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1. Introduction

Despite the significant progress in the modeling of energetic 
particle (EP) driven instabilities in tokamaks in recent years, 
we still lack the reliable quantitative and predictive capabili­
ties for fast ion confinement [1, 4]. When the dominant mech­
anism for fast ion transport is diffusive, a promising reduced 
approach is the quasi­linear (QL) modeling which offers the 
advantage of a simplified, and therefore less computationally 
demanding framework [5, 6]. If the mediator of EP transport 
is a collective instability such as the Alfvénic eigenmode 
(AE) instability, the eigenmode structure and resonances are 
assumed to be fixed in time. Thus the modes can be treated 

perturbatively while the distribution function is allowed to 
evolve. For this reason the standard QL approach does not 
capture the instability frequency chirping or avalanches which 
are common Alfvénic spectral response that consist of fully 
nonlinear oscillations. We should note that a criterion for the 
likelihood of wave chirping onset (alternatively, a criterion for 
the non­applicability of the QL approach) has been recently 
derived and validated [7, 8], which verifies the application of 
the QL approach for practical cases.

While the conventional QL theory [5, 6, 9] only applies to 
the situations with multiple modes overlapping (i.e. when the 
Chirikov criterion [10] of resonance overlapping is satisfied), 
a line broadened quasi­linear model [11, 12] was designed to 
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Abstract
The burning plasma performance is limited by the confinement of the super­alfvénic fusion 
products such as alpha particles and the auxiliary heating ions capable of exciting the 
Alfvénic eigenmodes (AEs) (Gorelenkov et al 2014 Nucl. Fusion 54 125001). In this work 
the effect of AEs on fast ions is formulated within the quasi­linear (QL) theory generalized 
for this problem recently (Duarte 2017 PhD Thesis University of São Paulo, Brazil). The 
generalization involves the resonance line broadened interaction of energetic particles (EP) 
with AEs supplemented by the diffusion coefficients depending on EP position in the velocity 
space. A new resonance broadened QL code (or RBQ1D) based on this formulation allowing 
for EP diffusion in radial direction is built and presented in details. In RBQ1D applications 
we reduce the wave particle interaction (WPI) dynamics to 1D case when the particle kinetic 
energy is nearly constant. The diffusion equation for EP distribution evolution is then solved 
simultaneously for all particles along the angular momentum direction.

We make initial applications of the RBQ1D to a DIII­D plasma with elevated q­profile 
where the beam ions show stiff transport properties (Collins et al (The DIII­D Team) 2016 
Phys. Rev. Lett. 116 095001). AE driven fast ion profile relaxation is studied for validations of 
the QL approach in realistic conditions of beam ion driven instabilities in DIII­D.
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address the particle interaction with both isolated and over­
lapping modes. This is done by using the same structure of 
QL equations for fast ion distribution function (DF) but with 
the diffusive delta function broadened along the relevant path 
of resonant particles to produce a resonance line broadened 
quasi­linear (RBQ) diffusion. This is a key element of the 
RBQ model that the parametric dependencies of the broad­
ened window reproduce the expected saturation levels for iso­
lated modes. 

The system of equations  we use in the RBQ code was 
initially implemented for the case of the bump­on­tail con­
figuration in Fitzpatrick’s thesis [14]. Ghantous [15, 16] 
benchmarked this model with the Vlasov code bump­on­tail 
(BOT) [17] discussing regimes of its applicability. We revisit 
the RBQ model and modify it to the realistic cases of Alfvénic 
instabilities excited by the super­Alfvénic energetic ions for 
the first time. We express the RBQ equations  in action and 
angle variables, and implement them within the NOVA/
NOVA­K framework for subsequent TRANSP code simula­
tions. Results are presented for a DIII­D discharge with the 
reversed shear safety factor profile and with elevated qmin 
values described recently [3, 18]. We show the predictive 
capability of the RBQ model and compare it with the results 
of the the kick model [19, 20].

This paper is organized as follows. The introduction is 
given in section  1. Then in section  2 we start the descrip­
tion of the RBQ formulation by prescribing the resonance 
line broadening in the Constants of Motion (COM) space to 
account for fast ion distribution function evolution near the 
resonances. Section  3 presents the RBQ system of differ­
ential equations written in flux and COM variables. Section 4 
describes the adopted Probability Density Function (PDF) 
interface with the whole device modeling (WDM) prototype 
code TRANSP [21]. Then section 5 presents the RBQ results 
for selected DIII­D discharge. Finally section 6 summarizes 
the study and outlines future RBQ development.

2. Generalized resonance broadening framework

We introduce the QL model by describing first the resonance 
line broadening [22] which we make use of when building the 
RBQ code.

2.1. Resonance broadening and its parametric  
dependencies

Consider the wave particle interaction (WPI) resonance 
line broadening in two­dimensional space to investigate the 
problem of EP transport in the presence of realistic Alfvén 
eigenmodes. Assuming an interaction Hamiltonian in the 
form e−inϕ−iωt, the diffusion of a particle is along the paths of 
constant values of the expression

ωPϕ + nE = nE ′ = const, (1)

where ω and n are the angular frequency and toroidal mode 
number of the instability. If the diffusion is approximately 

along Pϕ, i.e. at low mode frequency or high toroidal mode 
number, the whole problem can be reduced to the set of 1D 
(∆E � 0) equations  as discussed in Fitzpatrick’ s thesis 
[14]. The effect of several low­n modes on energetic particles 
cannot be determined without a code that captures the diffu­
sion in full E , Pϕ space. This is due to the complex particle 
dynamics in 2D space and possible resonance overlap [23].

