
Computer Physics Communications 225 (2018) 36–46

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

TORBEAM 2.0, a paraxial beam tracing code for electron-cyclotron
beams in fusion plasmas for extended physics applications
E. Poli a,*, A. Bock a, M. Lochbrunner a, O. Maj a, M. Reich a, A. Snicker a,b, A. Stegmeir a,
F. Volpe c, N. Bertelli d, R. Bilato a, G.D. Conway a, D. Farina e, F. Felici f, L. Figini e,
R. Fischer a, C. Galperti f, T. Happel a, Y.R. Lin-Liu g, N.B. Marushchenko h, U. Mszanowski a,
F.M. Poli c, J. Stober a, E. Westerhof i, R. Zille a, A.G. Peeters j, G.V. Pereverzev a,1

a Max-Planck-Institut für Plasmaphysik, Garching bei München, Germany
b Department of Applied Physics, Aalto University, Finland
c Columbia University, New York, NY, USA
d Princeton Plasma Physics Laboratory, Princeton, NJ, USA
e Istituto di Fisica del Plasma CNR, Milano, Italy
f Swiss Plasma Center, EPFL Lausanne, Switzerland
g Department of Physics and Center for Mathematics and Theoretical Physics, National Central University, Taiwan
h Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Germany
i DIFFER, Nieuwegein, The Netherlands
j Theoretical Physics V, Department of Physics, University of Bayreuth, Germany

a r t i c l e i n f o

Article history:
Received 13 October 2017
Received in revised form 7 December 2017
Accepted 22 December 2017
Available online 8 January 2018

Keywords:
Plasma physics
Magnetic confinement
Wave–plasma interactions
Electron cyclotron waves
Paraxial beam tracing

a b s t r a c t

The paraxial WKB code TORBEAM (Poli, 2001) is widely used for the description of electron-cyclotron
waves in fusion plasmas, retaining diffraction effects through the solution of a set of ordinary differential
equations. With respect to its original form, the code has undergone significant transformations and
extensions, in terms of both the physical model and the spectrum of applications. The code has been
rewritten in Fortran 90 and transformed into a library, which can be called from within different (not
necessarily Fortran-based) workflows. The models for both absorption and current drive have been ex-
tended, including e.g. fully-relativistic calculation of the absorption coefficient, momentum conservation
in electron–electron collisions and the contribution of more than one harmonic to current drive. The
code can be run also for reflectometry applications, with relativistic corrections for the electron mass.
Formulas that provide the coupling between the reflected beam and the receiver have been developed.
Accelerated versions of the code are available, with the reduced physics goal of inferring the location
of maximum absorption (including or not the total driven current) for a given setting of the launcher
mirrors. Optionally, plasma volumes within given flux surfaces and corresponding values of minimum
andmaximummagnetic field can be provided externally to speed up the calculation of full driven-current
profiles. These can be employed in real-time control algorithms or for fast data analysis.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The paraxial Wentzel–Kramers–Brillouin (pWKB) method for
the propagation of high-frequencywaves in plasmas, developed by
Pereverzev [1,2], has been implemented numerically in the beam-
tracing codeTORBEAM [3] and since then used in a variety of studies
for present [4–6] and future [7–9] fusion devices, for both heating
and current drive applications employing waves in the electron
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cyclotron (EC) frequency range and for the analysis and interpreta-
tion of short-wavelength diagnostic techniques like reflectometry
[10–13]. Applications of the pWKB method to lower-hybrid wave
propagation have also been reported [14,15]. TORBEAM has been
included in a worldwide benchmark of EC codes presented in [16].

Fig. 1 shows a typical plot of the poloidal projection of the beam
propagation in the ASDEX Upgrade tokamak.

The pWKB method reduces the computational effort of solving
the vector wave equation in an anisotropic, inhomogeneous and
dissipative plasma to the solution of a set of ordinary differential
equations (ODEs) describing (a) the centre of the beam (the so-
called reference ray), (b) the transverse beam structure, expressed
by two 3 × 3 symmetric matrices representing the curvature of
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Fig. 1. Propagation of an X-mode, 140 GHz electron cyclotron beam in ASDEX
Upgrade as calculated by TORBEAM, visualized as a projection along the cylindrical
angle ϕ. The beam, launched at (R, Z) = (2.38, 0) m, is represented through its
reference ray (tracing the maximum of the Gaussian amplitude envelope, red) and
the beam width (‘‘peripheral rays’’) representing the intersection of the 1/e level
of the amplitude with a vertical plane. The vertical lines show the position of the
second (X-2, blue) and third (X-3, green) cyclotron harmonics. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

the beam front and the amplitude profile, assumed to be localized
around the reference ray, and (c) the power carried by the beam
(which is calculated on the reference ray only). Thewave-field am-
plitude profile transverse to the propagation direction is assumed
in the numerical implementation to have a Gaussian shape, al-
though the theory is developed formore generic beams [2]. As a re-
sult, the pWKB technique allows the determination of propagation
and absorption of EC waves in fusion plasmas, retaining diffraction
effects not included in standard ray-tracing codes, at a reduced
computational cost even with respect to ray tracing (if more than
3 rays traced). The only numerical ‘‘price’’ that must be paid is
the evaluation of second-order derivatives of the involved plasma
profiles, but this is in general not critical, because the related
overhead is basically limited to the pre-processing of the equi-
librium, i.e. the calculation of the finite-difference derivatives on
the grid, as explained in Section 3. Due to its numerical simplicity,
the method lends itself in particular to applications requiring fast
execution times, in particular the inclusion inmore comprehensive
procedures like transport codes (TORBEAM has been interfaced
with the transport solversASTRA [17] andTRANSP [18]), integrated

data analysis tools, integrated tokamakmodelling [19] (see [20] for
a benchmark of TORBEAM against other European EC codes in the
frame of the European Integrated Tokamak Modelling framework)
or as a part of real-time control algorithms to be executed in
parallel to the evolution of experimental plasma discharges [21].

Since the first publication [3], the code has undergone a pro-
found revision. First of all, it has been rewritten in Fortran 90 (the
original programming language was Fortran 77) and the source
has been split into building blocks, while the modular structure
of the original code has been largely conserved. A brief overview
of the TORBEAM workflow is given in Section 3. The code has been
transformed into a library, which is called by an external process
(not necessarily in Fortran), also in charge of the input/output
operations. Fortran wrappers for the standalone execution of the
programme are available to the user. The main motivation behind
this development was the need for an accelerated version to be
used in real-time applications [21]. Within this framework, differ-
ent levels of simplification of the physics scope are now possible,
as described in Section 6.

