 
power on the k‖ − kθ plane. kθ  is given as m/ra . Each contour 
line denotes a factor-of-two change in spectral power. Each 
circle denotes a mode, with lighter colors signifying a higher 
loading resistance. Only the 50 largest modes are plotted for 
clarity; these modes account for about 90% of the total wave 
power. The diamonds denote the locations of the AR modes; 
as a set, the AR modes take a curved trajectory through the 
k‖ − kθ plane. Since the AR modes have a high unweighted 
loading resistance, one could think of this AR trajectory as 
a ridgeline of the k‖ − kθ plane. A diamond filled with a 
circle denotes an AR mode that is in the top 50 modes. At 
na = 1.0 × 1018 m−1 (figure 9(a)), the AR ridge lies directly 
on top of the first azimuthal sideband, with m = 12 being the 
strongest AR mode excited. This explains the relatively strong 
contribution of the AR modes for this density. Many non-AR 
modes lie in the primary antenna spectral peak. In figure 9(b), 
increasing na to 1.75 × 1018 m−3 moves the AR ridge off the 
sideband. At the peak of the axial spectrum (k‖ = 7.3 m−1), 
the AR ridge lies near the node in the azimuthal spectrum 
at m = 8. This explains the non-monotonic behavior of AR 
loading (figure 7). Also, for the strongest AR modes at m = 5, 
m = 6, and m = 7, neighboring modes of the same m are also 
strongly excited. With several large modes of the same m, 
the power oscillating between the core and edge increases 

because, as explained in section 4.1, this oscillation is caused 
by interference of modes of the same m. As evidenced in 
figure 9(a), typically there is only one mode strongly excited 
at each m in the case of na = 1.0 × 1018 m−3.

For the set of AR modes, the fraction of power conducted 
at the edge decreases from 86% at na = 5.0 × 1017 m−3 to 
56% at na = 2.0 × 1018 m−3. This is because higher-m AR 
modes conduct more power at the edge. Increasing the annulus 
density moves the AR ridge to the right in the k‖ − kθ space, 
decreasing the m value at which the AR trajectory intercepts 
the antenna k‖ peak at k‖ = 7.3 m−1; see figure 10.

4.3. 5π/6-phasing: heating phasing

For the NSTX antenna, 5π/6 inter-strap phasing avoids a 
phase discontinuity between the sixth and seventh straps 
that would occur for π phasing [32]. For 5π/6 phasing, the 
primary axial spectrum peaks at k‖ = 12.2 m−1. There is a 
second peak at k‖ = −22 m−1, but the coupling to modes at 
such large |k‖| is weak enough to ignore. Table 2 and figure 11 
show the loading calculations for this phasing. The total 
loading is reduced by roughly a factor of three compared to 
that of π/2 phasing but does steadily increase as na increases. 
Similarly, the core loading increases with na but at a slower 
rate than the π/2 case. The percentage of power at the edge 
is substantially smaller than that with π/2 phasing but is still 
significant, around one third of the total power. In contrast 
to the decrease in percent edge loading with na seen for π/2 
phasing, the percent edge loading for 5π/6 phasing rises as na 
is raised from 0.5 to 1.0×1018 m−1, but levels off in the range 
of 1.0 - 2.0×1018 m−1. In this latter range of na, the power 
available to oscillate between the edge and core increases 
substantially. The behavior of edge loading versus na is a 
monotonic increase, which contrasts with the π/2 case and 
will be discussed below. The percent contribution of the AR 
modes is similar to the percent edge loading; for na = 0.5 and 
1.0 × 1018 m−3, it is substantially lower than that in the π/2 
case but rises instead of decreases with na.

