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Alfv�en waves can induce the ejection of fast ions in different forms in tokamaks. In order to

develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is

proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce

frequency chirping or fixed-frequency oscillations. The proposed method employs numerically cal-

culated eigenstructures and multiple resonance surfaces of a given mode in the presence of ener-

getic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced,

reversed-shear and beta-induced Alfv�en-acoustic eigenmodes are used as examples. Waves mea-

sured in experiments are characterized, and compatibility is found between the proposed criterion

predictions and the experimental observation or lack of observation of chirping behavior of

Alfv�enic modes in different tokamaks. It is found that the stochastic diffusion due to micro-

turbulence can be the dominant energetic particle detuning mechanism near the resonances in

many plasma experiments, and its strength is the key as to whether chirping solutions are likely to

arise. The proposed criterion constitutes a useful predictive tool in assessing whether the nature of

the transport for fast ion losses in fusion devices will be dominated by convective or diffusive

processes. Published by AIP Publishing. https://doi.org/10.1063/1.5007811

I. INTRODUCTION

Supra-thermal fast ions exist in fusion-grade tokamaks

as a result of neutral beam injection (NBI), resonant heating,

and fusion reactions. This population of energetic particles

(EPs) can strongly resonate with Alfv�enic modes and excite

instabilities that can seriously deteriorate the confinement.1–5

The control of this interaction is necessary for the achieve-

ment of burning plasmas scenarios, in which the fast ions

need to have sufficient time to transfer their energy to the

background—mostly from drag (slowing down) on elec-

trons—in order to ensure high temperature for the continua-

tion of fusion reactions. This energy transfer mechanism is

considered essential for the good performance of ITER.

Theoretically, the time evolution of the amplitude of a

mode interacting with EPs can exhibit a variety of patterns as

the mode departs from an initial linear phase towards its non-

linear response. During this evolution, several bifurcations can

take place, with typical phases being steady, regular, chaotic,

and chirping oscillations.6 Upon the kinetic interaction of par-

ticles with an eigenmode, nonlinear phase-space structures

may spontaneously emerge in the resonance regions of the par-

ticle distribution, depending on the competition between drive,

damping, and collisionality.7 These disturbances can self-

consistently support anharmonic oscillations, in a generaliza-

tion of Bernstein-Greene-Kruskal (BGK) modes8 which, in the

presence of wave damping, are pushed towards lower energy

states. These self-trapped structures consist of accumulation

and depletion of particles in phase-space and are commonly

referred to as clumps and holes, respectively.

Frequency chirping can emerge just above the threshold

for marginal stability where the energy extracted from reso-

nant EPs slightly exceeds the power being absorbed by the

background dissipation, as discussed in Ref. 7. The initial

nonlinear response is to relax the EP distribution in its reso-

nance region, which would reduce the drive which can then

damp the mode. However, the plasma-EP system can also

find an alternate option, of slightly shifting its frequency,

thereby still tapping the free energy of previously untapped

neighboring non-resonant particles that then become reso-

nant due to the changed frequency. In the fully developed

chirping state, the resonant regions of an enhanced number

of particles (clumps) or of a deficient number of particles

(holes) are trapped by the finite amplitude wave, and these

regions of phase space shift the resonant distribution to lower

energy regions of phase space, with the released energy

being absorbed by the background dissipation mechanisms

that are present while keeping the nonlinear amplitude hardly

changed. Therefore, the frequency variation itself allows for

the moving structures to access phase space regions with dis-

tribution function gradients otherwise inaccessible, which

leads to convective losses over an extended region.

For the sake of clarity, we distinguish between the ter-

minologies, frequency chirping and frequency sweeping,

which often appear in the literature. While the former is nor-

mally associated with the fast kinetic response of resonanta)vduarte@pppl.gov
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particles (typically of order 1 ms) studied in this work, the

latter usually corresponds to a slow evolution (typically

100 ms) of Alfv�enic modes, in the presence of a non-

monotonic safety factor q profile that relies on the time vari-

ation of qmin. Sweeping events are associated with a modifi-

cation of the plasma equilibrium (and consequently, of the

dispersion relation), for example, in the case of Alfv�en

Cascades.9 Chirping is faster and harder to suppress using

external control.

Chirping modes can have frequency shifts greater than

the linear growth rate cL and are observed to be precursors of

even worse scenarios, known as avalanches. A spectrogram

showing repetitive chirping cycles followed by avalanches

for toroidal Alfv�en eigenmodes (TAEs) in National

Spherical Torus Experiment (NSTX), for several toroidal

mode numbers, is presented in Fig. 1(a). The inset shows

four of the chirping events and indicates that it consists

mostly of a down-chirping. The system preference for a

direction (up or down in frequency) has been theoretically

linked with the competition between different collisional

processes.10 Figure 1(b) shows very significant neutron rate

drop correlating with the avalanches.

The long-range chirping evolution was described by the

Berk-Breizman prediction for the frequency variation dx
scaling with the nonlinear bounce frequency xb to the power

of 3/2.7 It has been successfully used for applications that

include the inference of mode amplitude on MAST11 and the

estimation of kinetic parameters such as drive and damping

in JT-60U12 and in NSTX.13

The present work however focuses on establishing the

conditions for chirping onset rather than modeling their

long-term evolution, in order to predict the likely character

of EP transport. The EP losses are typically diffusive (e.g.,

due to mode overlap, RF fields, turbulence, and collisional

scattering) or convective (as a result of chirping oscillations

and collisional drag). We describe the methodology for the

generalization of previous works and include micro-

turbulent stochasticity, which [for the case of no ion cyclo-

tron resonant heating (ICRH)] has been shown to compete

with, and even greatly exceed, collisional scattering in many

tokamak experiments14 and therefore needs to be added to

the stochasticity due to pitch-angle scattering. We note that

RF-induced diffusion of resonant ions can play a similar role

in altering phase-space chirping structures.15–18 In this work,

however, we do not examine experimental cases in which

the RF decorrelation mechanism is dominant.