The original goal of TORBEAMwas the calculation of power den-
sity (power per unit volume) and current density (current through
unit surface) profiles allowing for diffraction effects. This still ap-
plies to the code in its present form. With respect to [3], the deter-
mination of the absorption coefficient can be performed now also
employing fully relativistic expressions for the dielectric-tensor
elements. The calculation of the current-drive efficiency has been
extended by including the full polarization term in the expres-
sion of the quasilinear diffusion coefficient and the momentum-
conserving scheme described in [22–24]. A subtle point concerning
the implementation of the paraxial WKB method is the algorithm
for the calculation of the profiles. Since the power-absorption
equation is solved along the reference ray only, a scheme has to
be devised for distributing the absorbed power across the involved
flux surfaces according to the Gaussian amplitude profile of the
beam. Two such schemes are now available, the first one being
faster but less accurate near the magnetic axis of the plasma, the
second being able to cope also with such cases. A related problem
arises when TORBEAM is coupled with a Fokker–Planck code like
RELAX [25], which is designed to accept as an input the wave pa-
rameters on individual rays. An option to extract this information
along so-called extended rays, carrying the information about the
energy flow of the diffracting beam, has been implemented [26].
The modifications mentioned above are explained in detail in
Sections 4 and 5.

As stated at the beginning, the code is routinely used as a
support in the interpretation of reflectometry measurements and
to design future diagnostics. The most important modification
required by these applications concerns the inclusion of an effec-
tive electron mass, following [27], in the cold-plasma dielectric
tensor, as required in reactor-grade plasmas [27,28]. Moreover,
formulas describing the beam coupling to the receiver in terms of
the beam tracing parameters (solutions of the pWKB equations,
see Section 2) have been developed and are available as part of
the post-processing tools. These extensions of the code, already
documented in [11], are briefly reviewed in Section 7.

In its present form, the code assumes toroidal symmetry,
i.e. tokamak geometry, although the underlying equations are for-
mulated in arbitrary geometry [2].

The main goal of this paper is to give an overview of the
current capabilities of the code, including some selected examples,
together with a compact description of the underlying numerical
implementation, intended also as a first guidance for the users of
the code. For more details on the physical model, the reader is
referred to the original publications by Pereverzev [1,2], and to
[29–32] for some illustrative examples and applications in critical
cases.
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2. The paraxial WKB method for the propagation of high-
frequency waves in inhomogeneous anisotropic media

The beam tracingmethod is applied to the solution of the vector
wave equation

c2

ω2 ∇ × (∇ × E)− ε · E = 0 (1)

in the high-frequency (short wavelength) limit

κ ≡
ωL
c

= k0L ≫ 1, (2)

where ε is the dielectric tensor, ω/2π is the wave frequency, c
is the speed of light, L the inhomogeneity scale of the medium
and k0 the vacuum wave vector. A simplified derivation valid for
a Gaussian beam follows from the complex-eikonal ansatz for the
electric field

E(r) = A(r)e(r)eik0[s(r)+iφ(r)], (3)

where the imaginary part of the phase (eikonal) φ ≥ 0 is in-
troduced to describe the profile of the field amplitude across the
beam cross-section. The wave field (3) is localized in a tubular
neighbourhood of size O(1/

√
κ) around the curve defined by φ =

0 (the reference ray, see below). Physically, this means that the
beam widthW satisfies
λ

W
≈

W
L

≈
1

√
κ

(4)

(λ is the vacuumwavelength). The complex phase of thewave field
in Eq. (3) canbe Taylor expanded around the reference ray (paraxial
expansion) [1,2]:

s(r) = s0(r) + Nα [xα − qα] +
1
2
sαβ [xα − qα][xβ − qβ ], (5)

φ(r) =
1
2
φαβ [xα − qα][xβ − qβ ], (6)

where qα andNα are the components of the position vector {xα} ≡

r and of the vector refractive index {Nα} ≡ ∇s, respectively,
calculated on the reference ray. Summation over repeated indices
is assumed. The second-order coefficients sαβ describe the change
of the wave vector along the wave front and are hence related to
its curvature. The coefficients φαβ appear in the real part of the
exponential factor of Eq. (3) and are then connectedwith thewidth
of the amplitude profile, see Eqs. (27) and (28) of [3].

The quantities qα , Nα , sαβ and φαβ are found as the solution of
the following set of ordinary differential equations (ODEs), known
as beam tracing equations [2]:
dqα
dτ

=
∂H
∂Nα

,
dNα

dτ
= −

∂H
∂xα

, (7)

dsαβ
dτ

= −
∂2H
∂xα∂xβ

−
∂2H

∂xβ∂Nγ
sαγ

−
∂2H

∂xα∂Nγ
sβγ −

∂2H
∂Nγ ∂Nδ

sαγ sβδ +
∂2H

∂Nγ ∂Nδ
φαγφβδ, (8)

dφαβ
dτ

= −

(
∂2H

∂xα∂Nγ
+

∂2H
∂Nγ ∂Nδ

sαδ

)
φβγ

−

(
∂2H

∂xβ∂Nγ
+

∂2H
∂Nγ ∂Nδ

sβδ

)
φαγ , (9)

where

H ≡ det[−N2I + NN + εh
] = 0 (10)

is the dispersion function of geometrical optics. Like in standard ray
tracing, the anti-Hermitian part of the dielectric tensor is ordered
much smaller (by 1/κ) than the Hermitian part εh, so that H

depends only on the Hermitian part of the dielectric tensor and
hence is real. All the derivatives of H on the right-hand sides of
Eqs. (7)–(9) are to be calculated on the reference ray, which obeys
the Hamiltonian (ray tracing) Eqs. (7).

Since sαβ and φαβ are symmetric 3 × 3 matrices, the solution of
the beam tracing equations requires the integration of 18 ODEs.
According to the paraxial expansion, the equation for the beam
power, which descends from the equation for the terms of order
1/κ in the asymptotic expansion of the wave field, has to be
evaluated on the reference ray only. This equation takes the form
dP
dτ

= −2γ P, (11)

where γ is the absorption coefficient, which is defined in terms
of the anti-Hermitian part of the dielectric tensor. The whole beam
structure, retaining diffraction effects, is thus described through 19
ODEs (to be compared to 7 equations per ray in the case of standard
geometrical optics).