The conventional collisionless QL diffusion set of equa­
tions in terms of action and angle variables can be expressed 
as [9]

∂

∂t
f (J; t) =

∂

∂J
·
[

D(J; t) · ∂f
∂J

]
, (2)

D(J; t) =
2π
M2

∑
k

C2
k (t)
ω2

k

∑
l

llδ (l · ωAI (J)− ωk)α
k
l (J) ,

 (3)

dC2
k(t)
dt

= 2 (γL,k + γd,k)C2
k(t), (4)

γL,k =
(2π)3

ωkMδKk

∫
dJ
∑

l

αk
l (J)

(
l · ∂f

∂J

)
πδ (l · ωAI (J)− ωk) ,

 (5)
with index k denoting the mode of interest and structure 
contrib utions (often called matrix elements) are given by

αk
l (J) ≡

∣∣∣∣
∫

dxek (x,ωk) · jl
k (x | J)

∣∣∣∣
2

,

where M is the resonant particle mass, J = (J1, J2, J3) is the 
vector of actions of EP unperturbed motion (they can be sub­
stituted by COMs in NOVA notations E , Pϕ,µ), f is the EP 
distribution function, D  is the EP diffusion coefficient matrix. 
ωk, Ck and ek are the eigenmode frequency, mode ampl­
itude and the electric field structure. ωAI ≡ (ωA1,ωA2,ωA3) 
is the canonical (action related) frequency vector containing 
the frequencies associated with the canonical angles and 
l = (l1, l2, l3) is the vector of integer triad, γL,k  is the linear 
growth rate of the mode, γd,k is the mode damping rate in the 
absence of the instability, δKk is the wave energy (i.e., the 
full energy stored in a combination of fluid and field oscil­
lations) normalized by C2

k  and jl
k (x | J) means the resonant 

particle current at radial point x and having an action J (both 
given in appendix A). The index k is a global identification 
of a mode while the index l is the set of indices that identi­
fies a resonance. The resonance condition is represented by 
ωk − l · ωAI (J) = 0. In this paper we restrict the RBQ model 
to use ωAI (J) = (〈ωϕ〉 , 〈ωθ〉 , 〈ωc〉), where the vector comp­
onents are the orbit­averaged toroidal, poloidal and cyclo­
tron frequencies, respectively. Also, for this case, we restrict 
l = (nk,−p, 0), where nk is the toroidal mode number of mode 
k, p is an integer associated to a resonance l and the integer 
associated with the cyclotron motion is taken as zero since 
a low­frequency Alfvén wave is not able to achieve a cyclo­
tron resonance. In the following we will use the resonance 
frequency notation:

Nucl. Fusion 58 (2018) 082016
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Ωl (J) ≡ l · ωAI (J) (6)

The QL theory assumes that the mode amplitudes remain 
small and therefore the theoretical coefficients are computed 
based on the unperturbed orbits. In conventional QL theory, 
particles are considered to be in resonance only if they exactly 
satisfy the wave resonance condition. This implies that reso­
nant particles can only diffuse over the resonant point, which 
is clearly an ill­posed problem. Nonlinear effects, however, 
naturally broaden the resonances. Dupree [22] realized that 
the turbulent spectrum contributes to diffuse particle orbits 
away from their original unperturbed trajectories. In the RBQ 
model the resonant island width is incorporated into the QL 
theory in such a way that it reproduces the expected satur­
ation levels for single modes from analytic theory [24]. The 
broadening itself introduces an additional nonlinearity into 
the problem. The resonance line is substituted by the broad­
ening function F  to replace the resonance delta function over 
the broadened width (see equation (8) and next section). The 
broadening function becomes a more realistic platform that 
allows the momentum and energy exchange between particles 
and waves [13].

In the RBQ model the window width is determined by the 
sum of three terms:

 1.  The net growth rate (γk ≡ γL,k + γd,k, where γL,k  and γd,k 
are the linear (positive) growth and (negative) damping 
rates) as expected for the wave treated by ordinary 
quasi­linear theory. As long as the imaginary part of 
the frequency is accounted for, the diffusion coefficient 
naturally contains the Lorentzian (Cauchy) distribution 
which has the property of having the characteristic 
height of 1/γk  and the full width equal to 2γk  at half 
maximum. The broadening based on γk  collapses to a 
delta function when γk → 0, i.e. when the mode reaches 
satur ation:

πδ [Ωl (J)− ωk] →
γk �=0

γk

(Ωl (J)− ωk)
2
+ γ2

k

.

 2.  The separatrix width expected for a wave treated by 
single mode theory. In the phase space, particles that 
exchange energy with the mode are trapped by the 
separatrix of width 4ωb,l [13]. Each particle satisfy a 
nonlinear pendulum equation with a given bounce trap­
ping frequency ωb,l (defined in equation 10) which leads 
to the phase mixing for a single wave.

 3.  The effective collisional frequency νscatt,l (as defined in 
[25, 26], see equation (9)) since collisions imply that 
particles are redistributed, being kicked in and out of the 
separatrix, which leads to particle decorrelating from the 
resonance. This increases the effective range of the reso­
nance region since more particles are allowed to interact 
with the mode via the resonant platform. The value of 
νscatt,l is sensitive to the choice of the mode numbers and 
frequency.

The resonances are given by (see equation (6)) the value of 
the resonance frequency:

Ωl (E , Pϕ,µ) = nk 〈ωϕ (E , Pϕ,µ)〉 − p 〈ωθ (E , Pϕ,µ)〉 = ωk,
 (7)

where p is an integer, ωϕ ≡ φ̇ and ωθ ≡ θ̇ are the toroidal 
and poloidal precession frequency contributions. Here the 
Ωl  specifies the integration path in NOVA­K formulation as 
described in [27] and in the appendix A. It has been found [14, 
15] that the broadening width is

�Ωl (E , Pϕ,µ) = aωb,l + b |γk| {= |γL,k + γd,k|}+ cνscatt,l,
 (8)
The numerical constants a, b and c follow from verification 
with analytic theory for the modal problem of single mode 
dynamics (see appendix B). The scattering and the bounce fre­
quencies can be expressed as follows [26]:

νscatt,l � ν⊥R2
〈

v2 − v2
‖

〉(
∂Ωl

∂Pϕ

∣∣∣∣
E ’

)2

, (9)

ν⊥ is the 90◦ pitch­angle scattering rate, 〈〉 is the drift orbit 
average, and

ωb,l =

∣∣∣∣∣2Ck(t)Vl(Ir)l ·
∂Ωl

∂J

∣∣∣∣
J=Jr

∣∣∣∣∣
1/2

, (10)

where the subscript r denotes the resonant location in the 
phase space. 

