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1. Introduction

Energetic particle physics is critical for understanding behav-
iours of burning plasma experiments such as ITER. Energetic 
particle-driven instabilities may degrade energetic particle 
confinement and alpha particle heating efficiency. Fishbone 
is one of the most important energetic particle instabilities 
and is commonly observed in many tokamaks and stellarators 
with neutral beam injection (NBI) heating and/or radio fre-
quency (RF) heating. It was first observed in poloidal divertor 
experiments (PDX) with perpendicular neutral beam injec-
tion [1]. The instability was driven resonantly by energetic 
trapped beam ions with resonance condition dω ω= , where 

dω  is the trapped particle’s precessional drift frequency [2, 
3]. The mode had strong downward frequency chirping, with 
magnetic signal evolution resembling the bones of a fish, and 
was thus named ‘fishbone’. Since then fishbone instability has 
been observed in many tokamaks, spherical tori, and stellara-
tors [4–11]. It has been shown that the instability can also be 
driven by passing energetic particles, in addition to trapped 
particles [12, 13].

In this paper, we focus on nonlinear dynamics of fishbone 
instability in spherical tokamak plasmas. Experimental studies 
showed that there exists low frequency and high frequency 
fishbone [14, 15]. In this study, the simulation results corre-
spond to the low frequency fishbone. The 3D global kinetic/
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Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate 
linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical 
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effects of rotation are destabilizing and a new region of instability appears at higher qmin 
(>1.5) values, qmin being the minimum of safety factor profile. In the nonlinear regime, 
the mode saturates due to flattening of beam ion distribution, and this persists after initial 
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of beam ion distribution expands radially outward. A substantial fraction of initially non-
resonant trapped particles become resonant around the time of mode saturation and keep in 
resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant 
passing particles is significantly smaller than that of trapped particles. Our analysis shows that 
trapped particles provide the main drive to the mode in the nonlinear regime.
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MHD hybrid code M3D-K [16, 17] is used to simulate beam-
driven fishbone in this work. In M3D-K, the thermal plasma 
is described by the resistive MHD equations, while fast ion 
species are treated by the drift-kinetic equations. The fast ion 
pressure tensor Ph is coupled to the momentum equation. The 
system of hybrid equations are solved numerically as an initial 
value problem in toroidal geometry. The MHD equations are 
solved by the finite element method, and the drift-kinetic 
equations  are solved by particle-in-cell method. The code 
has successfully been used to simulate internal kink mode, 
sawteeth, fishbone, toroidal Alfvén eigenmode, reversed shear 
Alfvén eigenmode, and tearing mode with effects of energetic 
particles [18, 19], [22–29].

Recently, the M3D-K code was used to study the linear 
stability and nonlinear dynamics of both non-resonant kink 
mode (NRK) and fishbone in NSTX plasmas with weakly 
reversed shear q profile and zero rotation [32, 33]. It was 
shown that the fishbone saturates with strong downward fre-
quency chirping and flattening of beam ion distribution. In 
this work, we extend the previous study to include the effects 
of finite toroidal plasma rotation. More importantly, the 
detailed nonlinear wave particle interaction is investigated in 
order to understand the mechanism of frequency chirping and 
beam ion redistribution.

The paper is organized as follows. In the next section, the 
main parameters and profiles of our simulations are described. 

In section 3, we present simulation results of fishbone insta-
bility and wave particle resonances in linear phase. In sec-
tion  4, we present the analysis of the nonlinear dynamics 
of fishbone including mode nonlinear evolution, frequency 
chirping, and nonlinear behaviors of wave particle interaction, 
and compare our results with the Berk–Breizman hole/clump 
theory [30, 31]. In section 5, we summarize our main results.