3. Code structure

The TORBEAM code as described in [3] was written as a single
Fortran 77 file. In the course of its ‘‘translation’’ into Fortran 90, the
code was split into several ‘‘building blocks’’ (files), which closely
reflect the original structure. This new arrangement of the code is
described in this section.

As alreadymentioned before, theMAINpart of the codehas been
transformed into a subroutine torbeam.f90 which represents
the library interface. All the arguments of the TORBEAM library
are either scalars or one-dimensional arrays, to avoid conflicts or
need for re-ordering (row-major vs. column-major). The process
calling the library provides as an input the information about the
magnetic equilibrium (eqdata), the electron density and electron
temperature profiles (prdata), the dimensions of the respective
grids and a set of integer (intinbeam) and real (floatinbeam)
parameters containing the initial conditions for the beam, themain
machine parameters, the required integration accuracy and a set
of switch parameters for different physics options available in the
code, as detailed in the remainder of this paper.

The output varies depending on the application, which is se-
lected through precompiler options. In ‘‘real-time’’ runs, only a
reduced set of output values is returned (rhoresult), which in-
cludes the coordinates of the point of maximum absorption and, if
current drive is switched on, some additional ray and plasma pa-
rameters at that position, the total driven current and a single-ray
estimate of the profile width. The differences between the ‘‘real-
time’’ version and the complete version of the code are reviewed
in Section 6. For standard heating and current-drive applications,
the information returned to the calling process by the library is
extended to include the beam trajectory on a poloidal (t1data)
and toroidal (t1tdata) projection, the power deposition and cur-
rent density profiles (t2ndata) and (for diagnostic purposes) the
plasma volume as a function of the radial coordinate volprof.
For reflectometry applications, the output is further extended to
include the radial coordinate of the turning point and the values of
the density, the refractive index (perpendicular and parallel com-
ponents) and the magnetic field components at the turning point
(reflout). No input–output operation needs to be performed
from within the library. A complete description of the input and
output parameters of the TORBEAM library is provided with the
code.

Once called, the top level of the TORBEAM library performs:

1. The call to the initialization routines, i.e. (a) the conversion
of the input as provided by the library arguments into the in-
ternal variables of the code and the calculation of the initial
conditions for the 19 beam tracing equations (in.f90), and
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(b) the computation of the finite-difference derivatives of
the plasma profiles required by Eqs. (7)–(9), of the plasma-
volume profile and of the flux-surface averages needed for
the determination of the driven current (grid6.f90);

2. The main integration loop, which contains the call to the
ODE solver LSODE (lsode.f90) [33]. A step in this loop
advances the beam tracing equations from τ to τ + dτ
(this is the central operation performed by the code). When
the density on the reference ray reaches a preset value,
the integration switches from vacuum to plasma dispersion
and the initial conditions1 are re-calculated in the plasma
according to [34] (interf.f90). After the integration step,
some quantities needed for code diagnostics and for the
determination of the driven current are calculated at the
new (advanced) point through a call to coef.f90. Finally,
if the power absorbed during the integration step exceeds a
threshold, the current driven is calculated (currn.f90);

3. The preparation of the output quantities, mainly the power
density and current density profiles (out.f90). The algo-
rithms for the calculation of the profiles are described in
Section 4.

From this level on, the code has the ‘‘cascade’’ structure inher-
ited from the original version: the ODE integrator lsode requires
the routine where the beam tracing equations (7)–(11) are speci-
fied (eqs_beam.f90). This routine in turn requires the ODE coeffi-
cients, i.e. the derivatives of H appearing on the right-hand side of
the beam tracing equations Eqs. (7)–(9) and the absorption coeffi-
cient (deriv.f90). The derivatives are evaluated performing a ro-
tation of the reference system to the poloidal plane containing the
current integration point (rot.f90) and evaluating the electron
density and magnetic-field derivatives appearing in the plasma
frequency and the cyclotron frequency (ocop.f90) and the values
of the perpendicular and parallel wave vector (refr.f90). The
numerical evaluation of the derivatives is achieved through poly-
nomial interpolation (interpolB.f90) on the finite-difference
grids stored before the start of the integration in a neighbourhood
of the current position of the central ray.

A comparison with Sec. 3 of [3] shows that the basic work-
flow of the code has not changed significantly. For the calcula-
tion of the absorption coefficient, the original TORBEAM model
has been extended to include the fully-relativistic version of the
routineDAMPBQ [35] (westerino.f90) and the routineWARMDISP
extracted from the quasi-optical GRAY code [36] (ecdisp.f90),
which also accounts for the fully-relativistic elements of the
dielectric tensor. For current drive, the original CURBA routine
(curba.f90) has been supplemented by the routine CURGAP [37]
(TorGA_curgap.f90) and modifications thereof, as detailed in
Section 5 (the momentum-conserving Spitzer function described
there is contained in green_func_ext.f90).

4. Calculation of power-deposition profiles

The evaluation of the absorption coefficient γ in Eq. (11) is
based on the calculation of the imaginary part of the wave vector
as obtained by solving the hot-plasma dispersion equation. Orig-
inally [3], the solution obtained in the subroutine DAMPBQ was
limited to the weak-relativistic limit of the hot-plasma dielectric-
tensor elements (implying that the relativistic Lorentz factor is
expanded to the lowest significant order in the ratio between
the particle speed and the speed of light). As stated in Section 1,

1 The mode of propagation is selected through the corresponding initial condi-
tions for the wave vector, the Hamiltonian function H being provided by Eq. (10)
for both modes. Possible cases of imperfect mode purity at launch can be handled
through two separate runs of the code, one for each cold-plasma mode.

Fig. 2. Power deposition profile obtained with the subroutine WARMDISP (blue
solid), DAMPBQ (red dashed, virtually indistinguishable from the previous one) and
with DAMPBQ in the weakly-relativistic limit (black dashed–dotted) for a typical
ITER case (stabilization of neoclassical tearing modes on the q = 2 surface).

the present version of TORBEAM allows for a fully relativistic cal-
culation of the absorption coefficient through the corresponding
extension of DAMPBQ (from TORAY) and through the subroutine
WARMDISP (from GRAY). Both routines also account for absorption
due to harmonics higher than the second. The results of both
routines are nearly identical, as shown in Fig. 2, in which the ab-
sorption profiles obtained in theweakly-relativistic approximation
(black dash-dotted curves) are compared with fully-relativistic
results (practically indistinguishable blue solid and red dashed
lines).