3. RBQ system of equations

For the single mode WPI case, the particle diffusion can be 
projected onto the most relevant 1D path for EP dynamics in 
the phase space which occurs for the constant values of the 
magnetic moment μ and E ′. Thus it is convenient to define 
the following differential operator that is essentially a gradient 
operator projected onto this path:

∂

∂I
≡ l · ∂

∂J
= ω

∂

∂E
− n

∂

∂Pϕ
= ω

∂

∂E

∣∣∣∣
P′
ϕ

= −n
∂

∂Pϕ

∣∣∣∣
E′

. 

(11)

Then, the 1D RBQ equations can be written as

∂f
∂t

=
∂

∂I


 ∑

nk ,p,m,m′

D(I; t)


 ∂f

∂I
+

(∣∣∣∣
∂Ωl

∂I

∣∣∣∣
Ir

)−2

ν3
scatt,l

∂2( f − f0)
∂I2

 (12)

where

D(I; t) = πC2
k (t) E2 Fl (I − Ir)∣∣∣∣

∂Ωl

∂I

∣∣∣∣
G∗

m′pGmp,
 (13)

and the matrices G are defined in appendix A.
The growth rate is given by (see appendix A)
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γL,k =
2M2π3c

zωk
∫
ρ |ξk|

2 dr

∑
σ‖

∫
dPϕdµdE

∑
m,m′,p

G∗
m′pE2τb

∂f
∂I

Gmp
Fl (I − Ir)∣∣∂Ωl

∂I

∣∣ ,

 (14)

where z is the EP electric charge ξ is the fluid displacement, 
and τb is the drift orbit period. The full system of RBQ equa­
tions is comprised by (4), (12), (14) and (8).

In equation  (14) the delta function integration used in 
NOVA­K (see equation (A.1)) is substituted with the broad­
ening window function Fl (I − Ir) . The region of inte­
gration, or broadening region, was introduced above at 
equation (8).

The derivatives ∂Ωl/∂I  are provided by NOVA­K. The 
broadening of the resonance can be performed by choosing 
Fl as the window function with the width ∆I  that satisfies ∫∞
−∞ FldI = 1. The function Fl can be arbitrarily chosen. It 

can, for example, be a flat top, a Gaussian shaped or perhaps 
even specified via the Dupree’s window shape [22], which 
for the BOT case can be transformed to 1D window function 
across the resonance

Fl,Dupree = Re
∫ ∞

0
dt exp

[
i (Ωl − ωk) t − D

(
∂Ωl

∂I

)2

t3/3

]
.

 (15)
For the results reported in this paper we are employing 

a simple flat­top window function. An attempt to simulate 
the realistic window function is undertaken with some pre­
liminary results recently reported [13]. An important question 
remains about the practical (theoretical and numerical) confir­
mation of such studies including the D and Fl dependencies 
and anomalous pitch angle scattering.

3.1. Discretized equations and boundary conditions

Although in principle one can arbitrarily discretize the system 
of equations to solve them numerically, there are some restric­
tions that are implied by physical considerations. In order 
to conserve the system momentum (i.e. particle plus wave 
momenta) at all times, the discretized equations must guar­
antee internal self­consistency by adopting the time flow 
presented in [2]. This flow is chosen in such a way that both 
particle diffusion and mode amplitude evolution are calcu­
lated using the same window function at each time step.

The linear system matrix can only be inverted (and there­
fore the system can only be solved) when boundary condi­
tions are added to the discretized system of equations. The 
code needs to account for a loss boundary in the E , Pϕ plane 
that is different for each µ = const slice. A Neumann­type 
condition specifies the values that the derivative of the dis­
tribution function takes at the boundaries of the domain. 
It imposes a constant flux Γ = −D∂f/∂Pϕ at the edge. 
Normally in the steady state this is associated with the reflec­
tive boundary conditions, when D∂f/∂Pϕ = 0. On the other 
hand, the Dirichlet­type boundary condition imposes a con­
straint on the value of the function itself, such as at the loss 
cone when its value is mediated by the diffusion when we 
set up f  =  0.

In our diffusion solver to relax the EP distribution func­
tion, we have the option to use either Neumann or Dirichlet 
boundary conditions. They are chosen based on the following 
physical arguments. At the loss boundary, f should be zero 
and Dirichlet is physically appropriate since it allows for 
particle loss. On the other hand for the inner regions of the 
plasma the resonant particles are allowed to accumulate and 
a Neumann condition describes the relevant physics (it is 
equivalent to a reflective condition, i.e. with zero net flux). 
Particle number over the plasma volume is automatically pre­
served if particles do not escape at the ends. However if par­
ticles reach the ends where they are unconfined the particle 
loss is quantifiable.

4. Probability density function interface with whole 
device modeling

We integrate the RBQ simulations in its present version into 
the transport code TRANSP which can be viewed as a proto­
type of the WDM code. It enables the time­dependent inte­
grated simulations of a tokamak discharge. The code can be 
used to interpret existing experiments as well as to develop 
new scenarios or make predictions for future devices (e.g. 
ITER). For NB­heated discharges the NUBEAM module 
within TRANSP models the evolution of the energetic particle 
population based on neoclassical physics [21, 28]. Coulomb 
collisions, slowing down and charge­exchange events are 
modeled based on a Monte Carlo approach. To account for 
resonant fast ion transport induced by Alfvénic and other 
MHD instabilities, NUBEAM has been updated to include the 
physics­based reduced model, known as kick model [19, 20].

For NUBEAM calculations the kick model prepares the 
transport probability matrix, p(∆E ,∆Pϕ|E , Pϕ,µ), for each 
instability or a set of instabilities to be included in simula­
tions. The matrix is defined in COM variables in both RBQ 
and NUBEAM codes. For each COM grid point (or bin) in 
the phase space, p(∆E ,∆Pϕ) represents the probability of E  
and Pϕ changes (kicks) experienced by the energetic ions as a 
result of their interaction with the instability.