2. Equilibrium profiles and fast ion parameters

This work extends the previous work [32, 33] of n  =  1 mode 
simulation in NSTX to include the effects of finite toroidal 
rotation and detailed analysis of nonlinear fishbone dynamics. 
The simulations in this study are also based on profiles 
and parameters of NSTX discharge 124379 at t  =  0.635 s. 
The profiles of pressure, energetic particle pressure, safety 
factor (q) and toroidal rotation are shown in figure 1, where 

a R 0.7010/≡ =ε , B0  =  0.44 T, and v R 8.246 100 A
5/ω = = ×  

rad s−1. The rotation profile and amplitude are chosen 
according to the experimental data with v 8.5 10,0

4= ×φ  m s−1. 
In the NSTX experiment, the beam power was 4 MW, the 
total plasma beta was P B2 0.39t 0 thermal beam,0 0

2/β µ≡ =+ , beam  
ion beta P B2h beam,0 0

2/β µ≡  and 0.28h t/β β = . The fast ion dis-
tribution is slowing down in energy, with a peaked distribution 
in pitch angle parameter:

Figure 1. Equilibrium profiles versus ψ: (a) total pressure Ptotal, energetic particle pressure Phot, (b) safety factor q, (c) toroidal rotation Ω.

Nucl. Fusion 57 (2017) 016034
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where c is a normalization factor, H is the step function; 
E v m e2 i

2/= + Φ, where e is the particle charge and φ is 
the electric potential associated with the plasma rotation. 
E v m e2imax 0

2 /= + Φ, where v0 is the beam particle injec-
tion speed, and E v m e2c c i

2 /= + Φ, where vc is the critical 
velocity given by v m T m m3 2c e e e i

3 3 2( / ) //π≡ , B E0/µΛ≡  is 
the pitch angle parameter, where µ is the magnetic moment. 
ψ is nor malized poloidal flux, and ⟨ ⟩ψ  is ψ averaged over 

particle orbit. The NBI injection energy of NSTX is 80 keV, 
the central pitch angle parameter 0.60Λ = , and 0.3∆Λ = , 

0.3ψ∆ = . Note that these parameters are estimated based on 
the results of the beam ion code NUBEAM [34]. For sim-
plicity, we only keep the n  =  1 component of perturbation in 
the simulations discussed below, where n  =  1 is the toroidal 
mode number, and simultaneously, we retain all poloidal har-
monics for both linear and nonlinear studies. We also ignore 
the rotation effects on equilibrium due to low ratio of rota-
tion velocity to ion thermal velocity. The energetic particles 
are described using the drift-kinetic equation  with the fδ  
particle-in-cell method; sources and sinks are not included 

Figure 2. Linear growth rate (a) and mode frequency (b) versus qmin with and without rotation, 0.35h t/β β = .

Figure 3. Linear mode structure (stream function U) with q 1.021min = , 1.321 and 1.621.

Nucl. Fusion 57 (2017) 016034
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in the simulations. The thermal plasma is described using the 
extended MHD equations.

3. Linear simulation results

Linear simulations of beam-driven fishbone have been carried 
out based on parameters and profiles given above. In particular 
the effects of finite plasma rotation neglected in the previous 
work are included. In this study, the effects of the equilibrium 
component of vφ are retained in the system of hybrid equa-
tions including the momentum equation and Ohm’s Law. The 
static electric field associated with the toroidal rotation is 
included in the drift-kinetic equation  for energetic particles. 
The rotation profile and ampl itude are chosen according to the 
experimental data with v 8.5 10,0

4= ×φ  m s−1 at the magnetic 
axis.

Figure 4. Continuous spectrum from NOVA with q 1.02min =  and q 1.46min = .

Figure 5. Unperturbed distribution function F0, and linear resonant 
particle location in Pφ and E space, with q 1.321min = , 0.2h t/β β =  
and 0.467µ! .

Nucl. Fusion 57 (2017) 016034
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Figure 2 shows the growth rate ( 0γτ ) and mode frequency (ω) 
as a function of qmin at 0.35h t/β β = , where R v 1.20 A/  τ µ= = s.  
Note that in this qmin scan, the q profile is shifted up and down 
with its shape kept fixed. We observe that effects of rotation 
are destabilizing. Specifically, a new unstable region at higher 

qmin values appears due to the toroidal rotation. Figure 3 shows 
the linear mode structures with q 1.021, 1.321,min  =  and 
1.621. It indicates that with q 1min! , the mode is dominated 
by m/n  =  1/1 component, and with higher qmin, the mode is 
 dominated by m/n  =  2/1 component and has a ballooning 

Figure 6. Nonlinear evolution of the fishbone mode: (a) cos component of U, (b) mode frequency, (c) energetic particles energy 
contribution from trapped and passing particles, (d) ratio of trapped particles’ to passing particles’ energy contribution.