Chirping and quasilinear (QL) regimes correspond to

two distinct limits of kinetic theory. Since they may be com-

peting mechanisms in the modification of the distribution of

fast ions in tokamaks (and their consequent transport), their

parameter-space regions of applicability need to be carefully

addressed. The derivation of the QL diffusion equations19,20

relies on averages, over a statistical ensemble, which smooth

out the distribution function. In order to justify the resulting

smooth, coarse-grained distribution, stochastic processes

(which can be intrinsic due to mode overlap or extrinsic due

to collisions) need to be invoked. The fast-varying response

associated with the ballistic term is disregarded, which

implies that entropy is no longer conserved. Consequently,

QL theory kills phase correlations and cannot capture chirp-

ing events, since chirping needs time coherence from one

bounce to the next in order to move nonlinear structures alto-

gether over phase space. QL diffusion theory needs phase

decorrelation, i.e., particles need to be expelled from a

phase-space resonant island at a time less than the nonlinear

bounce time. This means that there are no particles effec-

tively trapped. Due to the reduced dimensionality of phase

space, the QL description is less computationally demanding

than the full nonlinear description needed to capture chirp-

ing. It is also much less computationally expensive than par-

ticle codes. A criterion for chirping likelihood is an

important element for identification of parameter space for

QL theory applicability for practical cases and consequent

validation of reduced models. An example of such models is

the Resonance-Broadened Quasilinear (RBQ) code.21,22 It

uses the usual structure of the QL system written in action-

angle variables23 with a broadened resonance width that

scales with bounce frequency, growth rate, and collisional

frequency.24,25 In this work, we build predictive capabilities

regarding the likelihood of the nonlinear regime, which can

be useful for burning plasma scenarios. If further validated

and verified, the developed methodologies could be of practi-

cal importance for predictive tools of EP distribution relaxa-

tions in the presence of Alfv�enic instabilities.

This paper builds on ideas introduced in Ref. 26 and

presents new and detailed comparison of chirping likelihood

for modes measured in NSTX, DIII-D, and Tokamak Fusion

Test Reactor (TFTR). The detailed analysis was made possi-

ble by the numerical implementation of novel tools into the

framework (e.g., for the phase-space resonance averaging

procedure and for the mode structure experimental compari-

son), which are described here. The theoretical framework is

extended and properties of the governing equations for the

FIG. 1. (a) Spectrogram showing chirping associated with toroidal Alfv�en

eigenmodes (TAEs) for several toroidal mode numbers and (b) neutron rate

in NSTX shot 141711 correlating with the TAE avalanches. The small inset

shows a zoomed region with mostly down-chirping.
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chirping prediction are unveiled. In addition, an original

study of how the value of the particle resonant speed itself

affects the wave oscillatory nature is presented, which is

shown to be in agreement with observations on JT-60U. This

paper is organized as follows. In Sec. II, the proposed theo-

retical methodology is presented. In Sec. III, the numerical

procedure is presented along with analyses of experimental

results. Discussions are presented in Sec. IV, and the

Appendix is devoted to discussions on the chirping likeli-

hood in terms of the beam injection energy.

II. THEORETICAL FRAMEWORK

A. Formulation of fast ion interaction with
low-frequency Alfv�en waves

In axisymmetric tokamaks, E; Pu, and l (correspond-

ing to energy, canonical toroidal angular momentum, and

magnetic moment, respectively) are considered invariants

of the unperturbed motion for EPs interacting with modes

that have frequencies much lower than the cyclotron fre-

quency. Their expressions, all per unit mass of EPs, are

given in S.I. units by

Pu � vuR� qEPw=mEP;

E ¼ v2=2;

l ¼ v2
?=2B;

where mEP and qEP are the mass and charge of EPs, v is the

EP speed, R is the tokamak major radius, w is the poloidal

flux divided by 2p, B is the magnitude of the magnetic field,

and h and u are the poloidal and toroidal angles.

If the wave-particle interaction Hamiltonian is

assumed, like in the NOVA code,27 to have dependences on

time and poloidal and toroidal angles as eiðmh�nu�xtÞ, where

m and n are the wave numbers associated with them, it fol-

lows that upon particle interaction with a mode, the invari-

ances of E and Pu are broken but a new invariant arises:

E0 ¼ E þ ðx=nÞPu while l is kept nearly constant. The exis-

tence of two invariants implies that the resonant particle

dynamics is essentially one-dimensional.28 Therefore, a

new variable I ¼ �Pu=n (at constant E0) can be used to

describe this relevant one-dimensional path for EP dynam-

ics (for steepest distribution function f modification). The

projection of the gradient operator onto this path is then

given by

@

@I
� �n

@

@Pu

����
E0
¼ �n

@

@Pu
þ x

@

@E : (1)

The resonances for the several harmonics, which are multiple

surfaces in ðE;Pu; lÞ space, are defined by

Xj E;Pu; lð Þ ¼ xþ nhxu E;Pu; lð Þi
�jhxh E;Pu; lð Þi ¼ 0;

where j is an integer and xu and xh are the local toroidal

and poloidal transit frequencies, respectively. The phase-

space integration is represented as

ð
dC… ¼

ð
d3r

ð
d3v… ¼ 2pð Þ3

X
rk

ð
dPu

�
ð

dE=xh

ð
mEPdl=qEP…; (2)

where c is the light speed and rk accounts for counter- and

co-passing particles.

B. Collisional operator for fast ions

Collisional processes are an important element in the

determination of the nonlinear character of wave oscilla-

tions.6,28,29 Stochastic processes, such as pitch-angle scatter-

ing, act to destroy the coherent structures that support wave

chirping while drag, or slowing down, is formally equivalent

to chirping and enhances the convective transport of these

nonlinear structures. For EPs, the Fokker-Planck collisional

operator that enters the kinetic equation can be approxi-

mately written as a superposition of pitch-angle scattering

and drag as follows:30

C f½ � ¼ @

@v
� �? v2I� vvð Þ
� �

� @f

@v
þ 1

ss

@

@v
� v 1þ v3

c

v3

� �
f

� �
;

where f is the distribution function; �? and s�1
s are the 90�

pitch angle scattering rate and the inverse slowing down

time, which are given by

�? ¼
1

2
hZi

�Ai

Z½ �
1

AEP

vc

v

� �3 1

ss
; (3)

s�1
s ¼

Z2
EPe4m1=2

e nelnKe

3 2pð Þ3=2
�2

0mEPT
3=2
e

: (4)

The critical speed, above which electron drag dominates

over ion drag, is defined as

vc ¼
3
ffiffiffi
p
p

4

me

mp

Z½ �
�Ai

 !1=3 ffiffiffiffiffiffiffi
2Te

me

r
(5)

and

Z½ �
�Ai
¼
X

b

Z2
bnb

Abne

lnKb

lnKe
;

hZi ¼
X

b

Z2
bnb

ne

lnKb

lnKe
:

For a given ion species b, Ab ¼ mb=mp, with mp being the

proton mass, lnK is the Coulomb logarithm, Zi and ZEP are

the background and energetic ion atomic number, na is the

density, Ta is the temperature, ma is the mass, and vTa ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ta=ma

p
is the thermal speed for a given species a. The

three-dimensional velocity derivatives are projected onto the

aforementioned path of the steepest gradient of the distribu-

tion function so that
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@

@v
! @X
@Pu

����
E0

@Pu

@v

@

@X
:

Since
@Pu

@v
¼ Rû and vu � vk

Bu

B , it follows that the effective

collisional operator for fast ions resonating with a given

mode can be approximately cast in the form

C f½ � ¼ �3
scatt

@2f

@X2
þ �2

drag

@f

@X
;

where the effective scattering �scatt and drag �drag coeffi-

cients are

�3
scatt ’ 2�?R2 E �

B2
u

B2
E � lBð Þ

� �
@X
@Pu

����
E0

 !2

(6)

and

�2
drag ’

ffiffiffi
2
p

R

ss

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � lB

p Bu

B
1þ v3

c

v3

� �
@X
@Pu

����
E0
: (7)

In order to be properly evaluated, the above expressions

need to be averaged over the orbit bounce motion of a parti-

cle, as detailed in Sec. III C.