While WARMDISP returns the perpendicular component of the
imaginary part of the wave refractive index N ′′

⊥
, DAMPBQ returns

the projection of N ′′

⊥
onto the real refractive index N ′ [35]. As a

consequence, the output of DAMPBQ must be divided by the sine
of the angle between N ′ and the confinement magnetic field to be
equivalent to the output of WARMDISP. The absorption coefficient
is calculated as given in Eq. 15) of [3], i.e. γ = (ω/c)N′′

· V, with
V = ∂H/∂N (vector parallel to the group velocity).

The spatial distribution of the absorbed power is given as a
power-density profile as a function of radial (flux-surface) label,
under the usual assumption of an ‘‘ergodic’’ redistribution of the
absorbed power along the field lines. As mentioned in Section 1,
within the paraxial WKB method the calculation of the power
density profile is not as immediate as in the case of ray-based algo-
rithms, inwhich the power absorption is calculated on each ray and
can be assigned straightforwardly to the respective flux surfaces.
In the paraxial approach employed in TORBEAM, the quantities di-
rectly available after the integration of the beam tracing equations
are the power along the reference ray and the Gaussian envelope
of the beam. Two algorithms have been developed to compute the
power deposition profile starting from this information and are
described below. Both are run after the main integration loop has
been executed, as described in the previous section.

In the first algorithm, besides the coordinates of the reference
ray, the coordinates of an upper and a lower peripheral ‘‘ray’’
are also stored. These are defined as the curves in the poloidal
plane corresponding to 1/e levels of the electric-field amplitude,
determined from the Gaussian amplitude envelope φαβ (Fig. 1). For
each point i on the reference ray showing non-zero absorption, the
points on the peripheral rays with the samemajor radius (i.e. same
distance from the tokamak symmetry axis) are calculated and the
flux surface passing through these points is determined. The radial
distance (in terms of the coordinate ρ defined below) between the
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Fig. 3. Power deposition profiles obtained with TORBEAM standard procedure (blue solid) and TORBEAM new procedure (red dashed), for (a) an ITER scenario (left, also GRAY
profile shown, black dashed–dotted) and (b) an off-axis ASDEX Upgrade scenario (right, also WKBeam profile shown, black dashed–dotted).

upper and the lower peripheral rays, divided by two, is taken as the
half-width wi of an ‘‘infinitesimal’’, Gaussian-shaped absorption
profile of the form (dP/dV )i = Ci exp[−2(ρ − ρi)2/w2

i ], where ρ
is the normalized radial coordinate (square root of the normalized
flux label) and the factor of two accounts for the fact that the power
density is proportional to the electric field squared. The coefficient
Ci is fixed in such a way that

Ci

∫
V
exp[−2(ρ − ρi)2/w2

i ]dV

= Ci

∫ 1

0
exp[−2(ρ − ρi)2/w2

i ]
dV
dρ

dρ = dPi, (12)

dPi being the power lost by the beam in the ith integration step
and V the plasma volume. The underlying assumptions behind this
procedure are that across the beam cross-section the resonance
condition is satisfied on a vertical plane and that the absorption-
profilewidth is dominated by the beamwidth in the poloidal plane,
due to the larger curvature of the flux surfaces in the poloidal plane
as compared to the curvature in the toroidal plane (the former
assumption could be violated in devices forwhich the toroidal field
is not the dominating component, like reversed-field pinches near
field reversal). The total absorption profile is calculated as the sum
over the infinitesimal profiles, dP/dV =

∑
i(dP/dV )i.

The procedure described above is fast (a complete run of the
code including the determination of power and current-drive pro-
files takes ca. 1 s on a single CPU2 ) and in most cases accurate, see
examples in Fig. 3. Yet, it can fail in distributing correctly the power
among flux surfaces when the maximum absorption is localized
on the magnetic axis of the tokamak. For these cases, a second
algorithm has been devised, based on a numerical integration of
the continuity equation for the wave energy density, which in
steady-state can be written as

∇ ·
(
|E|

2V
)

= −2γ |E|
2, (13)

in the region around the beam in which absorption takes place. As
shown in the Appendix, from the previous equation one can derive

P(ρ) =
2P0
π

∫
Ω(ρ)

e−2φ(r)

|V(τ )|W1(τ )W2(τ )

⏐⏐⏐⏐ 1
P0

dP
dτ

⏐⏐⏐⏐ d3r, (14)

whereΩ(ρ) is the three-dimensional domain enclosed by the flux
surface labelled by ρ, φ has been defined in Eq. (6),W1,W2 are the
principal widths of the elliptic beam cross-section (taken at 1/e-
level of the electric field amplitude) and P0 is the injected power.

2 The performance of the code is discussed in detail in Section 6.

Fig. 4. Power deposition profiles obtained with TORBEAM standard procedure (blue
solid), TORBEAM new procedure (red dashed) and WKBeam (black dashed–dotted)
for an on-axis ASDEX Upgrade scenario.

The integration domain of Eq. (14) is discretized in a region cover-
ing at least four times the transverse beam extension. In this way,
basically the whole power carried by the Gaussian beam is taken
into account in the discretization. The grid is non-orthogonal, with
one axis alignedwith the averaged (in the absorption region) beam
velocity, the second axis perpendicular to the previous one in the
horizontal direction and the third axis in the vertical direction. The
physical reason for this choice is again that the resonance region
is approximated by a vertical line across the beam extension. Each
point on the grid is assigned to a corresponding point on a ρ-grid
and the integral in Eq. (14) is substituted by a discrete sum. This
newprocedure has been comparedwith the ‘‘standard’’ implemen-
tation described before and checked against the quasi-optical code
GRAY for an ITER scenario (Fig. 3a) and against the wave-kinetic
solver WKBeam code [38] for an off-axis ASDEX Upgrade scenario
(Fig. 3b). The agreement of the different profiles is very good.

As a demonstration of the difference between both methods
described above for a case with on-axis deposition, Fig. 4 shows a
comparison for an ASDEX Upgrade experimental case. Again, the
ray-based code WKBeam is used as a benchmark. It can be seen
that the standard procedure fails in locating the maximum of the
deposition profile on axis. Considering the numerical uncertainties
related to the evaluation of the plasma volume and its derivative
with respect to ρ so close to the magnetic axis, the agreement
between the new procedure implemented in TORBEAM and the
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Fig. 5. Visualization of the extended rays calculated for a typical ASDEX Upgrade
case.

WKBeam profile is remarkably good. Depending on the injection
geometry and on the length of the absorption path, the new
method requires ca. one to five seconds for the determination of
the absorption profile.