Figure 7. Amplitude of velocity stream function U in nonlinear evolution, R Z,    are normalized by minor radius.

Nucl. Fusion 57 (2017) 016034
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structure. This result is similar to the appearance of m/n  =  2/1 
mode at higher qmin values in DIII-D plasmas [20].

It is not totally clear why rotation destabilizes fishbone 
at high qmin. The sheared rotation can affect mode structure, 
beam ion drive and continuum damping. It can also affect 
beam ion resonance condition with finite orbit width. The 
sheared rotation can also affect the MHD stability. In order 
to better understand the sheared rotation effects on fishbone 
instability, figure  4 shows the low-frequency part of the 
sound-Alfvén continuous spectrum obtained using the ideal 
MHD code NOVA [21]. Clearly the continuous spectrum is 
significantly changed due to the finite sheared toroidal rota-
tion. Therefore the sheared rotation can affect the fishbone 
stability via its effects on mode structure, beam ion drive and 
continuum damping. The detailed parameter dependence and 
physics of the rotational effects on fishbone will be investi-
gated in future.

Note that in the actual experiment, there was no fish-
bone instability observed in this particular discharge around 
time 0.635=  s. Instead, the dominant mode was a neoclas-
sical tearing mode (NTM) [22]. One reason is that our simula-
tion model does not include the key NTM physics, which is 
important in this case. Another reason is that the instability 
is sensitive to the q and fast beam ion pressure profiles. With 
lower qmin, the fishbone is stable—instead, the NRK mode is 
unstable in simulation, which may trigger NTM. Typically, 
in NSTX plasmas, fishbone’s initial frequency in plasma 
frame is 8–10 kHz, and the chirping time is ≃3 ms (discharge 
#138872, time 0.43= –0.46 s) [35]. This is consistent with the 
simulation results, where the frequency is 0.07 9.190ω ω= =  

kHz, and the chirping time is ≃3.5 ms. For NRK, the mode 
frequency in plasma frame is very small as compared to that 
of the fishbone.

The instability drive of the fishbone is analyzed. In gen-
eral, the mode is excited by free energy associated with radial 
gradient of beam ion distribution via wave particle resonant 
interaction. The resonance condition is given by

n p n p, ,   Zω ω ω= + ∈φ θ (2)

where p is an integer. For passing particles, ωθ and ωφ are 
particle poloidal and toroidal transit frequencies respectively. 
For trapped particles, ωθ is the bounce frequency and dω ω≡φ  
is the toroidal precession drift frequency. For typical param-
eters it is found that main resonances are p  =  0 and p  =  1. 
Figure  5 plots p  =  0 (red circles) and p  =  1 (blue cross) 
resonant locations in the phase space of E P,(   )φ  as well as 
contours of unperturbed beam ion distribution (F0) at fixed 
value of magnetic moment 0.467µ!  (normalized by E B0 0/ ). 
The value of magnetic moment is in the range of 0.0, 1.3[ ]. 
The selected value of 0.467µ =  is a typical one which con-
tains a substanti al region of both trapped and passing res-
onant particles. It is chosen to clearly illustrate the effects 
of both trapped and passing particles. However, the relative 
contrib ution of trapped and passing particles to the mode 
instability drive is calculated for whole phase space, not only 
for 0.467µ = .

Note that the maximum energy of particles is a little larger 
than the injection energy (E E1.03max 0 = ) due to the electric 
potential induced by the toroidal rotation. P e mv RB B/∥ψ= +φ φ  
is the toroidal angular momentum, here we use the code unit 
for Pφ, ψ denotes the poloidal flux in code units with minψ ψ=  
at the magnetic axis and 0maxψ ψ= =  at the plasma edge, 
which means for a fixed E, small Pφ corresponds to the plasma 
core, and large Pφ corresponds to the plasma edge. The 
approximate boundary between passing particles and trapped 
particles is indicated by the black dashed line. It is clear that 
p  =  0 corresponds to precessional resonance of trapped par-
ticles and p  =  1 corresponds to parallel resonance of passing 
particles.