Figures 9(c) and (d) show the na = 1.0 × 1018 m−3 and 
2.0 × 1018 m−3 cases on the k‖ − kθ plane. At 5π/6 phasing, 
the AR trajectory now intercepts the axial peak in the antenna 
spectrum, k‖ = 12.2 m−1, at substantially higher kθ  than 
in the π/2 case. For na = 1.0 × 1018 m−3 (figure 9(c)), the 
strongest modes are the m = 30, 31, and 32 AR modes, with 
relatively strong contributions from the m = 38 and 39 AR 
modes, whereas for π/2 phasing the strongest modes are the 
m = 11, 12, and 13 AR modes. For na = 2.0 × 1018 m−3 
(figure 9(d)), the strongest modes are the m = 22 and 23 AR 
modes, whereas for π/2 phasing the strongest modes are the 
m = 5, 6, and 7 AR modes. It is remarkable that these AR 
modes are the dominant modes in this case; they lie on the 
relatively weak third and fourth azimuthal sidelobes of the 
antenna spectrum but have a high ‘bare’ loading resistance  
(a concept discussed below equation (1)). This is in contrast to 
the non-AR modes that lie directly on top of the main antenna 
spectral peak but have relatively low bare loading resist-
ances. However, since the azimuthal spectral weighting of the 

Figure 8. Percentage of power contained in the core (red) and 
edge (blue) as a function of axial distance from the antenna. 
Dashed lines indicate a fixed percentage of power (section 4.1). 
(a) na = 5.0 × 1017 m−3, and (b) na = 2.0 × 1018 m−3.
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Figure 10. Contour plot of antenna spectral power and annulus resonances (diamonds) for different na: from upper left to lower right, 
na = 0.5, 1.0, 1.5, and 2.0 × 1018 m−3. (a) π/2 inter-strap antenna phasing, and (b) 5π/6. Increasing na shifts the AR ridge closer to the 
primary antenna spectral peaks.

Figure 9. Location of the AR ridge (diamonds) and largest 50 ((a) and (b)) or 100 ((c) and (d)) modes (circles) relative to antenna spectral 
power (contour lines). (a) π/2 phasing and na = 1.0 × 1018 m−3, (b) π/2 phasing and na = 1.75 × 1018 m−3, (c) 5π/6 phasing and 
na = 1.0 × 1018 m−3, (d) 5π/6 phasing and na = 2.0 × 1018 m−3.
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antenna scales like m−2 (equation (4)), the percent AR contrib-
ution is not strong for 5π/6 phasing. In fact, the wave power is 
more evenly distributed between modes; at π/2 phasing, 90% 
of the total power is carried by  ∼50 modes, whereas for 5π/6 
phasing it takes  ∼100 modes to reach 90%.

Finally, the ‘slope’ of the AR ridge at k‖ = 12.2 m−1 is 
greater than that at k‖ = 7.3 m−1, so the AR ridge is likely to 
cross two adjacent azimuthal sidebands and is less likely to 
lie in a null between them as in figure 9(b) of the π/2 case. 
This explains why the edge loading increases monotonically 
with na for 5π/6 phasing, in contrast to that in π/2 phasing. 
Also, for the same change in na, the m value of the strongest 
AR modes will drop more substantially for 5π/6 phasing than 
for π/2 phasing.

5. Discussion

The previous sections  present a conceptual framework in 
which the AR modes form a ridge on the k‖ − kθ plane, and 
where increasing the annulus density, for the current model 
parameters, moves this ridge closer to the peak in the antenna 
spectrum. For π/2 antenna phasing, the model predicts that 
the fraction of power trapped at the edge decreases as the 
annulus density is raised. This contradicts operational expe-
rience [6] and also results from full-wave calculations [14]. 
However, as the model does reproduce features of the experi-
ments, such as over 50% of the wave power being trapped 
at the edge, it is important to see if varying certain model 
parameters changes the AR trajectory relative to the antenna 
peak. Potential parameters to vary include the core density 
and annulus width, which will be much greater for discharges 
with neutral beam injection.