As a further option, TORBEAM can produce the data required
on input by the Fokker–Planck code RELAX [25] and thus allows
the study of the effects due to the quasi-linear relaxation of the
distribution function on the absorption profile. The wave input is
provided to RELAX in terms of information (position, parallel re-
fractive index, power fraction and cyclotron frequency) calculated
on individual rays, which in the frame of geometrical optics rep-
resent the wave energy flow. To provide an analogous information
in the frame of the pWKB approach, extended rays describing the
energy flow of a diffracting beam can be derived [26,39]. As known
from standard geometric optics [40], the action function (phase)
(integral of ds = N · dr along the rays) solves the Hamilton–
Jacobi equationH(r,∇s) = 0 and the velocity fieldV defined above
(tangent to the rays of geometric optics) determines the wave
energy transport through Eq. (13) on each ray. When the complex-
eikonal ansatz (3) is introduced, assuming λ/W ≪ 1, the relevant
Hamilton–Jacobi equation becomes [36,41]

H(r,∇s) −
1
2
∂φ

∂xi

∂φ

∂xj

∂2H
∂Ni∂Nj

(r,∇s) = 0. (15)

As far as the energy flux is concerned, it can be shown [39] that
Eq. (13) still holds in the complex-eikonal case, but the function s
is now a solution of the modified Hamilton–Jacobi equation (15).
In the frame of the paraxial approach implemented in TORBEAM,
∇s can be immediately calculated taking the gradient of s given by
Eq. (5) and the equations
dr
dτ

=
∂H
∂N

(r,∇s) (16)

can be advanced together with the beam-tracing equations em-
ploying the second-order Heun’s method, see [26] for details. Also
the power content of the extended rays is computed, solving
Eq. (11) on each of them. Fig. 5 shows the trajectory of the extended
rays for the ASDEX Upgrade case of Fig. 3b. For the calculation of
9 × 9 extended rays, with the integration step halved with respect

to the standard calculation, the execution time is still well below
10 s.

5. Modelling of electron-cyclotron current drive

The calculation of the current-drive efficiency in TORBEAM is
based on routines implementing the adjoint method [42]. In ad-
dition to CURBA, which was already present in the original version
of the code [3], the routine CURGAP has been added. This routine
includes the exact polarization-dependent radio-frequency quasi-
linear diffusion operator [43] in evaluating the current drive effi-
ciency (this feature is not described in the original publication [37],
where also the small gyroradius expansion is explicitly used, while
the routine allows for the complete Bessel-function terms). Both
CURBA and CURGAP employ the high-speed limit for the determi-
nation of the Spitzer function calculated in the frame of the adjoint
method (see below). In TORBEAM, the Spitzer function can now be
determined, as an extension of CURGAP, including themomentum-
conserving scheme described in [22–24], which takes the transfer
of momentum to the bulk electrons and their contribution to the
parallel electron flow into account. Results including this effect in
TORBEAM were reported for the first time in the frame of a study
of the EC current-drive efficiency in DEMO-sized machines [8].
Meanwhile, this extended version of CURGAP has been extensively
used in ITER calculations [9,44] and is now also the standard option
for applications in the ASDEX Upgrade tokamak [45]. A further
extension of CURGAP to include consistently the contribution of
more than one cyclotron harmonic to the current drive has been
implemented and is described in the second part of this section.

Following the notation of [37], the adjoint method requires
the determination of the response function χ , through which the
driven current density can be calculated as

j∥
B

= −e
⟨∫

d3vχSrf(fM )
⟩
, (17)

where angular brackets denote flux-surface average and Srf is the
radio-frequency-induced quasilinear diffusion operator [46,43].
The response function is written factorizing its dependence on
particle energy and pitch angle, χ = sgn(u∥)F (u)H(λ), with u =

γ v/c = p/mc the normalized momentum (γ =
√
1 + u2 is

here the relativistic Lorentz factor) and λ = (Bmax/B)(u2
⊥
/u2). The

energy-dependent part is referred to as the Spitzer function. In
CURGAP, it is in general given by Eq. (33) of [37]. If momentum con-
servation is included, this expression is replaced by the relativistic
adaptation of the Spitzer function obtained in the Appendix of [47].
Being based on a fifth-degree polynomial in u, whose coefficients
can be determined in a straightforward way, the momentum-
conserving formulation of the Spitzer function is computationally
very efficient. Due to this reason, this option is also adopted in
the ‘‘real-time’’ version of the code when current drive is required,
see Section 6. To quote an example of the contribution of the
various effects mentioned above to the final result, for an ITER
standard-H-mode scenario with EC current driven on the q = 3/2
surface, TORBEAM returns a total driven current ICD = −7.90
kA/MW employing CURBA, ICD = −8.30 kA/MW with CURGAP
(full polarization term) and ICD = −8.94 kA/MW if momentum
conservation is included. Here, the minus sign indicates that the
current is driven in clockwise direction if the tokamak is viewed
from above.

As mentioned above, a further important improvement has
been introduced in the calculation of the current drive efficiency in
order to account consistently for the contribution of each cyclotron
harmonic. The current drive efficiency η, defined as the ratio be-
tween the current and power densities, can be written in terms of
the quantities introduced before as

η ∝
⟨
∫
d3v χ Srf(fM )⟩

⟨
∫
d3v E Srf(fM )⟩

, (18)
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Fig. 6. Left: Current drive profile obtained considering the contribution of second and third harmonic consistently (blue solid line) and assuming that all the power drives
a current on the lowest accessible harmonic (red dashed). Right: Comparison of the current driven per unit length along the central ray in TORBEAM and GRAY (s being the
arclength along the ray).