Furthermore, the relative contribution of trapped particles 
and passing particles to the fishbone drive is estimated by cal-
culating each particle’s energy change at the end of the linear 
simulation. It is found that passing particles’ destabilizing 
contribution is comparable to that of the trapped particles. For 
the specific case of q 1.321min =  and 0.2h t/β β = , the passing 
particles’ contribution is about 40% higher. This is quite dif-
ferent from fishbone instability in conventional tokamaks, 
where the mode is driven mainly by either trapped or passing 
particles.

4. Nonlinear dynamics of beam-driven fishbone: 
mechanism of chirping

Here we investigate nonlinear evolution of chirping fishbone 
and associated dynamic behaviour of particles near reso-
nances. The purpose is to understand the chirping mechanism 
of beam-driven fishbone in spherical tokamaks. Figure 6 shows 

Figure 8. Distribution function in nonlinear evolution with 
0.467µ! , (a) trapped particles with E E0.406 0 ( )! , (b) passing 

particles with E E0.636 0 ( )! .

Nucl. Fusion 57 (2017) 016034
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the nonlinear evolution of fishbone for a relatively low linear 
growth rate case with 0.2h t/β β = , and q 1.321min = . The calcu-
lated linear mode frequency and growth rate is 0.13 0 ( )ω ω=  
and 0.0050γτ =  respectively. The figure shows time evolution 
of (a) cos component of U, here U is the stream function of 
the incompressional part of the perturbed plasma velocity, (b) 
mode frequency, (c) total energy changes of passing particles 
and trapped particles (positive means losing energy), and (d) 
ratio of the energy changes between trapped and passing par-
ticles. We observe that the mode saturates around t 1600 0 τ∼  
and the mode amplitude persists thereafter. Correspondingly, 
the mode frequency chirps down strongly from 0.13 0 ( )ω ω=  
to 0.06 0 ( )ω ω= . Interestingly, about half of the frequency 
drop occurs before the initial saturation. We also observe 
that, although the passing particle drive (measured by energy 
change) is initially somewhat larger than that of trapped par-
ticles, the trapped particle drive becomes increasingly more 
important and dominant from t 1000 0 τ∼ . This indicates that 
the chirping mode is driven mainly by trapped particles in the 
nonlinear phase. In addition to mode saturation and frequency 
chirping, the mode structure also changes significantly as 
shown in figure 7. We observe that the mode structure evolves 
from ballooning in the linear phase to anti-ballooning with a 
broader (2, 1  ) component in the nonlinear phase.

The corresponding beam ion distribution evolution 
is shown in figures  8 and 9 in 1D and 2D phase spaces at 
t 0, 1000, 2000   =  and 3000 0 τ  respectively. Clearly, there is 
a large flattening region induced by both trapped and passing 
particles. Figure  8 shows the flattening region of the distri-
bution function expands outwards/inwards radially (or in 

Pφ space) in time for trapped/passing particles. For trapped 
particles, the center of the flattening region also moves from 
core to edge as the mode chirps down. Figure  9 shows the 
2D distribution function in Pφ and E space, which clearly pre-
sents some details of the distribution change in the nonlinear 
phase. At t 1000 0 τ= , when the mode amplitude is small, the 
perturbation mainly appears around the resonance line shown 
in figure 5, which proves the main resonances are p  =  0 and 
p  =  1 (as mentioned in the previous section). At t  =  2000 and 
3000 0 τ , around E E0.4 0 ( )! , which corresponds to trapped 
particles, the distribution function is flattened from the reso-
nance line to the edge. For distribution around E E0.55 0 ( )∼  
to E E0.8 0 ( )∼ , which corresponds to passing particles, the 
distribution function is flattened from the resonance line to 
the core. This expansion of flattened region can be understood 
by dynamics of resonant particles interacting with a chirping 
mode as shown below.