In previous works [20, 29, 30] the transport probability 
matrices were computed numerically by the guiding center 
code ORBIT [31] using the mode structures from the NOVA 
code (details on how the matrix is computed for a given insta­
bility are found in the appendix of [20]). In this work the 
quasi­linear diffusion coefficient computed by the RBQ1D 
code is used instead to reconstruct the p(∆E ,∆Pϕ|E , Pϕ,µ) 
probabilities under the assumption of negligible energy varia­
tions induced by the wave­particle interactions.

Consider the trajectory of a resonant particle subject to 
constraints in the (E , Pϕ,µ) space [32, 33]. Equation  (1) 
implies that for a single mode the variations in E  and Pϕ are 
related through

∆Pϕ/∆E = n/ω. (16)

Based on this constraint and under the assumption of dif­
fusive transport (implied by the RBQ1D formulation), the bi­
variate PDF for ∆E  and ∆Pϕ changes can be represented as:

Nucl. Fusion 58 (2018) 082016
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p (∆E ,∆Pϕ|E , Pϕ,µ, |Ckek|) = p0e
−
[
(∆E−∆E0)

2

σ2
E

+
(∆Pϕ−∆Pϕ0)

2

σ2
Pϕ

−2ρ
(∆E−∆E0)(∆Pϕ−∆Pϕ0)

σE σPϕ

]
/2(1−ρ)

,
 

(17)

with the normalization factor

p0 =
1

2πσE σPϕ

√
1 − ρ2

. (18)

The correlation parameter ρ =
〈(∆E−∆E0)(∆Pϕ−∆Pϕ0)〉

σE σPϕ
 

accounts for the coupling between ∆E  and ∆Pϕ (expressed 
in equations (1) and (16)) which is defined for each mode by 
its frequency and toroidal mode number. The angular brackets 
indicate an average over the distribution function over the spe­
cific (E , Pϕ,µ) bin. Note that the offset (or convective) terms 
∆E0 and ∆Pϕ0 are vanishing for the cases when there is no 
systematic drift in energy or Pϕ. The variances σE  and σPϕ are 
related to the diffusion coefficients in energy and canonical 
angular momentum, DE  and DPϕ, and give the spread of the 
distribution along the ∆E  and ∆Pϕ axes:

σ2
E = 4DE δt; σ2

Pϕ
= 4DPϕ

δt (19)

which allows the computation of the transport probability 
matrix over the time step δt associated with resonant particles 
for known quasi­linear diffusivities from the RBQ1D model.

We note that in our applications the size of COM bins for 
NUBEAM is much larger than the grid size used in RBQ 
(and in NOVA­K) code, which was 200 points in Pϕ by 150 
points in λ and by 40 points in v directions respectively. We 
used the definition λ = µB0E  where B0 is the magnetic field 
strength on the axis. Several grid points are combined into 
one bin for PDF of NUBEAM computations. The variances 
σE  and σPϕ and the correlation parameter ρ are computed 
for each bin.

In general, the probability matrix from equations (17)–(19) 
corresponds to the WPI contribution to the total transport 
probability. Another term accounts for the fact that not all 
particles in a specific (E , Pϕ,µ) bin are necessarily resonant 
with a given instability. In fact, there can be large portions of 
phase space where no resonances are present. In general, for 
each discrete (E , Pϕ,µ) bin there is a fraction kres of resonant 
particles and a fraction knon-res of unperturbed, non­resonant 
particles that are not affected by the instability. To compute 
those fractions one can infer the volume Vres occupied by reso­
nant ions within the (E , Pϕ,µ) bin and compute the ratio with 
respect to the total bin volume Vtot:

kres (E , Pϕ,µ) =
Vres (E , Pϕ,µ)
Vtot (E , Pϕ,µ)

; knon-res (E , Pϕ,µ)

= 1 − Vres (E , Pϕ,µ)
Vtot(E , Pϕ,µ)

 

(20)

The values of kres and knon-res depend on the resonant ion posi­
tion in COM space and the sizes of used bins. In the case 

presented in the next section (figure 3(b)) they change from 
kres = 0, knon-res = 1 in the upper right corner of the figure (b), 
where no resonances are present, to kres � 1, knon-res � 0 near 
the midpoint in Pϕ direction and low particle energies which 
are heavily populated by the resonances. In that figure  the 
broadening across the resonance is proportional to the reso­
nant ion volume Vres.

Once these two fractions are known for each bin the total 
probability is

p (∆E ,∆Pϕ) = knon-resδ (I− Ibin)

+ krespres (∆E ,∆Pϕ|E , Pϕ,µ)
 

(21)

with δ(I− Ibin) being the delta function for a given bin, Ibin 
being the COM location of the center of the bin and pres is 
defined in equation (17).

We have outlined above the computations of PDF matrices 
for fast ion diffusion in COM space for subsequent NUBEAM 
calculations. The formulation is presented in a general form 
implying the QL diffusion in both EP energy and canonical 
momentum directions. The results are obtained using the 1D 
version of the RBQ code and are described next.

5. Applications to critical gradient DIII-D 
experiments

We are choosing recent DIII­D experimental studies for RBQ 
application with the goal of performing initial validations. In 
those experiments several ubiquitous EP transport responses 
were recognized: (i) EP transport suddenly changes at bifurca­
tion; (ii) the transport is intermittent in time; (iii) EP profiles 
are resilient to the changes in neutral beam injection (NBI) 
[3]. The AE power spectrum increases linearly with the total 
driving beam power above EP threshold level. One represen­
tative discharge is chosen, #159243, with 6.4 MW of tangen­
tial beam power for our analysis. The NBI application was 
modulated by a small amount, on average by 10% of its total 
power with 50% duty cycle. The NBI injection energy was  
70 keV. One time slice is studied extensively, t  =  805 ms, 
when the reversed shear magnetic safety factor profile min­
imum value turns lower than qmin = 3. Its spectrogram is 
depicted in figure (1).