where E = mc2(γ−1) is the particle energy. The quasilinear flux Srf
contains a sum over the cyclotron harmonics, see e.g. Eqs. (14) and
(15) of [36]. If more than one harmonic contributes to the wave–
particle interaction, both integrals appearing in Eq. (18) become
actually a sum of integrals, one for each harmonic. However, since
the lowest harmonic present in the plasma usually dominates the
absorption, often in practical implementations (as in the original
TORBEAM code) only the lowest harmonic is considered in the
calculation of the current drive efficiency (18). On the other hand,
in particular for large values of the parallel wave vector, the lowest
harmonicmay exhibit a rathermodest absorptionwhen it becomes
accessible in low-field-side launch scenarios, as the correspond-
ing resonance curve lies on the tail of the electron distribution
function. Hence, only few electrons are available for absorption.
Since high-energy electrons have a low collisionality, however,
the numerator of Eq. (18) weights them more strongly than the
denominator, and the current drive efficiency evaluated on the
lowest harmonic resonance curve only can be fairly large. Thus,
attributing all the driven current to the lowest harmonic, while
the power absorption is still governed by the successive harmonic,
would result in an unrealistically large driven current. This is illus-
trated rather strikingly by a half-field scenario for ITER (Fig. 6, left),
where a spurious peak (red dashed curve) appears in the current
density profile when all the power absorbed by the plasma (mainly
by third X-mode harmonic) is used to calculate the driven current
with η determined retaining only the contribution of the second
harmonic as soon as it becomes accessible. Incorporating also the
contribution from the third harmonic in both the numerator and
the denominator of Eq. (18) eliminates this unphysical effect (blue
solid line) and the current drive becomes nearly identical to that
calculated by the GRAY code, in which this effect is included (Fig. 6,
right). The associated computational effort remains modest, as the
contribution of the current-drive routine to the total running time
is usually relatively small, see e.g. Table 2.

6. Real-time applications

Future fusion reactors, and more so fusion power plants, need
to be equipped with a series of control systems able to react in
real time to given plasma signals. Such systems are being tested
in present experiments. EC waves are foreseen as actuators in a
number of applications, including control, mitigation and suppres-
sion of MHD instabilities, in particular sawtooth oscillations and
NTMs. In these applications, real-time ray tracing is an option to
obtain information on the mirror settings needed in order to reach

the rational surface aroundwhich the instability develops [21]. Fast
execution of a wave-heating module is also required in real-time
simulations of the plasma profiles, or for numerical optimization
of tokamak scenarios, as performed by the RAPTOR code [48,49].
More in general, the possibility of accelerating the code execu-
tion is highly desirable in all applications requiring a repeated
evaluation of the beam trajectory in loops of some sort, as is for
instance the case in transport codes. The execution time of the code
has been monitored through accurate time profiling to locate the
most critical (time-consuming) operations. The numbers quoted
below have been obtained running TORBEAM for the medium-size
tokamaks ASDEX Upgrade and TCV on Solaris SunOS 5.11 and
Linux SLES 11 64-bit machines, which are presently the standard
platforms available at the Max-Planck-Institut für Plasmaphysik.
The exact execution time is of course machine-dependent, but the
relative speed-up is less sensitive to the details of the architecture.
Performance improvement can be achieved from running the code
on dedicated processors when executing the control algorithms.

As mentioned previously, the typical run time of the code in its
complete version (including the calculation of power and current
density profiles) is of the order of one second. For implementation
in present real-timeworkflows for NTM control, an execution time
of around 10 ms should be targeted (see discussion in [21]). In its
complete version with standard settings, most of the CPU time is
spent by TORBEAM in the calculation of the output profiles. For a
highly resolved case (5000 points in ρ), more than 90% of the time
is spent in the output routine. This number drops to around 55%
for 500-points profiles. Themost time-demanding operation at this
level is the iterated interpolation of the plasma-volume profile, cf.
Eq. (12). For those applications not relying explicitly on the exact
form of the absorption profile, the call to the output routine OUT-
PROF in out.f90 can be skipped altogether. By this, the execution
time drops below 100 ms, which is, however, still insufficient for
the targeted real-time applications. Once the calculation of the
absorption profile has been dropped, the remaining most time-
consuming operation (about 30 ms), namely the calculation of the
plasma volume as a function of the radial coordinate ρ, becomes
unnecessary and can be skipped as well. A further speed-up is
obtained by reducing the number of equations to be integrated to
seven, i.e. dropping Eqs. (8), (9) and solving only for Eqs. (7), (11).
This step, which turns TORBEAM into a ray-tracing code computing
a single ray, makes also the preparation of second-derivatives
finite-difference arrays unnecessary. Finally, the position of maxi-
mum absorption returned by the code is computed as the position
reached at the last integration step forwhich the power decrement
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Table 1
Time profiling for a run of the ‘‘real-time’’ version of TORBEAM (ASDEX Upgrade
parameters, no current drive). The total time needed for this run was 8.1 ms (first
line). It can be seen that most of the time required for advancing the beam (lsode,
3.4 ms) is actually spent in the calculation of the coefficients of the beam trac-
ing equations (deriv, 3.1 ms), rather than in the integrator itself. The seven steps
needed from the antenna to the plasma (dervac) do not give a measurable contri-
bution (< 0.05 ms). The routines beginning with ‘‘int...’’ perform interpolation
of various plasma quantities.

torbeam was called 1 times, total 8.1 ms
grid was called 1 times, total 1.4 ms
intpsi was called 674 times, total 0.3 ms
dervac was called 7 times, total 0.0 ms
lsode was called 580 times, total 3.4 ms
coef was called 213 times, total 2.0 ms
intpb was called 572 times, total 0.2 ms
intdab was called 572 times, total 2.6 ms
intpop was called 554 times, total 0.0 ms
deriv was called 359 times, total 3.1 ms
intpte was called 859 times, total 0.1 ms

dP is larger than at the previous step. The code can be stopped
either at that position or (if the current drive is also computed)
when dP falls below a preset threshold. The steps described above
bring the execution time in the required ballpark of 10–20 ms (the
calculation of the total driven current employing the momentum-
conserving scheme described in Section 5 requires an additional
CPU effort below 2–3ms). An additional reduction of the execution
time has been achieved by avoiding the determination of the
plasma coefficients in coef.f90 (Section 3) after each integration
step but rather extrapolating them from the previous values for a
pre-set number of time steps, after which the actual coefficients
are computed again. The corresponding speed-up is a few (≲ 5)
ms. Finally, the dimensions of the grids on which the magnetic
equilibrium and the kinetic profiles are defined have been limited
to 150 points.

Table 1 shows a sample of the TORBEAM profiling obtained for
the off-axis-heating case on ASDEX Upgrade already considered in
the profile benchmark shown in Fig. 3b (run on a single Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80 GHz processor).