We now analyze the dynamics of resonant and non- 
resonant particles interacting with a chirping fishbone in order 
to understand the mechanism of fishbone nonlinear evolution 
including frequency chirping. First, we examine the depend-
ence of particle resonance frequency as a function of E and Pφ 
at 0.467µ! . Figure 10(a) shows the locations of p  =  0 and 
p  =  1 resonance for three mode frequencies including the 
linear fishbone frequency of 0.13 0 ( )ω ω!  and two nearby fre-
quencies. Note that the resonant location does not correspond 
to smooth lines because it is obtained from particle simu-
lation with a narrow range of µ values. To see the depend-
ence of resonance frequency more clearly, figure 10(b) plots 
p  =  0 resonant frequency (or precessional drift frequency) of 

Figure 9. Distribution function at t 0, 1000, 2000   =  and 3000 0 τ  with 0.467µ! .

Nucl. Fusion 57 (2017) 016034
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trapped particles and p  =  1 resonant frequency of passing par-
ticles as a function of Pφ at energy values of E E0.45 0 ( )!  and 
E E0.64 0 ( )!  respectively. We observe that the precessional 
frequency firstly decreases with Pφ strongly for P 0.4<−φ , and 
then changes very slowly for P 0.4>−φ . On the other hand, 
the p  =  1 resonance frequency of passing particles increases 
strongly with Pφ for P 0.4<−φ . We will soon show that these 
different behaviours of resonant frequency are important to 
the understanding of the dynamics of trapped and passing par-
ticles interacting resonantly with the mode.

Figure 11 shows the evolution of precessional drift fre-
quency ((a), red line), Pφ (b) and trajectory of a typical reso-
nant trapped particle which is initially in resonance with the 
fishbone. The mode frequency evolution is also shown ((a), 
blue line). We observe that the particle keeps in resonance as 
the mode frequency chirps down. Correspondingly the particle 
moves outward radially as Pφ increases and energy decreases. 
The movement of particles in the (E, Pφ) phase space can be 
understood from the relationship [36]

P

t
n E

t

d

d
d
d

.
ω

= −φ
 (3)

This equation  means that the change of particle toroidal 
angular momentum is proportional to the change of particle 

energy in the presence of a perturbation with frequency ω and 
toroidal mode number n. Since Pφ can be regarded as a radial 
variable, this means that a particle moves out radially with 
decreasing energy. The oscillation of Pφ in plot (b) indicates 
that the particle is trapped in the fishbone mode. The aver-
aged value of Pφ increases at such rate that precessional fre-
quency keeps in resonant with the chirping mode. We observe 
that almost all of these linear resonance trapped particles are 
phase-locked with the mode. Here we plot only one of them 
to keep the plot clear. It is instructive to note that there is a 
big jump in Pφ and its oscillation amplitude at t 2800 0 τ∼  and 
P 0.4∼−φ . This is due to the sudden change of the slope of 
function Pd( )ω φ  near P 0.4= −φ  (see in figure  10). It should 
be noted that these phase-locking resonant particles cause the 
radial expansion of beam ion redistribution as mode frequency 
chirps down (see figure 8).

We now examine the behaviour of non-resonant trapped 
particles. Figure 12 shows the evolution of precessional drift 
frequency ((a), red and green lines), Pφ (b) and trajectory (c) of 
two typical non-resonant trapped particles with precessional 
frequencies less than the initial fishbone frequency. Similarly, 
figure 13 shows evolution of precessional drift frequency ((a), 
red and green lines), Pφ (b) and trajectory (c) of two typical 
non-resonant trapped particles with precessional frequencies 
larger than the initial fishbone frequency. We observe that in 

Figure 10. (a) unperturbed trapped and passing resonance 
particles and near resonance particles in Pφ and E phase spaces 
with 0.467µ! . (b) unperturbed particles frequency versus Pφ with 

0.467µ! .

Figure 11. Nonlinear dynamic of a typical trapped particle with 
d t, 0 linearω ω= ! : (a) mode frequency, and dω ; (b) Pφ versus time; 

(c) the particle’s trajectory in Pφ and E spaces.