An interesting feature of the data was revealed later when the 
velocity space resolution allowed the demonstration of a rather 
unexpected hollow profile of EP distribution function. The data 
was collected in part by the Fast Ion Dα (FIDA) diag nostics 
with some velocity space resolution. A similar feature was 
found using the interpretive kick model where the integration of 
the EP distribution function was implemented along the same 
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FIDA ‘view’ window COM path. An application of the critical 
gradient model [34] to the same case did not find any hollow EP 
profile behavior but rather monotonic radial EP profiles.

5.1. Perturbative NOVA simulations for RBQ

Since RBQ is essentially perturbative and works as a postpro­
cessor for NOVA/NOVA­K runs, its analysis is initiated by 
identifying the mode structures of AE instabilities responsible 
for EP transport. Extensive efforts were already undertaken 
with the kick model applications recently [18]. We make use 
of these RSAE/TAE results.

To show the details of RBQ analysis we take one of 11 
experimentally measured modes, a n  =  4 RSAE from [18] 
The mode is localized near qmin � 3 at t  =  805 ms surface and 
has one dominant m  =  12 poloidal harmonic which is shown 
in figure 2. Most of the measured modes are localized near 

qmin surface. Even though the modes are narrow in radius, fast 
ions from near the center can reach and interact with the AE 
modes very efficiently. In addition to the mode we show, there 
were several global TAEs with the spacial structure reaching 
the plasma edge.

The ideal MHD NOVA mode structures are used by the 
NOVA­K code [27] to evaluate the wave particle interaction 
(WPI) matrices for further processing by the RBQ code as 
described in section  2 and the appendix A. For the RSAE 
shown in figure 2, NOVA­K computes the normalized growth 
rate γL/ω = 3.2% and the total damping rate γd/ω = −1.8%. 
The value of the damping rate is computed by the NOVA­K 
code. For relatively low toroidal mode number, n, it includes 
accurately dominant damping rate mechanisms: thermal ion 
and electron Landau dampings, trapped electron collisional 
damping which were benchmarked within the ITPA group 
recent activity [35]. Computed growth and damping rates for 
the modes of interest are typically consistent with observa­
tions and indicate that the AE instability is above or near the 
instability threshold.

The application of the NOVA­K code to DIII­D plasma of 
interest confirms the near threshold instability conditions of the 
observed RSAEs and TAEs. We rely on the RBQ for mulation 
in that regime, i.e. the code computes the EP phase space 
diffusion coefficients (for the subsequent use of TRANSP) 
assuming that all the observed AEs are in the saturated states. 
These saturated states are either interpreted or predicted as far 
as AE amplitude is concerned. The corresponding broadening 
coefficients a, b, c of equation (8) are taken from [15].

As a result the broadening of the resonance line is com­
puted at each resonance point within the RBQ code as illus­
trated in figure 3. Figure 3 (a) shows 7 resonance lines at one 
value of λ = 0.4 corresponding to co­passing. Figure  3 (b) 
shows the broadening of those resonances due to the first and 
the last terms in equation (8).

(a) (b)

Figure 1. A CO2 interferometer power spectra for DIII­D shot #159243 during the current ramp with 6.5 MW NBI. The spectrum on 
figure (a) shows multiple sweeping frequency Reversed Share AEs (RSAE) and steady Toroidicity­induced AE (TAE) modes. Figure  
(b) compares classical TRANSP predictions for beam ion profile. The graph shows the error bar uncertainty associated with the background 
subtraction. The two sets of data represent two different light calibrations. The dotted vertical line indicates the location of the magnetic 
axis. Reproduced from [18], with the permission of AIP Publishing.

Figure 2. A plot of the q­profile of the plasma and spatial structure 
of poloidal harmonics for the radial displacement n  =  4, f  =  84 kHz 
RSAE computed by the ideal MHD code NOVA at 805 ms. The 
mode structure is computed for the plasma equilibrium with the 
shown safety factor profile. ψθ/ψ0 is the poloidal flux normalized 
to its value at the wall.

Nucl. Fusion 58 (2018) 082016



N.N. Gorelenkov et al

7

The methodology to compute the broadening goes back 
to earlier publications on NOVA­K [26, 27]. The resonant 
frequency of the fast ion is computed by summing all the 
contrib utions from the ion precession frequencies as seen 
from equation  (6) (see also equation  (3) of [26]). The com­
puted dependencies of Ωl = ωk  for n  =  4 mode in the COM 
space are shown in 3 (a). Each resonant particle due to several 
factors mentioned above experiences drift precession near the 
resonance point. The precession accounts for the broadening 
in Pϕ direction according to equation (8).

The values of the frequencies in that equation, ωb,l and 
νscatt,l, are computed by NOVA­K code perturbatively for each 
resonance point and transferred to RBQ as a set of matrices. 
Once they are known (as well as the resonance frequencies 
Ωl  and ∂Ωl/∂Pϕ) the code finds the broadening of each reso­
nance in Pϕ direction: ∆Pϕ = ∆Ωl/ (∂Ωl/∂Pϕ).

The relaxation of EP distribution function (DF) can be 
computed within the RBQ simulations accurately. However in 
the present form the RBQ1D code computes the WPI induced 
diffusion into the TRANSP code through the probability den­
sity function (PDF) introduced above (see section 4 and also 
[36]). At the moment we will limit the initial RBQ1D applica­
tion to such interface with TRANSP.

It has been shown that the kick model captures the EP diffu­
sion in the velocity space which is substantially different from 
the diffusion ‘ad hoc’ model used normally in TRANSP and is 
a significant factor affecting the EP distribution function [29]. 
We employ the AE driven PDFs computed by RBQ within 
TRANSP and show the obtained results in the next figure 4. 
The results are for the single RSAE shown in figure 2.