In this run, 17% of the time was spent in the preliminary cal-
culations (preparation of finite-difference arrays, GRID), 42% in
the integration loop (LSODE), which includes as the main part the
calculation of the right-hand side of the beam tracing equations
(DERIV), 25% in the calculation of the coefficients needed after the
integration step (COEF). These three steps account hence for ca.
84% of the execution time. It is interesting to notice that 20%–25%of
the time needed for the calculation of the coefficients of the beam
tracing equations in DERIV is employed for the determination of
the absorption coefficient γ (in real-time applications, theweakly-
relativistic version of DAMPBQ is used, which turns out to have
the shortest execution time). The remaining 75%–80% of the CPU
time spent in DERIV is primarily employed in the interpolation
of the plasma profiles, in particular the magnetic field compo-
nents (INTDAB). An example for the implementation of the real-
time version of TORBEAM in an actual control scheme is described
in [21]. A second example is the recent inclusion of TORBEAM in
the real-time control system SCD of the TCV tokamak [50]. Since
this system is entirely programmed in Simulink R⃝, it was neces-
sary to include TORBEAM in a Simulink S-function block. This was
achieved by writing an S-function wrapper that calls the Fortran
library. Various separate instances of TORBEAM are run (one for
each EC launcher) on different processors on a dedicated node of
the control system. The execution times for a TCV equilibriumwith
grid size of 28× 65 in the poloidal plane and radial grid of 21 points
for density and temperature profiles are of the order ≲ 5 ms for
typical cases.

A different accelerated version of TORBEAM has been devel-
oped to speed up applications in which the code is used in

Table 2
Time profiling for the accelerated version of TORBEAM including deposition profiles
(total CPU time 75.3 ms).

torbeam was called 1 times, total 75.3 ms
grid was called 1 times, total 2.7 ms
intpsi was called 1957 times, total 1.9 ms
dervac was called 11 times, total 0.0 ms
lsode was called 308 times, total 20.6 ms
coef was called 308 times, total 4.4 ms
intpb was called 1307 times, total 0.8 ms
intdab was called 1308 times, total 13.9 ms
intpop was called 1307 times, total 0.9 ms
deriv was called 999 times, total 19.2 ms
intpte was called 1237 times, total 0.0 ms
intpdvrtprof was called 135280 times, total 16.7 ms
currn was called 10 times, total 1.0 ms
intpdv was called 5 times, total 0.0 ms
outprof was called 1 times, total 40.5 ms

integrated data analysis of kinetic profiles and equilibrium recon-
struction [51,52]. In this case, an equilibrium reconstruction code
solving the Grad–Shafranov equation (GSE) is coupled with the
current diffusion equation solving the temporal evolution of the
current profile between the time points the GSE is solved. The neo-
classical current diffusion depends on the kinetic profiles aswell as
on the driven current fromneutral beams andmicrowaves. In these
applications, the calling process is supposed to provide the code
some of the geometric quantities usually calculated internally, so
that again the calculation of the plasma volumes in GRID can be
omitted. Also the maximum and minimum values of the magnetic
field on a given flux surface are now linearly interpolated on a
user-supplied grid and not internally. Moreover, the calculation
of the profiles is performed on a radial grid of 500 points, which
corresponds to a radial resolution of ∆ρ = 2 × 10−3, so that
also the time needed to compute the deposition profiles remains
below ca. 50 ms. The targeted execution time of this version for a
typical ASDEX Upgrade should remain below 100 ms. An example
of the time profiling for an ASDEX Upgrade application is shown in
Table 2.

7. Reflectometry applications

The reflectometry diagnostic is based on the injection of waves
in the EC frequency range under cutoff condition, with the aim
of extracting information about the plasma properties from the
measurement of the reflected beam [53]. The integration of ray
tracing (and even more beam tracing) equations becomes chal-
lenging close to turning points, in particular for injection nearly
perpendicular to the cutoff layer, as in this case all the three
components of the group velocity are very small at the turning
point. Nevertheless, the advancement of the equations is usually
still possible, provided the input profiles (electron density in par-
ticular) are smooth enough,3 and delivers important information
for the analysis of themeasurement [54,55]. For a discussion of the
applicability of the pWKB method to reflectometry see also [31].
From the point of view of the numerical implementation, apart
from the additional output parameters mentioned in Section 3, the
main extension introduced in the code for reflectometry studies
is the renormalization of the electron mass needed to account
for relativistic effects for propagation close to the cutoff [27].
This is obtained by rescaling the electron mass appearing in both
the plasma frequency and the cyclotron frequency according to
(see [27])

meff = m
(
1 +

5Te
mc2

)1/2

. (19)

3 To further facilitate the numerical integration, in reflectometry runs the inte-
gration step in TORBEAM is reduced with increasing density. Tools to extend and
smooth density and temperature profiles are provided with the code.
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Fig. 7. Left: Propagation of a reflectometry beam (injected from the low-field side with a frequency of 84.9 GHz, O-mode), showing also the ‘‘classical’’ (cold plasma) and
relativistic corrected position of the cutoff. The reference ray is the red central line. Right: Profiles of cyclotron frequency (f_c), plasma frequency (f_p) and cutoff frequencies
for X and O-mode. The injection frequency is represented by the solid horizontal red line, while the vertical dotted line shows the position of the turning point.

This introduces a dependence of the plasma frequency and the
cyclotron frequency, which appear in the Hamiltonian function
H and its derivatives on the right-hand side of Eqs. (7)–(9), on
the electron temperature. Consequently, first and second-order
derivatives of the temperature profile need to be calculated, which
are otherwise absent since the propagation of the beam is com-
puted in usual heating and current drive applications according to
the cold-plasma dispersion relation. These corrections were added
for a design study of the ITER low-field-side reflectometer [11]. A
typical example of beam propagation and cutoff profiles is shown
in Fig. 7.

In addition to the quantities at the turning point returned by the
code in reflectometry applications, see Section 3, the information
about the beam parameters provided by the pWKBmethod allows
one to determine also the coupling between the beam and the
receiver antenna, which can be useful in assessing the measured
signal and guide the design of future reflectometers, as described
in [11]. The coupling efficiency Ta is given [56,57] by the squared
modulus of the integral (taken on the antenna plane) of the product
of the beam field, given in terms of Eqs. (3), (5), (6) and the antenna
radiation pattern, which simply follows from the vacuum solution
for Gaussian beams, Eqs. (1), (13), and (14) of [11]. Taking the
centre of the antenna opening to be at (x0, 0, 0) and integrating
over the plane x0 = const., the result is given in terms of the
beam tracing variables introduced in Section 2 as follows (Eq. (15)
of [11]):

Ta =
16

W 2
0W1W2

1
det[σ +Σ]

× exp(φαβqαqβ ) exp(Re[(σ +Σ)−1
αβbαbβ ]), (20)

with σαβ = 2δαβ/W 2
0 (W0 being the radius of the antenna pattern

and δαβ the Kronecker δ),Σαβ = φαβ+ isαβ and bα = Σαβqβ− iNα ,
where now the indices α and β run only over the (y, z) plane.
A routine that calculates Ta as part of the post-processing and
visualization is also supplied with the code.