C. Inclusion of micro-turbulent stochasticity

Stochastic diffusion is determined by collisional scatter-

ing processes, such as pitch angle scattering, as well as addi-

tional processes, such as the effect of the background

turbulence that can be dominant in the determination of the

global heat outflow. Micro-turbulence is introduced using a

procedure that follows the one introduced in the pioneering

work by Lang and Fu,14 where it was considered that the main

contribution comes from electrostatic ion temperature gradient

(ITG) turbulence via radial diffusion rather than the velocity

diffusion. As with collisional scattering, the turbulent diffu-

sion operator is projected onto the relevant one-dimensional

path for particle dynamics, represented by the variable X. In

the limit of a large aspect ratio, circular cross-section torus, it

is possible to make use of the relation @
@r ¼ @X

@Pu
jE0

@Pu

@r
@
@X with

@Pu

@r � �
qEP

mEP

@w
@r , and the spatial micro-turbulence diffusion

operator along the radial coordinate r can be written as

1

r

@

@r
rDEP

@f

@r
� DEP

qEP

mEP

@w
@r

� �2
@X
@Pu

����
E0

 !2
@2f

@X2
; (8)

where DEP is the EP diffusivity. Therefore, the ratio between

the effective stochasticities coming from micro-turbulent

[Eq. (8)] and collisional processes [Eq. (6)] is

DEP
qEP

mEP

@w
@r

� �2

2�?R2 E �
B2

u

B2
E � lBð Þ

� � : (9)

A similar ratio was derived in Ref. 14, where a Lorentz oper-

ator was used for the pitch-angle scattering.

A subtlety in applying the model relies on the determina-

tion of DEP. It is expected to be lower than thermal ion diffu-

sivity Dth;i since the micro-turbulence wavelength is typically

smaller than the beam cyclotron orbit. Historically, the effect

of micro-turbulence on EP transport has been neglected based

on the fact that since EPs have large orbits, they should expe-

rience several phases of the turbulent fields in such a way as

to cancel out its overall effect. Although fast ion turbulent

transport is negligible compared to Alfv�enic-induced transport

(see, for example, studies on ASDEX-U31 and DIII-D32), tur-

bulence can be an important transport mechanism, as com-

pared to collisions, at the onset of the evolution of modes,

when their amplitude is still small. Over the past decade, the

modeling of DEP has been studied by several groups.33–41

Following Ref. 14, we have chosen to determine DEP from the

scalings that follow from gyrokinetic simulations of

Gyrokinetic Toroidal Code (GTC),38 in which DEP is propor-

tional to the thermal ion diffusivity, Di, and a function of

Ti=EEP, where EEP is the energy of the EPs. The GTC simula-

tions assumed a specific plasma background that can be con-

siderably different from a given discharge being analyzed.

Therefore, a significant error can be expected to be associated

with the inferred value of DEP. Alternative ways of obtaining

DEP could be achieved by using Refs. 33 and 34. In our analy-

sis, we infer the value of Di from the outputs of the global

transport code TRANSP30,42 at the position where the mode

structure is peaked at the time being analyzed. The particle

diffusivity is known to have a huge error associated with it

because TRANSP cannot resolve well particle sources, espe-

cially close to the wall. On the other hand, the thermal con-

ductivity v is reasonably well known and therefore is

frequently used43 as an indication of the actual value of D (the

exact relation for a Maxwellian distribution would be

D ¼ 2v=3).

D. The early nonlinear evolution of a mode amplitude

The onset of a mode amplitude evolution can be studied

using perturbation theory (assuming small deviations of par-

ticles from their unperturbed orbits) within the kinetic frame-

work considering that the system is close to marginal

stability. References 6, 28, 29, and 44 showed that, for xb 	
jcL � cdj (growth rate minus damping rate), truncation of

mode amplitude at third order is justifiable. Taking �stoch

(the overall stochasticity felt by EPs, which includes �scatt)

and �drag independent of time but dependent on phase space

localization, the equation for the early time perturbative

mode (a mode that exists without accounting for the kinetic

component) amplitude evolution can be written as a time-

delayed, integro-differential cubic equation

dAðtÞ
dt
� AðtÞ ¼ �ei/

X
j

ð
dCH

ðt=2

0

dss2A t� sð Þ

�
ðt�2s

0

ds1e��̂
3
stochs

2 2s=3þs1ð Þþi�̂ 2
drags sþs1ð Þ

� A t� s� s1ð ÞA
 t� 2s� s1ð Þ; (10)

where H ¼ 2pxdðXjÞjVn;jj4ð@Xj

@I Þ
3 @f
@X and
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Vl1;l2;l3 Ið Þ ¼ iqEP

x

ð
dn1dn2dn3

2pð Þ3
e�iðl1n1þl2n2þl3n3Þv � e

or

Vn;j Ið Þ ¼ iqEP

x

ð
dudh

2pð Þ2
e�iðjh�nuÞv � e (11)

accounts for the wave-particle energy exchange, where e is

the electric field eigenstructure and v is the velocity of a res-

onant particle. l1; l2; l3 are the integers and n1; n2; n3 are the

angles conjugated to the invariants of motion (actions of the

Hamiltonian). In Eq. (10), the circumflex denotes normaliza-

tion with respect to c ¼ cL � cd and t is the time normalized

with the same quantity. A is the normalized complex mode

amplitude of an eigenmode oscillating with frequency x.

The phase factor / is a measure of the non-perturbative

aspect of the linear problem. Here, we limit ourselves to the

case / ¼ 2ph; ; h 2 Z, which is the case where a positive

energy mode exists in the absence of the kinetic response of

EPs. Then, the kinetic response leads to a perturbative

response of the positive energy wave to the kinetic interac-

tion. Note that the case / ¼ pþ 2ph leads to a perturbative

response of a negative energy wave to the kinetic interaction,

while other values of / imply a non-perturbative response,

where there is no linear wave present in the absence of the

EPs. In other words, / represents the ratio between the dissi-

pative and the reactive responses of the perturbing field.