Comparing three cases in the figure 4 tells us that the effect 
of AEs is similar on the beam ions if modeled by RBQ1D or 
by the kick models. Insert (a) tells us that most of the losses 
are at the low energies, Eb  =  10–30 keV. This is consistent 
with the figure 3(b) which shows that this is where the reso­
nances are most overlapped which results in stronger radial 
transport.

RBQ has been implemented in a way which allows either 
interpretive or predictive analysis. Let us consider them both.

5.2. Interpretive RBQ implementation for TRANSP code

The present mode of RBQ operation relies on AE ampl­
itude values inferred from the experimental measurements. 
As we mentioned above, the kick model has been successful 
describing DIII­D FIDA experiments by computing EP dif­
fusion specific to particle position in the COM space [18]. It 
reproduced the hollow EP pressure profiles as a result. We use 
the same amplitude values for RBQ1D analysis.

Details of TRANSP computations using PDFs are already 
published [20, 29, 30], so that here we present the results 
using those techniques. We add the RBQ prescribed PDFs and 
summarize this exercise in figure 5. The NBI power modula­
tion is reflected in the neutron flux time evolution shown in 
figure 5(a) (and figure 6(a)).

One can see that both models work well by computing 
beam ion hollow density profiles. We should add however that 
in the interpretive mode RBQ1D and kick models had addi­
tional constraint due to the neutron flux.

Additional studies were done which show the origin of the 
inverse profile behavior. We have found that the origin of the 
reversed profiles is due to the diffusion of co­passing beam 
ions subject to strong diffusion. They are dominating the EP 
population near the center and are preferentially transported in 
radial direction outward.

5.3. Predictive RBQ implementation for TRANSP code

In the predictive RBQ analysis we repeated computations 
from the previous section 5.2 by using the same set of AEs. 
However we compute AE amplitudes in a different manner 
by finding their values when the particular mode reaches the 
saturation, i.e. when the growth rate balances the damping 
rate, γL,k = −γd,k.

In terms of the presented RBQ formulation in this paper 
this predictive case means the following. When we apply each 
mode separately within RBQ we adjust the amplitude of that 
mode in such a way that the mode amplitude is in the satur­
ated state, i.e. the RHS of equation  (4) is zero. That means 

(a) (b)

Figure 3. Resonance lines of passing EPs interacting with the RSAE mode (the mode structure is shown in figure 2) in the COM plane: 
normalized kinetic energy verusu canonical toroidal momentum. Shown in figure (a) are seven dominant resonances at λ = 0.4. Figure  
(b) represents the broadening of the resonance lines in the direction of Pϕ computed at the mode amplitude δBθ/B = 1.7 × 10−3.  
ψ0 is the poloidal flux at the wall divided by 2π and v0 is the NBI ion speed at the injection.

Nucl. Fusion 58 (2018) 082016



N.N. Gorelenkov et al

8

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

pi
tc

h

0.00

1.66

3.32

4.98

6.64

8.30

9.96

f n
b 

 [a
.u

.]

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

classical

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

pi
tc

h

0.00

1.66

3.32

4.98

6.64

8.30

9.96

f n
b 

 [a
.u

.]

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

kick model

0 20 40 60 80 100
E [keV]

-1.0

-0.5

0.0

0.5

1.0

pi
tc

h

0.00

1.66

3.32

4.98

6.64

8.30

9.96

f n
b 

 [a
.u

.]

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

RBQ1D

0 20 40 60 80 100
E [keV]

0

50

100

150

200

250

300

F
nb

 [a
.u

.]

classical
kick model
RBQ1D

(a)

(b)

(c)

(d)

Figure 4. TRANSP simulated EP distribution function in the velocity space for the time of interest, t  =  805 ms using the diffusion 
computed by RBQ1D and the kick model as indicated. Shown are DF averaged between the normalized poloidal flux 

√
ψ/ψw = 0.4 and 

0.6 values, where ψw  is the poloidal magnetic field flux at the wall. Figure (a) shows the pitch angle averaged DF velocity dependence. 
Figures (b)–(d) correspond to the classical, kick model and RBQ1D simulations of the EP diffusion.

Figure 5. The left figure compares the neutron rate computed by TRANSP using various assumptions about EP diffusivities. Top (black, 
classical) dependence is obtained ignoring EP diffusion where the NBI was modulated by a small amount, on average 10% of its total 
power. Kick model fast beam ion density profiles are blue curves whereas RBQ1D profile and time dependencies are shown in red.
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that the fast ion distribution function is relaxed to the state 
when the growth rate, equation (14), decreases to the level of 
the damping rate. The initial growth rate for each considered 
AE is computed by the NOVA­K code (see equation  (A.1)) 
using the TRANSP computed EP distribution function when 
there is no EP diffusion due to the Alfvénic modes. Whereas 
the relaxed DF of the saturated state of the system defines the 
relaxed, saturated growth rate determined by equation (14).

This way we are not addressing the intermittency in AE 
transport seen in experiments (see figure 1), nor do we address 
the long time scale changes in AE stability as the RSAEs, for 
example, are sweeping its frequency on a hundred millisecond 
time scale.

The application of the predictive RBQ simulations within 
TRANSP are summarized in figures 6. After TRANSP turns 
the AE diffusion on at t  =  600 ms the diffusion coefficients are 
kept constant throughout simulations. Figure 6 shows that the 
neutron deficit inferred by TRANSP­based analysis, would 
be replicated by RBQ for an AE amplitude that is 0.85 times 
its predicted value. The beam density profiles remains hollow 
within the amplitude variations.

6. Summary and future plans

This paper demonstrated the effectiveness of the quasi­linear 
model in its applications for realistic simulations of the 
beam ion self­induced relaxation via the Alfvénic instabili­
ties. We have summarized the formulation for the Resonance 
Broadened QL (RBQ) numerical model with the EP diffusion 
near the resonances. The formulation can be applied for iso­
lated or for the overlapping modes.