Nucl. Fusion 57 (2017) 016034
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both cases some initially non-resonant trapped particles can 
become resonant before mode saturation and stay in reso-
nance with the mode as the frequency chirps down.

We now look at the behaviour of resonant passing particles. 
Figure 14 shows nonlinear dynamics for two typical passing 
particles with initial frequency t t, 0 , 0 linear( ) ( )ω ω ω+φ θ= = ! . For 
orbit a (red lines), the particle keeps in resonance with the 
mode while the averaged Pφ decreases as the mode frequency 
chirps down. The direction of Pφ change is different from that 
of resonant trapped particles due to the opposite slopes of 
particle frequencies (see figure 10). As a result, the particle 
gets energy from the mode, in other words, it damps the mode 
nonlinearly. For orbit b (green lines), initially, the particle is 
in resonance. As the mode frequency chirps, the particle does 
not lock to the wave phase, in contrast, its frequency slightly 
increases, while energy decreases. At the end, it oscillates in a 
small range of Pφ and E space, but it still contributes energy to 
the mode on average.

Figure 15 shows the fraction of phase-locked particles versus 
initial particle frequency. Here the phase-locked particles include 
all the particles that are in resonance with the mode near the end 
of simulation (t  =  3500) whether they are initially resonant or 
not. Numerically the ration is defined N Nr p t p t, 0 , 0( )/ ( )κ ω ω≡ = = , 
where Nr p t, 0( )ω =  is the number of phase-locking particles with 

t t3500 3500 0.01p( ) ( )ω ω| = − = |<  in p t, 0ω =  space, and 
N p t, 0( )ω =  is the number of total particles in p t, 0ω =  space. 
For trapped particles, p dω ω= , and for passing particles, 

pω ω ω= +φ θ.
We observe that for particle frequency between 0.15 0 ( )ω  

and 0.06 0 ( )ω  the majority of trapped particles are phase-
locked, while less than half of passing particles keep in 
resonance with the mode. This indicates that the main mode 
drive in the nonlinear phase comes from trapped parti-
cles. Furthermore, for either trapped or passing particles, a 
substanti al fraction of initially non-resonant particles become 
resonant and thus play a significant role in mode nonlinear 
drive and frequency chirping.

Now we can connect the nonlinear dynamics of a single 
particle’s orbit, distribution function and the mode together. 
For trapped particles, as the frequency chirps down, most 
of the linear resonant and near resonant particles are phase-
locked with the wave, and they move radially and drive the 
mode continuously, which leads to distribution evolution in 
the phase space. Meanwhile the mode structure becomes 
broader at the low field side.

For passing particles, there are also a fraction of particles 
which keep in resonance nonlinearly. Due to the opposite 
slopes of the particle frequencies in Pφ space, they move from 
edge to core, and get energy from the mode. But there are 

Figure 12. Nonlinear dynamic of trapped particles with 
0.7d t, 0 linear( )ω ω= ! . Red and green markers present two typical 

nonlinear resonance particles respectively.

Figure 13. Nonlinear dynamic of trapped particles with 
1.3d t, 0 linear( )ω ω= ! .

Nucl. Fusion 57 (2017) 016034
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more particles near resonance that are not phase-locked with 
the mode. They instead move from core to edge and drive the 
mode. These particles do not drive the mode continuously 
like trapped particles, but as the mode frequency chirps down 
and the resonance line for passing particles moves inwards, 
more and more particles can become resonant with the mode 
and drive the mode nonlinearly. Trapped particles provide 
the dominant nonlinear driving force since the nonlinear 
driving trapped particles are phase-locked, and they increase 
in number as frequency chirps down and the mode amplitude 
grows.