The solutions of Eq. (10) can exhibit several bifurca-

tions and therefore several phases, as shown for a bump-on-

tail configuration in Ref. 6. Interestingly, Eq. (10) allows for

the excitation of sub-critical instabilities and for nonlinear

frequency splitting.18 If the nonlinearity in Eq. (10) is weak,

the system will most likely saturate close to the linear stabil-

ity state, where the trapping frequency xb satisfies

xb 	 cL ’ cd. However, in case the solution of the cubic

equation explodes, the system enters a strong nonlinear

phase, which may lead to chirping modes. Indeed, long-

range numerical simulations indicate the explosive behavior

of A as the precursor to the formation of hole and clump

structures.45 Furthermore, chirping events are significantly

enhanced by the coherence introduced by dynamical friction

(i.e.,, particle drag)10,29 and are inhibited by stochasticity

from diffusive processes,15 such as resonant particle heating

and collisional pitch-angle scattering, and from background

turbulence, all of which contribute to causing particles to

detune from a resonance. Stochastic events lead to the loss

of phase information which contribute to destroy coherent

structures.

Equation (10) was originally derived for a bump-on-tail

system with Krook collisions6 and later generalized to com-

plex tokamak geometries and also to include collisional scat-

tering.28 Lilley et al.29 included the effects of drag on the

bump-on-tail cubic equation and derived a criterion to deter-

mine stable and unstable regions of solutions of the cubic

equation in drag vs scattering collisional parameter space.

Our work aims at improving this prediction by using realistic

resonant surfaces and mode structure information, coming

from the NOVA and NOVA-K codes. To this end, orbit and

phase space averages are employed in order to account for the

effective Fokker-Planck collisional coefficients. Experimental

data are analyzed in order to verify whether chirping events

coincide with the occurrence with the “explosive” phase of

the cubic equation, as predicted by the theory.

E. A criterion for chirping onset

It has been recently shown26 that a simplified bump-on-

tail approach that only accounts for a single representative

value for the collisional coefficients is insufficient to make

predictions for a mode nonlinear nature in tokamaks. The

missing physics were shown to be the absence of non-

uniform mode structures, (multiple) resonance surfaces, and

poloidal bounce averages that account for particle trajecto-

ries on a poloidal cross section.

A necessary but not sufficient condition for the existence

of fixed-frequency, steady-state solutions in the form

AðtÞ ¼ jA0jeibt, with A0 and b constants, is that the real com-

ponent of the right-hand side of Eq. (10) should be negative

at late times (t!1) when the response is stationary, i.e.,

when the nonlinear term is allowed to balance the linear

growth

Re


X
j

ð
dCH

ð1
0

dss2e�2�̂ 3
stochs

3=3þi�̂ 2
drags

2

�
ð1

0

ds1e ��̂
3
stochs

2þi�̂ 2
dragsð Þs1

�
> 0: (12)

Note that the dependence of the arguments of the exponen-

tials on b cancels out in all three terms of Eq. (10). Next, the

integration over s1 can be straighforwardly performed in Eq.

(12). Furthermore, the delta function dðXjðPu; E; lÞÞ, con-

tained in the expression for H, restricts the integration over

phase space [as defined by Eq. (2)], allowing the resonance

condition to be exploited to eliminate the integral over

energy space. Then, upon a re-normalization of the time vari-

able to z ¼ �̂drags, the following criterion for the existence of

fixed-frequency oscillations is obtained26

Crt ¼ 1

N

X
j;rk

ð
dPu

ð
dl
jVn;jj4

xh�4
drag

���� @Xj

@I

���� @f

@I
Int > 0; (13)

where

Int � Re

ð1
0

dz
z

�3
stoch

�3
drag

z� i

exp � 2

3

�3
stoch

�3
drag

z3 þ iz2

" #
(14)

and N is a normalization for Crt, which consists in the same

sums and integrations that appear in the numerator of (13)

but in the absence of Int. In Eqs. (13) and (14), the quantities

sb, �drag, �stoch, Vn;j, and Xj are understood to be evaluated at

E ¼ E0 � xPu=n. Crt involves a phase-space integral

restricted to the resonance surfaces. Although Crt does not

explicitly depend on the growth rate, it does depend on the

local phase-space gradient of the distribution function

through the term @f=@I. Because of the Crt dependence on
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Vn;j, the regions where the mode eigenstructure peaks con-

tribute most to Crt, more specifically, in regions where the

resonant particle current maximizes its projection onto the

eigenmode electric field. Criterion (13) was incorporated

into NOVA-K making use of a polynomial interpolation for

Int. Crt provides a prediction for the likelihood of a fully

nonlinear phenomenon obtained only from pure linear

physics elements and therefore can be tested in linear codes.

This is a considerable advantage in efficiency for making a

prediction of a nonlinear property. The integrand of Int is

plotted in Fig. (2) for different values of �stoch=�drag.

Drag introduces an oscillatory behavior of the integrand

of Int. This has an effect of flipping the sign of the integral

kernel of the cubic equation. This causes dA/dt to vary more

abruptly and therefore prevents a steady state solution from

being achieved. Therefore, nonlinear chirping solution is

more likely to be achieved in drag-dominated regimes. It is

interesting to note that formally, drag enters the kinetic equa-

tion in a mathematically similar way as a chirping frequency

does, with kv�drag replaced by dx=dt.
Int, which is a function of phase space, is plotted in Fig.

3 as a function of �stoch=�drag. The positive and negative

domains of Int are roughly an order of magnitude different in

the interval 0 � �stoch=�drag�2, while for �stoch=�drag � 1,

Int � 1:022ð�stoch=�dragÞ�4
.

For our investigation, we focus on the criterion for the

existence or non-existence of a fixed-frequency, steady solu-

tion. To determine the physical parameters needed in the cal-

culation described below, the global transport code

TRANSP30,42 is used. The code determines the needed parti-

cle diffusivity that matches the observed plasma parameters

to the particle and heat sources. We interpret this empirically

obtained result as due to both classical (which includes neo-

classical) transport and micro-turbulence. The resulting ther-

mal particle diffusivity is then used together with a model to

scale the EP diffusivity given the turbulent background dif-

fusivity, to estimate the diffusivity of EPs, which will then

contribute to the value of �stoch. Here, we perform a quantita-

tive study based on the time delayed cubic equation using

experimental results to determine whether the theoretically

predicted nonlinear character of the response correlates with

the observation.