The RBQ1D has been applied in the interpretive and in the 
predictive modes to DIII­D critical gradient experiments via 
prescription of the PDF for beam ions. Initial results show that 
the model is sound and ready to be applied to predict the fast 
ion relaxation in burning plasmas. However more validations 
are required in order to gain the confidence in its predictive 
capability.

Among the immediate plans we have the development of 
the RBQ in its 2D version where the EP diffusion paths are 

sensitive to AE toroidal mode number and its frequency. The 
number of refined grid points of energetic particle diffusion 
and the need to resolve the resonances make the 2D problem 
intrinsically complex and computationally demanding.
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Appendix A. Linear growth rate as a result of 
the nonadiabatic component of the distribution 
function

NOVA [27, 37] is a nonvariational, ideal MHD code primarily 
used to integrate non­Hermitian eigenmode equations  in the 
presence of EPs, using a general flux coordinate system. 
NOVA­K [38] is a stability code used to study the destabi­
lization of AEs by EPs free energy stored in the gradients of 
the distribution. The resonance response of energetic particles 
enter the system through the perturbed pressure associated 
with them. NOVA makes no use of inverse aspect ratio approx­
imation and hence is well suited to study spherical tokamaks. 
The code uses Fourier expansion in θ and cubic spline finite 
elements in the radial ψ direction. Following the procedure 
of Cheng [38] we may start with the MHD formalism where 
the fast particle contribution is treated perturbatively, with all 
perturbed quantities represented in the form

Figure 6. The same as in figure 5 but computed within the predictive TRANSP analysis. Different EP profile and evolution curves are color 
coded as indicated on the figure.
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Ak (r, t) =
∑

m

Amei(Sm−ωkt); Sm ≡ mθ − nkϕ.

We shall start with the momentum conservation equation. 
This equation can be put in a quadratic form if dot multiplied 
by ξ∗k and integrated over the whole plasma volume. If equa­
tions (3.15) of [27] are used we get

Dk(ω) = δWf ,k + δWh,k − δKk = 0

where the inertial (kinetic) energy is given by 
δKk = ω2

k

∫
ρ |ξk|

2 dr. δWf ,k  is the total fluid potential energy 
and δWh,k is the EPs potential energy4. ωkδWh,k is the power 
being released by the resonant particles. The quadratic form 
is particularly useful when stability analysis is addressed. 
For example, if the mode frequency is assumed to be 
ω = ωk + iγL,k, with |γL,k| � |ωk|, it is obtained [38]

γL,k ≈
�δWh,k

2δKk
ωk.

In the last equation, it was used that the inertial energy, δKk, 
is close to the fluid eigenmode potential energy, δWf ,k . This is 
because Alfvén waves involve negligible electric field pertur­
bations. Their energy is nearly equally divided between the 
perturbed magnetic energy and the kinetic energy of particles 
oscillating as a result of the perturbation. �  and � denote the 
real and imaginary parts, respectively. δKk = ω2

k

∫
ρ |ξk|

2 dr 
accounts for all poloidal harmonics and is simply a number, 
being a global factor for each toroidal mode number nk. Since 
ρ is the total plasma density, it is very little affected by the 
fast ions density. This number is also provided by NOVA­K. 
For AEs, the growth rate is not simple as in the case of an 
idealized bump­on­tail configuration, being an integral over 
the resonant curve in phase space and depending on the mode 
structure. In order to compute �δWh,k, and consequently γL,k , 
the non­adiabatic part of the distribution function, g, must be 
calculated. This function can be redefined as ĝ to satisfy

dĝ
dt

=
z
M

∂f
∂E

(ωk − ω∗,k) X̂

where ω∗,k = nk (∂f/∂Pϕ) / (∂f/∂E) is the diamagnetic fre­
quency, being a measure of the relation of the radial gradient 
in the energetic in EP profiles to the velocity gradient. Since 
dPϕ = − qr

ωc
dr  and the EP density decreases with radius, we 

have ∂f
∂Pϕ

> 0. On the other hand, the average energy of EPs 
also decreases with radius, which implies ∂f

∂E < 0. Therefore, 
in a tokamak, the free energy stored in the radial gradient 
drives the mode while the negative gradient in energy tends 
to stabilize the mode. The mode is unstable when ω∗,k > ωk  
given by

X̂ =

(
drc

dt
− v‖b̂

)
· J0∇φc +

iµωkM
z

df
dµ

(J0 + J2)B‖c

where z is the EP charge and the subscript c mean that the quanti ty 
is evaluated at the particle gyrocenter. The Bessel functions 
are understood to have the argument v⊥∇⊥/ωc, which oper­
ates on the perturbed quantities. v⊥∇⊥/ωc ∼ v⊥k⊥/ωc � 1 
which justifies the Taylor expansion of the Bessel functions, 

Jα (v⊥∇⊥/ωc) →
∑∞

j=0
(−1) j

j!Γ( j+α+1) (v⊥∇⊥/ωc)
2j+α. If E⊥,k =  

– ∇φk(A⊥,k contribution neglected) we can write

X̂ � iωkM
z

[
(2E − 3µB) J0κ · ξ⊥,k − µBJ0∇ · ξ⊥,k

]

where κ stands for the curvature. The solution of the drift 
kinetic equation can be written as

ĝ =
z
M

t∫
∂f
∂E

(ωk − ω∗, k) X̂dt′

where the time integration is along the particle trajectory. 
Assuming Sm(t  =  0)  =  0, one can write in terms of the fol­
lowing Fourier series

X̂ =
∑
m,p

e−iωkt+iωDmtXmpeipωθ t

Xmp =
1
τb

∮
dt′X̂ei

∫ t′ (ωDm−ωDm−pωθ)dt′′

�δWh,k can then be calculated from

δWh,k = −
∫ ∫

ĝv · (v · ∇) ξ∗k drcdv = − iz
ωk

∫ ∫
X̂∗ĝdrcdv.

The phase­space integration is given by
∫

dΓ... =
∫

dJ
∫

dΘ... = (2π)3 ∫ d3J
∑

p
...