It is instructive to compare our results of fishbone chirping 
and particle dynamics with the Berk–Breizman hole/clump 
theory of bump-on-tail instability [30, 31]. The theory shows 
that a hole/clump structure in distribution can develop from 
a near-threshold energetic particle-driven instability and the 
mode frequency chirps up/down while the hole/clump struc-
ture moves in phase spaces. Our results are consistent with 
the Berk–Breizman theory with respect to frequency chirping 
and associated resonant particle dynamics. In particular, our 
analysis shows that the resonant particles are trapped by the 
mode and thus they keep in resonance with the mode as fre-
quency chirps down. Furthermore, a substantial fraction of 
initially non-resonant particles become resonant as the mode 
grows and frequency chirps down. This suggests the forma-
tion of islands of resonant particles moving in phase spaces 

as frequency chirps down. Our estimate shows that the adi-

abatic parameter 0.005
t

d

db
2 ⩽α≡ ω
ω

 is very small (where bω  is 

the bounce frequency of a resonant particle trapped in the 
mode). This indicates that the adiabatic assumption of the 
Berk–Breizman theory is valid for our case.

It should be noted however that our results also differ 
from that of Berk–Breizman theory in important ways. The 
simulated evolution of beam ion distribution does not show 
a clear local hole/clump structure moving in phase spaces. 
Instead the beam ion redistribution is fairly global. This is 
probably due to large oscillation of Pφ of resonant particles 
or large phase space island. It can be shown that a large 
island size can result from weak gradient of Pd( )ω φ  as shown 
in figure 10. Specifically an equation of motion for a resonant 
particle trapped in the finite amplitude fishbone mode can be 
derived to show that the corresponding oscillating amplitude 
of Pφ is inversely proportional to Pd dd /ω| |φ . Thus the width 
of phase space island of resonant trapped particles is larger 
for smaller gradient of Pd( )ω φ . Finally our results show that 
the mode structure changes significantly during the nonlinear 
evo lution. This effect might affect the mode chirping and 
beam ion redistribution. However, this effect was not included 
in the Berk–Breizman theory.

5. Summary

In summary, linear and nonlinear simulations of n  =  1 fish-
bone have been carried out for the first time for the param-
eter regime of NSTX with low aspect ratio, high beta, high 
sheared rotation, and q 1min> . This parameter regime is 
very different from that of moderate aspect ratio, low beta, 
and small  rotation of conventional tokamaks. The simula-
tion is self-consistent with evolving mode structure in the 
nonlinear regime. This spherical tokamak parameter regime 
leads to new features of fishbone with respect to linear sta-
bility and nonlinear  evo lution. The main results are listed 
below:

Figure 14. Nonlinear dynamic of passing particles with 
t t, 0 , 0 linear( ) ( )ω ω ω+φ θ= = ! .

Figure 15. Phase locked particle number
Total particle number

     
   κ≡  after the mode saturated as a 

function of the initial particle’s frequency.
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 (1) Linearly, the fishbone is driven by both trapped particles 
and passing particles. For a realistic distribution func-
tion from NBI, the instability drive of passing particles 
is comparable to that of trapped particles. This is quite 
different from the classical fishbone in conventional 
tokamaks, where the fishbone is mainly driven by either 
trapped or passing particles. The significant passing par-
ticle contribution is likely induced by a finite precession 
drift frequency due to low aspect ratio and high beta.

 (2) The effects of rotation are destabilizing and a new insta-
bility region appears at higher qmin. It is shown that the 
sheared rotation affects the sound-Alfveń continuum 
significantly, which can in turn lead to modification of 
mode stability.

 (3) The mode saturates nonlinearly due to flattening of dis-
tribution function, and it persists after initial saturation 
while mode frequency chirps down in such a way that 
the resonant trapped particles move out radially and keep 
in resonance with the mode. Correspondingly the flat-
tening region of beam ion distribution expands radially 
outward. There is no apparent hole/clump structure as in 
the Berk–Breizman model because of large oscillating 
amplitude in Pφ of resonant particles phase-locked with 
the fishbone.

 (4) A substantial fraction of initially non-resonant trapped 
particles become resonant and keep in resonance with the 
mode as the mode grows and frequency chirps down. On 
the other hand, the fraction of resonant passing particles 
is significantly smaller than that of trapped particles. 
Indeed our analysis shows that trapped particles provide 
the main drive in the nonlinear phase.
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