III. NUMERICAL STUDY OF THE CHIRPING CRITERION
AND COMPARISON WITH EXPERIMENTS

A. Kinetic-MHD perturbative computations

NOVA27 is a nonvariational ideal MHD code primarily

used to integrate non-Hermitian integro-differential eigen-

mode equations in the presence of EPs, using a general flux

FIG. 2. Integrand of Int, given by Eq. (14) as a function of �stoch=�drag. It has

a strong oscillating behavior for small values of �stoch=�drag, which makes

evident the changing sign introduced by drag in the kernel of the cubic equa-

tion (10) (part a). In this regime, the sign of the integral flips recurrently and

prevents a steady solution from being established. For moderately higher

values of �stoch=�drag, the integrand is less oscillatory but the integral is still

negative (part b). After �stoch=�drag exceeds 1.04, the integral becomes posi-

tive. Part (c) was taken close to the peak positive value of the integral.

FIG. 3. Numerical values for the time integral of Eq. (14) as a function of

�stoch=�drag. This function is interpolated and provided as an input to

NOVA-K code, which performs the phase space integrals a posteriori.
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coordinate system. It uses realistic numerically calculated

MHD equilibria and hence it is suited to study both conven-

tional and spherical tokamaks. The code uses Fourier expan-

sion in h and cubic spline finite elements in the radial w
direction. NOVA provides the eigenstructures used in our

analysis.

NOVA-K46,47 takes into account finite Larmor radius

and orbit width effects to study the destabilization of MHD

modes from the EPs free energy. We use NOVA-K to calcu-

late the resonance surfaces, in ðPu; E; lÞ space, associated

with the modes. These surfaces are needed to calculate the

growth and damping rates of eigenmodes in the presence of

EPs as well as the integral Int. TRANSP is used to provide

the distribution function which contains the necessary infor-

mation on the most representative EP population as input for

NOVA-K runs.

The quadratic form of MHD is particularly useful when

stability analysis is addressed. If the mode frequency is

assumed to be xþ ic, with jcj 	 jxj, where x is the mode

eigenfrequency and c is its growth rate, we obtain27,46

c � ImdWk

2dK
x;

where dK ¼ x2
Ð

qjnj2dr=2 is the inertial (kinetic) energy,

dWk is the potential energy associated with the nonadiabatic

component of the distribution function, and xdWk is the

power released by the resonant particles. The growth rate

can be expressed as

c ¼ 2M2p3c

qEP

Ð
qjnj2dr

X
rk

ð
dPudldE

X
m;m0;j

G
m0jE2sb

� @f

@E

� �
1� x
=xð ÞGmjd xþ nhxui � jhxhi

� 

(15)

with the diamagnetic frequency being defined by

x
 ¼ �i

@f

@Pu

@f

@E

@

@u
:

Gmj represents mode structure matrix elements (as defined in

Sec. II D of Ref. 27), which are associated with the projec-

tion of the resonant particle current onto the wave electric

field. For each isolated resonance, the reduced Hamiltonian

can be written as28

H I; f; tð Þ ¼ H0ðIÞ þ H1 I; f; tð Þ;
H1 I; f; tð Þ ¼ 2AðtÞVn;jðIÞ cos f� xtð Þ

;

where f � l1n1 þ l2n2 þ l3n3 and the bounce frequency of

the most deeply trapped particles can be shown to be

xb ¼
����2AðtÞVn;jðIrÞ

@Xj

@I

����
I¼Ir

����
1=2

;

where the subscript r denotes the resonance location and the

derivative is defined by Eq. (1). The G matrices are related

to V [given by Eq. (11)] via

MEffiffiffi
2
p

� �2X
m;m0

G
m0jGmj ¼ jVn;jj2:

B. Mode structure identification

In order to characterize the mode being observed in the

experiment, NSTX and TFTR reflectometer measurements

are compared to the mode structures computed by NOVA.

Reflectometry diagnostic measures the density fluctuation

of the plasma at the location where the launched wave has a

cutoff. The fluid displacement times the local density gradi-

ent is equivalent to the density fluctuation. All poloidal har-

monics calculated by NOVA are summed up for this

analysis. Modes are categorized according to their mode

structure and whether their frequencies fall into a given gap

of the continuum. The reflectometer cannot resolve the den-

sity in the core for the cases of the flat density profile and

especially when the peak of the density is displaced from

the plasma center, as typically observed during the H-mode

regime. In DIII-D, Electron Cyclotron Emission is used for

the purpose of measuring the mode structure, following a

methodology described in Ref. 48. An interesting aspect of

the observation is that, in spite of the intrinsic nonlinear

nature of chirping events, the structure of the chirping

mode is not substantially changed during the time evolution

of the system, in accordance with what was previously

reported in Refs. 13, 49, and 50. This gives credence to the

use of a linear code for the eigenstructure identification at

early times.

C. Averaging implementations in NOVA-K

In order to calculate the above expressions for the effec-

tive collisional coefficients (6) and (7), NOVA-K is

employed to perform bounce averaged calculations since the

bounce motion is much faster than the perturbative mode

evolution. Then, a phase-space average needs to be per-

formed to account for the contribution of resonance surfaces

spread over phase space, as described below.

1. Bounce averaging

The period of a particle poloidal bounce or transit

motion is numerically calculated following the framework of

Ref. 27. The formulation captures both finite orbit width

(FOW) and finite Larmor radius (FLR) effects and accounts

for particle drifts due to curvature and rB terms. The aver-

aging procedure is taken via Bessel functions. For each set

ðE;Pu; lÞ, the trajectories are a priori known, and hence,

there is no additional need to explicitly follow the particle

motion within the code.

2. Phase space averaging

The average over phase space is taken along the surfaces

over which the resonance condition is satisfied, for different

poloidal bounce harmonics. The phase space volume ele-

ments are weighted in accord with their relative contribution

to the overall growth rate. Specifically, we evaluate
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…ð Þ ¼
Ð
ð…ÞQdCÐ

QdC
;

where Q ¼ 1
x

P
j hqEPe � vi2 @f

@I dðXjÞ is the contribution to the

growth rate, cL, from a given phase space location that satis-

fies XjðE;Pu; lÞ ¼ 0. In the present study, the phase-space

averages are taken over several harmonics of a given mode.