=
∫

drc
∫

dv... = (2π)2 ∑
σ‖

B
ωc

∫
dPϕ

∫
dµ

∫
dE

∫
dt...,

with dt being associated to the fast particle orbital 
motion. The integrals over ϕ and θg will contribute with 
2π each. Note that in NOVA, Pϕ, E  and μ are defined 
without the mass. If they had usual units, we would have 
∫

drc
∫

dv... = (2π) 2
( c

zM2

)∑
σ‖

∫
dPϕ

∫
dE

∫
dµ

∫
dt... . We 

can write

ĝ =
iz
M

∑
m,p

e−iωkt+iωDmt+ipωθ t

ωk − ωDm − pωθ

∂f
∂E

(ωk − ω∗,k)Xml.

Therefore

δWh,k =− (2πM)
2 cωk

z

∑
σ‖

∫
dPϕdµdEdt

∑
m,m′,p,p′

G∗
m′p

E2
(

∂f
∂E

)
(1 − ω∗,k/ω,k)

ωk − ωDm − pωθ
Gmpe−it(ωDm′−ωDm+(p′−p)ωθ)

where the ‘drift’ frequency is ωDm ≡ dSm
dt  and ωDm means orbit 

averaged drift frequency, The matrix elements are defined as 
Gml = −i zXml

ωkME . The Plemelj formula could be used to develop 
the denominator. So, the imaginary part of δWh,k becomes

4 In NOVA­K, both potential and kinetic energies are defined as twice their 
actual values. This can be seen from comparing equations (3.69) and (3.70) 
of [38] with equations (4.19) and (4.31) of [41]. This choice does not intro­
duce changes to the growth rate.
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�δWh,k =
(2M)

2
π3cωk

z

∫
dPϕdµdE

∑
m,m′,p

G∗
m′pE2τb

(
∂f
∂E

)

(1 − ω∗,k/ωk)Gmpδ (ωk − ωD0 − pωθ) .

The growth rate in NOVA is then given by:

γL,k =
2M2π3c

z
∫
ρ |ξk|

2 dr

∑
σ‖

∫
dPϕdµdE

∑
m,m′,p

G∗
m′pE2τb

(
∂f
∂E

− nk

ωk

∂ f
∂Pϕ

)

Gmpδ (ωk − ωD0 − pωθ) .
 

(A.1)

Now we want to compare the growth rate in NOVA 
and in Kaufman’s normal mode theory, in order to be 
able to relate their respective mode structure informa­
tion (G and αl) and build a quasi­linear theory based on 
that. Using δKk = ω2

k

∫
ρ |ξk|

2 dr, the comparison leads 

to MEωk√
2

∑
m Gmp =

∫
d3xek (x,ωk) · jl

k (x | J) = ωk
i Vl or, 

alternatively

αl (J) =
(

MEωk√
2

)2 ∑
m,m′

G∗
m′pGmp = ω2

k |Vl|2 (A.2)

where

Vl =
iz
ωk

∫
d3Θ

(2π)3 ek (r,ωk) · v (J,Θ) e−il·Θ

which is consistent with the expression given in [25]. The 
mode structure is provided in NOVA via the G matrices. They 
are calculated via time integration that account for the eigen­
mode felt by a particle in a given trajectory. A weighted inte­
gration is performing according to how much time a particle 
spends at each position of its trajectory. Mirror­trapped parti­
cles have their parallel velocity reversed at the tips of a banana 
orbit, where they tend to remain longer and consequently the 
local mode structure will have an important contribution for 
the overall integration. By using equation (A.2) we can now 
express the quasi­linear diffusion equation, (2) and (3), in 
terms of NOVA code notation.

Appendix B. Expected saturation levels from  
a single mode perturbation theory

For a single, isolated mode in a simplified bump­on­tail situa­
tion, at the saturation (γL � −γd, ∂f/∂t = 0), we have

π

2
ω4

b,lFl
∂f
∂Ωl

+ ν3
scatt,l

∂(f − f0)
∂Ωl

= 0.

Analytic results far from and close to marginal stability can 
be used to lead the choice of the broadening parameters [15, 
16]. For the case of a flat­topped window function, Fl = 1/Ωl, 
we have

∆Ωl =
π

2
ω4

b,l

ν3
scatt,l

−γd,k

γL,0,k + γd,k
. (B.1)

where γL,0,k  is the initial linear growth rate. 

B.1. Near marginal stability

Here close­to­marginal stability is understood in the sense 
that the growth rate is close to minus the damping rate, 
i.e. |γL,0,k + γd,k| � γL,0,k, |γd,k|. This condition implies 
ωb,l/νscatt,l � 1 and therefore ∆Ωl ≈ cνscatt,l. The expected 
saturation level from analytical theory for this case is [24, 26]

ωb,l � 1.18νscatt,l

(
γL,0,k

−γd,k
− 1

)1/4

,

which, when substituted in (B.1) leads to a  =  2.7.

B.2. Far from marginal stability This is the case when 
the initial growth rate is much larger than the damping, 
γL,0,k � −γd,k. For this case ∆Ωl ≈ aωb,l. The expected satur­
ation level from analytical theory for the case ωb,l/νscatt,l � 1 
is [26, 40]

ωb,l � 1.2νscatt,l

(
γL,0,k

−γd,k

)1/3

,

which, when substituted in (B.1) leads to c  =  2.5. There are no 
known analytical solutions to rely on in order to determine the 
constant b. It was simply taken equal to c in previous works 
[11, 12, 15, 16]. We have verified that the saturation levels 
obtained numerically with RBQ are not sensitive with respect 
to the exact value of b. This is because as the mode starts its 
growth, the term cνscatt,l has been observed to be the domi­
nant broadening component for practical cases, as inferred by 
NOVA­K. On the other hand, as the mode approaches satur­
ation, the term aωb,l outweighs b |γL,k + γd,k| since the latter 
approaches zero. The study of the parametric dependencies of 
the broadened window for realistic eigenmodes is under way 
[13] using the guiding­center, particle orbit following code 
ORBIT [31].
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