We focus here on the potential role of the field tilt of NSTX. 
As a spherical torus, NSTX has a relatively weak toroidal field 
and a correspondingly large magnetic pitch at the outboard 
side, typically 30◦ to 40◦. A preliminary approach to incorpo-
rating pitch is to rotate the projection of the mode k vectors on 
the kz − kθ plane. Figure 12 shows how a rotation of 30◦ can 
move the AR trajectory relative to the antenna spectral peak 
for 5π/6 phasing, and the effect is quite dramatic compared 
to the unrotated case of figure 10(b). The rotated AR modes 
are decreased in kθ , which greatly increases their amplitude 
since the azimuthal spectral weighting scales as m−2. Also, 
since the AR trajectory is more horizontal (aligned with the 
kz axis), we expect a broad range of AR modes to be excited 
by the axial sidebands of the antenna spectrum. While these 

speculations are based on a very coarse prescription of simply 
rotating k, they do suggest that field pitch could have a pro-
found impact on the model and is worth studying in a more 
comprehensive treatment.

Table 2. Effect of raising annulus density on both total loading and contribution from AR modes. Inter-strap phasing of 5π/6.

Annulus
Density

Loading AR contribution

Total Core (%) Edge (%) Oscillating Core (%) Edge (%) Total (%)

0.5 × 1018 0.79 0.62 (79%) 0.16 (19%) 0.03 3 97 23

1.0 × 1018 1.12 0.77 (68%) 0.35 (32%) 0.07 8 97 36

1.5 × 1018 1.63 1.05 (65%) 0.58 (35%) 0.20 14 94 43

2.0 × 1018 2.16 1.46 (67%) 0.71 (33%) 0.39 18 91 42

Figure 11. Trend in loading resistance as annulus density is 
increased: black circles, total loading; diamonds, core loading; 
crosses, edge loading; triangles, oscillating power.

Figure 12. Effect of a 30° rotation on the position of the AR 
ridge relative to the antenna spectral peaks for different densities: 
0.5 × 1018 m−3 (purple), 1.0 × 1018 m−3 (orange), 1.5 × 1018 m−3 
(blue), 2.0 × 1018 m−3 (red).
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6. Conclusions

In a cylindrical magnetized cold-plasma model with a two-
step density profile, there exists a special class of modes that 
fit a half wavelength in the combined annulus–vacuum region, 
have a high loading resistance, and propagate a large portion 
of their wave power at the edge. There is typically at most one 
such mode per azimuthal mode number m, and the k‖ value 
of this mode increases with m. For the model parameters 
selected for this paper, the underlying reason for this relation-
ship between k‖ and m is that modes with the same value of 
m + n, with n denoting the number of radial nodes, maintain 
the half wavelength condition over a wide range of m. Viewed 
on the k‖ − kθ plane, these modes lie on a trajectory whose 
distance from the antenna spectral peaks changes with param-
eters such as annulus density. We have computed the relative 
contributions of ARs and non-annulus-resonant modes as well 
as the fractional loading to the edge and core regions over a 
scan of the annulus density. As expected, edge loading is large 
when the AR modes contribute a substantial fraction to the 
total loading. We note cases where over half of the total wave 
power propagates at the edge with little flux of power between 
the edge and core. However, while the total loading always 
increases with annulus density, the edge loading behaves 
non-monotonically for the π/2-phasing case, as the AR ridge 
moves onto and off the azimuthal sideband of the antenna 
spectrum. In the case of π/2 phasing, this leads to the result 
where the fraction of power coupled to the core improves with 
the edge density, in contrast to the results of experiments and 
full-wave computations. The case of 5π/6 phasing shows a 
degradation in core loading as the annulus density increases 
in the range of 0.5–1.0 × 1018 m−3 but levels off in the range 
1.0–2.0 × 1018 m−3. Magnetic pitch could play an important 
role; a coarse treatment indicates that rotating the k vectors 
of the modes by the magnetic-pitch angle at the antenna may 
bring the AR trajectory closer to the main spectral peak of the 
antenna, resulting in a large fraction of power being trapped 
at the edge.

Future work with this model will depend on initial results 
from HHFW experiments on NSTX-U. Improved diagnostic 
coverage will allow for more accurate quantification of the 
total power lost to the SOL and hopefully allow for definitive 
determination of the loss mechanism. Once this mechanism 
is identified, the proper absorption terms can be added to the 
model to compare the core and SOL damping rates and verify 
whether the annulus-resonant modes described here remain 
viable candidates for explaining SOL losses.
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