This averaging technique was previously used to predict the

TAE amplitude saturation in TFTR experiments.47

D. Study of the chirping prediction for eigenmodes

In order to show the importance of micro-turbulence as

a chirping suppression mechanism, an n¼ 4 TAE driven by

alpha particles in the Tokamak Fusion Test Reactor (TFTR)

shot 103101 was studied. This mode, which was observed to

oscillate at a constant frequency, was analyzed in terms of

the proposed criterion discussed above. Its frequency and

strength relative to the background field are presented in

Fig. 4. The corresponding mode structure obtained with the

NOVA code is shown in Fig. 5. Shown in Fig. 6 are scans

over the inferred experimental values of �stoch and �drag,

denoted by �
ðexpÞ
stoch and �

ðexpÞ
drag , for the situations (a) without the

inclusion of micro-turbulent stochasticity and (b) with its

inclusion.

A detailed visualization of how far the experiment is

from the expected boundary that separates the steady and

chirping regions, as predicted by the model, can be provided

by scanning the criterion integral for several values multiply-

ing the actual �drag and �stoch (as shown in Fig. 6). The verti-

cal axis represents the constants that are multiplying �stoch,

while the horizontal one represents constants that are multi-

plying �drag. The point ð�stoch=�
ðexpÞ
stoch ¼ 1; �drag=�

ðexpÞ
drag ¼ 1Þ

corresponds to the inferred experimental condition, and the

FIG. 4. (a) Spectrogram of fixed-frequency, alpha-particle-driven TAEs in

TFTR and (b) relative amplitude of the TAEs with respect to the equilibrium

field for toroidal mode numbers n ¼ 2� 5. Reprinted with the permission

from Fu et al., Phys. Plasmas 5, 4284 (1998).52 Copyright 1998 AIP

Publishing.

FIG. 5. Mode structure of the dominant poloidal harmonics of a n¼ 4 alpha-

particle-driven, core localized TAE in TFTR shot 103101 at t ¼ 2:92 s. nn is

the fluid displacement and wh is the poloidal flux normalized with its value

at the plasma edge.

FIG. 6. Plots showing contours of constant value of the criterion for chirping existence, Crt, for an n¼ 4 TAE in TFTR shot #103101 (a) before and (b) after

the inclusion of micro-turbulence stochasticity. Due to the enhancement of stochasticity, the point corresponding to the inferred experimental parameters

ð�stoch=�
ðexpÞ
stoch ¼ 1; �drag=�

ðexpÞ
drag ¼ 1Þ has crossed the boundary into the positive region (where no chirping should be allowed), which is consistent with the obser-

vation. Micro-turbulence has a strong effect on bringing the mode to the steady state region, thus suppressing the chirping. The contour plots are instructive in

order to analyze how far from the boundary (thick black line) the mode is and therefore how prone it is to have its nonlinear character changed.
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criterion boundary is represented by the 0.0 contour.

Contours of negative values represent regions in which

chirping is expected, while the positive ones represent

expected steady-state (fixed frequency). If experimental con-

ditions imply a positive Crt sufficiently far from this transi-

tion boundary, steady solutions should arise in experiment.

Each contour plot corresponds to a given value of Crt
[Eq. (13)], as labeled in the two plots in Fig. 6. In part (a),

where Crt is evaluated only in terms of collisional pitch-

angle scattering and drag, Crt is a negative number. Upon

the addition of micro-turbulent scattering, the re-evaluation

of Crt shows that the point (1, 1) indicating the experimental

conditions now operates where Crt> 0, which means that

the criterion predicts that the mode should not be able to

chirp, being in agreement with the observation. For this case,

the estimation for DEP based on the scaling of Ref. 38 led to

DEP � 0:1 m2=s, which is consistent with direct measure-

ments using beam blips in similar experiments carried out in

TFTR.51 Numerically calculated �
ðexpÞ
scatt and �

ðexpÞ
drag were

8568 s�1 and 3138 s�1, respectively. �
ðexpÞ
stoch was found to be

nearly 10 times larger than �
ðexpÞ
scatt for this particular mode.

The 90� pitch-angle scattering and the inverse slowing down

time were found to be �? ¼ 0:19 s�1 and s�1
s ¼ 4:55 s�1.

The NOVA-K code does not account for turbulence sto-

chasticity, and consequently, it evaluates the criterion via an

indirect method, using the following procedure. First, we

note that Crt only depends on the ratio of the overall stochas-

ticity and collisional drag. From Eqs. (3), (4), (6), and (7),

we see that the effective drag coefficient is proportional to

T�3=2
e while the effective collisional scattering is insensitive

to Te. It is then possible to mimic the inclusion of turbulence

into �stoch by artificially decreasing drag, which can be

achieved by multiplying Te by a corresponding numerical

factor that leads to the correct value of the averaged values

of �stoch=�drag.

A series of dedicated shots were performed on DIII-D

with the objective of triggering chirping and studying what

conditions most strongly determine a mode nonlinear evolu-

tion into the chirping regime. These shots used high ion tem-

perature at the core (10� 12 keV), qmin 
 2, and strong

toroidal rotation (up to 50 kHz on axis). A good example is

the chirping observed in shot 152828, shown in Figs. 7 and 8.

The frequency of the chirping mode was too low to be a

TAE. At first, NOVA was run in a mode that enabled only

the Alfv�enic branch to be captured and no reasonable mode

structure was found. Then, NOVA was run allowing both the

Alfv�enic and the sonic branches. A mode that matches

experimental evidence was obtained and identified to have

the characteristics of a beta-induced Alfv�en-acoustic eigen-

mode (BAAE)53 and is shown in Fig. 9. The mode was iden-

tified using the data available on mode localization from the

electron cyclotron emission (ECE), frequency, local rotation,

and toroidal mode number (n¼ 1 for the chirping mode). For

the comparison with ECE data for electron temperature

FIG. 7. (a) Time variation of the spectrum magnetic field dB/dt for DIII-D

shot 152828, (b) root mean square of dB/dt during and after the chirping,

and (c) spectrogram showing the chirping fundamental and second harmon-

ics that exist before strong neoclassical tearing mode (NTM) starts at around

t ¼ 992 ms.

FIG. 8. (a) Thermal ion conductivity and (b) spectrogram for DIII-D shot

#152828 as the mode undergoes transition from fixed-frequency to the chirp-

ing regime. The chirping onset is indicated by the bold black dashed line.

Chirping does not restart when vi drops for the second time, at t ¼ 1:05 s,

which is likely because strong NTM that are present at this time (as can be

seen from the parallel horizontal spectral lines that begin at around

t ¼ 992 ms, as shown in both Figs. 8 and 7) contribute to extinguish the

Alfv�enic drive. The spectrogram shows that the Alfv�en wave that transi-

tioned to chirping at 955 ms is not even present for t > 1000 ms.
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fluctuation, the fluid displacement n calculated by NOVA

was post-processed using the relation

dTe

Te
¼ � c� 1ð Þr � n�rTe

Te
� n;

where in this equation c ¼ 5=3 is the ratio between specific

heats.