To conclude this section, it is remarked that TORBEAM is applied
routinely also to Doppler reflectometry, which is a special applica-
tionwhere the reflectometer probing beam is incident obliquely to
the cutoff layer (see Fig. 8) and is used to measure the turbulence
propagation velocity u⊥ = 2fD/k⊥ from the Doppler frequency
shift fD in the backscattered signal [10]. Here, the ray and beam-
tracing equations appear to give rather robust estimations of both
the ray-turning point, i.e. the region of maximum backscatter) and
the component beamwavenumbers k⊥ and k∥, which are required
to convert the Doppler shift to a velocity. The beam envelope
behaviourmay also provide relevant information on the spatial and
wavenumber resolution [58,55].

Fig. 8. Full-wave |E|
2 contours overlaid with TORBEAM envelope (red) and central

ray (black) for an X-mode, 72 GHz, Doppler reflectometer simulation of AUG shot
28877. Launch antenna is in lower right-hand corner. Flux surfaces (ρpol) in blue.N2

(turning point) layer in black. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

8. Conclusions

The paraxial WKB method is a powerful tool to calculate the
propagation of a high-frequency beam in anisotropic inhomoge-
neous media, retaining diffraction effects with low computational
costs. Its numerical implementation in the code TORBEAM allows
fast determination of power absorption and current density pro-
files in tokamaks, and is useful also in diagnostics applications
like reflectometry. With respect to the original publication [3],
significant advances have been made, which are reviewed in this
paper. The functionalities of the code have been extended, in
particular to include accelerated versions suitable for real-time
usage in control loops running in parallel with an actual plasma
discharge or for integrated data analysis. From the point of view of
the physics model, the calculation of absorption and current drive
includes now state-of-the-art capabilities like the fully relativistic
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treatment of the dielectric tensor in the calculation of the absorp-
tion coefficient and momentum conservation in the calculation
of current drive. The possibility of accounting for the separate
contribution of different harmonics in the calculation of the driven
current has been introduced. A theory-based algorithm for the
calculation of the absorption profile, applicable also for on-axis
deposition, has been implemented and tested. This is important,
for instance, for advanced tokamak scenarios relying on counter-
current drive on axis. The application of the code to reflectometry
studies has been discussed.

Further improvements and extensions of TORBEAM can be con-
sidered. From the point of view of the underlying physical model,
for instance, although the cold-plasma approximation should be
sufficient in most of the cases of interest, including warm-plasma
dielectric-tensor elements in the calculation of the Hamiltonian
function H would enable the ‘‘anomalous’’ dispersion near the
EC resonance [59] to be accounted for. From the numerical point
of view, further steps to streamline the calculation and achieve
even faster performances in the accelerated versions could be
undertaken. Very desirable, although more speculative, since the
corresponding theory has not been developed to date,would be the
possibility to account for the beam distortion due to asymmetric
absorption or the inclusion of scattering effects (as retained e.g. in
the WKBeam code [38]) within the pWKB method.

The code revisions are managed through an svn repository. This
paper describes revision 606. The code is distributed by the main
author upon request, after a software agreement with the author’s
home institution (Max-Planck-Institut für Plasmaphysik), excluding
the commercial exploitation of the code, has been signed.
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Appendix. Power deposition of paraxial beams

Here we sketch the derivation of Eq. (14). The starting point is
the steady-state continuity equation for the wave energy density
U [46]

∇ ·
(
Uvg

)
= −2γ̃U, (21)

where vg is the group velocity and γ̃ is related to the absorption
coefficient γ introduced in Eq. (11), see Eq. (31). The energy density
is related to the electric-field amplitude through [46]

U =
ω|∂ωH|

16π
|E|

2 (22)

Since

vg = −
c
ω

∂H/∂N
∂H/∂ω

= −
c

ω∂ωH
V (23)

one has Uvg = c|E|
2V/16π (for ∂ωH < 0). Considering a region

Ω(ψ) of the plasma inside the flux surface labelled by ψ , with

boundary ∂Ω(ψ), the deposited power is the energy that crosses
∂Ω(ψ) per unit time,

P(ψ) = −

∫
∂Ω(ψ)

Uvg · dS = −

∫
Ω(ψ)

∇ ·
(
Uvg

)
d3r

= 2
∫
Ω(ψ)

γ̃Ud3r, (24)

where the second step follows from Gauss’s theorem and the third
one from Eq. (21).

To proceed further, we write the electric-field solution, Eq. (3),
introducing the relative amplitude a(τ )

E = A0a(τ )e(τ )eik0(s(r)+iφ(r)) (25)

defined such that a(0) = 1. Hence

|E|
2

= |A0|
2
|a(τ )|2e−2k0φ . (26)

In the pWKB method, φ is a non-negative definite quadratic form,
see Eq. (6), describing the elliptic cross section of the wave beam
with principal widths W1 and W2. The 1/e half-width of the wave
intensity (∝ |E|

2) is hence given by w1,2 = W1,2/
√
2. As a

consequence, the integral of |E|
2 across a constant-τ surface is∫

|E|
2dS = π |A0|

2
|a(τ )|2w1(τ )w2(τ ). (27)

The power crossing this surface is hence

P(τ ) =
c
16

|V(τ )||A0|
2
|a(τ )|2w1(τ )w2(τ ). (28)

Using the previous equations, the relation between Eqs. (21)
and (11) can be established. Integration of Eq. (21) inside a ‘‘flux
tube’’ following the beam from the antenna plane to the position
labelled by τ yields (with d3r = |V (τ )|dτdS)

P(τ ) − P0 = −2
∫
γ̃Ud3r

= −
ω|A0|

2

8

∫ τ

0
γ̃ |∂ωH| |V||a|2w1w2dτ ′. (29)

Deriving the previous expression and substituting Eq. (28), one
finds
dP
dτ

= −2
ω |∂ωH|

c
γ̃ P(τ ) (30)

from which Eq. (11) is recovered with

γ =
ω |∂ωH|

c
γ̃ =

V
vg
γ̃ . (31)

Finally, with γ̃ obtained from Eq. (30) and U from Eq. (22), and
using Eqs. (26) and (28), Eq. (24) can be straightforwardly cast into
the form (14) given in the main text of this paper.
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