The time-delayed cubic Eq. (10) is derived assuming

that the nonlinear bounce frequency xb is much less than the

net growth rate. This implies a limitation on the cubic equa-

tion, with its domain of validity being restricted to the early

nonlinear phase, when mode amplitude, represented by xb,

is still small compared to c. This framework therefore cannot

be used to model the full chirping events. From DIII-D

observations, we have noted that the chirping behavior typi-

cally starts when vi drops to values lower than 0:25 m2=s26

but chirping persists even when vi raises to values that would

not admit the onset of the chirping process, according to the

theory. The chirping cycle appears to involve some degree of

hysteresis since once the first chirp happens, there is a ten-

dency of the system to continue chirping. Thus, this observa-

tion appears to indicate that once the chirping structures are

already embedded in the system, continued new chirping can

still arise even though the apparent diffusivity has increased

to the point that chirping would not occur if phase space

structures were not already present. This hysteresis can be

noted in Fig. 8 as the chirping persists up to the point where

vi � 1:5 m2=s.

Chirping does not restart when vi drops for the second

time, at t ¼ 1:05 s. This is probably because of the effect of

strong neoclassical tearing modes (NTM) that are present at

this time (as can be seen from the parallel horizontal spectral

lines that begin at around t ¼ 992 ms in Fig. 8). The suppres-

sion then probably occurs because the NTMs are detuning

the EPs from the resonance and therefore contributes to

extinguishing the drive (Alfv�en waves are not observed in

Fig. 8 after t ¼ 1 s).

Figure 10(a) shows the experimental condition for the

mode in DIII-D shot 152828 shown in Fig. 9 before chirping

starts (at t ¼ 900 ms, when Dth;i � 0:9 m2=s) and Fig. 10(b)

shows it during chirping (at t ¼ 960 ms, when Dth;i

� 0:25 m2=s), when the point has transitioned from the posi-

tive to the negative region, in agreement with the generalized

criterion prediction. The criterion evaluated close to the

onset of chirping, at t ¼ 960 ms, used the mode structure cal-

culated at t ¼ 970 ms (Fig. 9) since trustworthy equilibria

and profiles could not be made exactly at the time of its

onset.

Similar framework of analysis was also applied to

NSTX shot 141711, whose spectrogram (Fig. 1) showed

chirping for several TAEs with different toroidal mode

FIG. 9. Electron temperature fluctuation reconstructed from NOVA for an

n¼ 1 BAAE mode structure (magenta curve) for DIII-D shot 152828 at t ¼
0:97 s and its comparison with electron cyclotron emission (ECE) measure-

ments (black points). The peak fluctuation at the high field side, at around

R ¼ 1:35 m, is mostly due to fluid compressibility while the peak at the low

field side, close to R ¼ 2:05 m, is mostly due to the fluid displacement itself,

projected onto the temperature gradient. The error bars for dTe were esti-

mated by taking a frequency bin near the mode frequency, where no coher-

ent mode exists.

FIG. 10. Plots showing contours of constant value of the criterion for chirp-

ing existence, Crt, for an n¼ 1 BAAE in DIII-D shot #152828 shown on the

spectrogram of Fig. 8. The point ð�stoch=�
ðexpÞ
stoch ¼ 1; �drag=�

ðexpÞ
drag ¼ 1Þ corre-

sponds to the inferred experimental situation. (a) Before chirping starts (at

t ¼ 900 ms, when Dth;i � 0:9 m2=s), the criterion integral Crt is positive and

(b) during chirping (at t ¼ 960 ms, when Dth;i � 0:25 m2=s), the criterion

integral is negative. The point crosses the steady/chirping boundary repre-

sented by the thick black line and has its nonlinear behavior changed.
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numbers. A number of chirping modes were studied, with

the evaluation of Crt for all of them leading to negative num-

bers. A representative example is a TAE that was catalogued

by comparing the mode structures calculated by NOVA with

the reflectometer measurements, as shown in Fig. 11. The

contour plot for Crt for this mode is presented in Fig. 12.

During the chirping time window in NSTX shot 141711, the

ion transport was dominated by neoclassical processes. It

was observed that micro-turbulence was not strong enough

to suppress the phase-space structures that sustain chirping

since the (1, 1) barely moves in Fig. 12 upon the addition of

turbulent stochasticity.

IV. SUMMARY AND DISCUSSIONS

We have performed a study of the early phase of chirp-

ing events in tokamak plasmas by means of realistic calcula-

tions of eigenstructures and collisional coefficients. The

proposed methodology has been described in fair detail. In

order to generalize the theoretical predictions from the previ-

ous bump-on-tail approach, we have employed an action-

angle formalism, with a similar perturbative procedure used

in Ref. 28. It leads to the generalized criterion for the likeli-

hood of chirping and fixed-frequency solutions. It should be

noted that it only allows a steady solution to exist but does

not guarantee that the system will necessarily evolve to such

a state. It may happen that the evolution to steady states is

only accessible when higher-order nonlinear terms are taken

into account, which are not captured by the lowest nonlinear

order perturbative approach used by the framework of the

time-delayed cubic equation [Eq. (10)].

An interesting effect unveiled by the methodology used

in this paper is that the disparity of magnitudes of the posi-

tive and negative regions of Int [Eq. (14)] typically leads to

the prediction that a given mode should chirp, even for

h�stoch=�dragi > 1, unless a strong diffusive mechanism

implies h�stoch=�dragi � 1. This additional mechanism is

observed to be often related to turbulent processes. The con-

tribution from regions of low l turns out to be quite impor-

tant since the magnitude of Int is larger for �stoch=�drag 	 1

(with �scatt being proportional to l). This shows the impor-

tance of using a weighted average of the transport coeffi-

cients and not only a single representative point.

The employed approach is applicable for the modes near

the stability threshold. We implement it perturbatively using

the mode structures computed by the ideal MHD code

NOVA. The perturbative approach is justified when the

growth rates evaluated for TAEs and RSAEs in NSTX, DIII-

D, and TFTR plasmas are typically much smaller than the

eigenfrequencies. The case of unstable BAAEs requires

more careful stability analysis that is beyond the scope of

this paper. Nevertheless observations of those modes in DIII-

D shown in Fig. 8(b) indicate that these modes are slowly

growing, suggesting that they are near the instability

threshold.

Background turbulence was introduced to the model

through the estimates of EP diffusivity, which adds to the

diffusivity associated with collisional scattering and contrib-

utes to the suppression of chirping. We have set up plausible

rules for determining the effective diffusivity and drag. The

main uncertainty in the diffusivity chosen for the EPs is the

value of the diffusivity contribution from the background

fluctuations. We have chosen to base this value to be in

accordance with what TRANSP predicts to be the diffusion

needed to produce the observed energy confinement time.

However, an additional uncertainty still remains in determin-

ing how this thermal diffusion coefficient would be related

to the effective diffusion coefficient for the large orbit EP.

We chose to use an empirical formula obtained in Ref. 38,

FIG. 11. Comparison between the mode structure (quantified by the ratio of

the perturbed density dn and the background density n) inferred by the

reflectometer (in black, with actual measurement locations shown by the

cyan diamonds) and the one calculated by NOVA code (in red) for an n¼ 3

TAE in NSTX shot 141711 at t ¼ 450 ms.

FIG. 12. Plots showing contours of constant value of the criterion for chirp-

ing existence, Crt, for an n¼ 3 TAE in NSTX shot #141711 at t ¼ 450 ms

shown in Figs. 1 and 11. The point ð�stoch=�
ðexpÞ
stoch ¼ 1; �drag=�

ðexpÞ
drag ¼ 1Þ corre-

sponds to the inferred experimental situation.
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based on electrostatic turbulence. However, the value chosen

is rough, and the actual scaling for a given experiment might

differ considerably from our choice.

A number of factors that may influence the chirping for-

mation are not captured by the current theory. For example,

static 3D fields54 have been shown to affect bursting Alfv�en

modes and reduce chirping. Besides that, effects such as

toroidal field ripples, energy diffusion, radio frequency heat-

ing fields,15,17 electromagnetic turbulence, and neoclassical

tearing modes can be important in some scenarios to prevent

chirping formation due to randomization of phase space,

with consequent resonance detuning. Other limitations are

that the cubic equation assumes small mode amplitude,

which is not necessarily the case in the experiment, and also

that no mode overlap has taken place.

Chirping events require self-trapped resonant particles

to remain locked with the excited chirping frequency for suc-

cessive wave-trapping bounce times. The maintenance of

this time-dependent resonance condition can induce signifi-

cant convective transport over an extended region of phase

space. The present work can be helpful in addressing the

likelihood of convective and diffusive transport of fast ions

and therefore be useful as a predictive tool for present-day

and next-generation devices.
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APPENDIX A: CHIRPING LIKELIHOOD IN TERMS OF
THE BEAM INJECTION SPEED

In planning and interpreting experiments, it can be mean-

ingful to understand the likelihood of observing wave chirping

in terms of the resonant particle speed. This is because the

injected NB ions can be either supra- or sub-Alfv�enic which,

for the case of TAEs, would lead to dominant resonances

located around vk ¼ vA and vk ¼ vA=3, respectively. In partic-

ular, a puzzling observation in JT-60U is that the abrupt large

events (ALEs) and their associated bursts and chirps usually

happen when the beam is injected supra-Alfv�enically, using

negative-ion-based neutral beams.55 The ALEs have been

intensively studied over the past decade.56–61 Here, we pro-

pose an explanation for the likelihood of these events in terms

of the framework adopted in this paper and we show that it

qualitatively agrees with JT-60U observations.

Let us analyze the case of a TAE for which the reso-

nance condition is X ¼ xTAE þ nvk=R� jvk=qR ¼ 0. For an

initial analysis, let us consider scenarios in which micro-

turbulence can be ignored in comparison with collisional

scattering. Then, the relevant ratio for the criterion, Eq. (13),

would be simply ð�scatt=�dragÞ3, with the effective scattering

given by Eq. (6)

�3
scatt ’ �?R2v2

?
jvk

xcqRr

dq

dr

� �2

;

where xc is the EP cyclotron frequency and dPu

’ �ðxc=qÞrdr. The effective drag is given by (7)

�2
drag ’

jv2
k

ssxcqr

dq

dr
1þ v3

c

v3

� �

with vc given by (5). Therefore

�3
scatt

�3
drag

¼ v2
0

v2

sin2hvB= cos hvB

1þ v3
c

v3

� �3=2
; (A1)

where

v2
0 �

1

2

�Ai

Z½ �
hZi
AEP

v3
c

jss

xcqr

dq

dr

� �1=2

and hvB is the angle between v and B. The ratio between the

chirping-criterion-relevant parameters ð�scatt=�dragÞ3 pre-

scribed by Eq. (A1) for the cases in which the main reso-

nance of a TAE is at vk ¼ vA and vk ¼ vA=3 is plotted in Fig.

13. The ratio ð�scatt=�dragÞ3vk¼vA
=ð�scatt=�dragÞ3vk¼vA=3 is 1/9 for

vc=vA � 0. If vc cos hvB=vA�0:5, it means that supra-

Alfv�enic injection implies more likelihood for chirping. It is

a direct implication of the chirping criterion [Eq. (13)] and

the form of Int (Fig. 3). Considering deuterium as the only

background ion species, ne � ni, lnKi � lnKe, and using

typical parameters for JT-60U, such as B ¼ 3T; ni

¼ 3� 1019m�3, and Te ¼ 3 keV, one obtains vc

vA
� 0:3. The

factor cos hvB contributes to reduce the variable vc cos hvB=vA

used in Fig. 13. Therefore, because of the resonant velocity

dependence, if all other parameters are held fixed, supra-

Alfv�enic injection implies more chances of observing wave

chirping for TAEs in JT-60U than in the sub-Alfv�enic situa-

tion, provided that the mode is the same in the two situations.

A similar conclusion would also hold for other conventional

tokamaks, such as DIII-D.

FIG. 13. Ratio between the chirping-criterion-relevant parameter

ð�scatt=�dragÞ3 for the cases in which the main resonance of a TAE is at vk ¼
vA and vk ¼ vA=3, as a function of vc cos hvB=vA.
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The previous conclusion was based on the fact that the

stochasticity coming from micro-turbulence is low compared

to the one coming from pitch-angle scattering. However, the

inclusion of micro-turbulence using the scalings found in

Ref. 38 does not change the conclusion that higher resonant

velocities imply more likelihood for chirping, provided that

vc=vA is sufficiently small. In fact, turbulence even contrib-

utes to strengthen this interpretation. This is because38 it is

found that the micro-turbulence diffusivity goes as v�2 for

passing particles and v�4 for trapped particles, which is, sim-

ilar to the effective pitch-angle scattering, an inverse velocity

dependence. Therefore, micro-turbulence contributes to fur-

ther reduce the ratio ð�scatt=�dragÞ3vk¼vA
=ð�scatt=�dragÞ3vk¼vA=3,

which makes chirping for supra-Alfv�enic injection even

more probable than in the purely collisional case.
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