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Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis.

Toward this end, we reformulate the dW stability method with a Hamilton-Jacobi theory, elucidating

analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma

response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equa-

tion. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective

brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control

problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential

equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and

stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD

stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel oper-

ation in near real-time, with wall-clock time� 1s. Such speed may help enable active feedback ideal

MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with

inductive timescale s � 1s—as in ITER. Published by AIP Publishing.
https://doi.org/10.1063/1.5007042

I. INTRODUCTION

Active feedback control of plasma stability is essential

to achieving high performance in advanced tokamaks.

Tokamak experiments with active control systems for tearing

modes,2 edge-localized modes (ELMs),3 and unstable diver-

tor topologies4 have demonstrated success in mitigating such

instabilities. Passive, closed-loop control systems5 and linear

gain controllers6 have also demonstrated improved equilib-

rium and unstable mode control in reversed-field pinch

(RFP) and tokamak experiments.

Due to their computational complexity, however, state-

of-the-art measures of plasma stability are largely absent from

such active feedback methods. Tokamaks are therefore lim-

ited to controlling many instabilities after they are observed—

e.g., with “catch-and-subdue” strategies, as described in Ref.

2. These methods constrain the real-time capability of stability

control systems, and do little to address vulnerability to

unplanned-for ideal MHD instabilities (which may grow on

timescales as fast as the Alfv�en time sA � ls).

While the growth of unstable MHD modes may be quite

rapid, the evolution of stable tokamak equilibria is considerably

slower. Stable tokamak magnetic field geometries evolve on an

inductive timescale sL=R � 1s� sA. This separation of time-

scales creates a window of opportunity to prevent MHD plasma

instabilities before they start. That is, although the instabilities

may be too fast to control, a control system operating at a time-

scale scontrol � sL=R might be fast enough to maintain a toka-

mak’s operation in stable equilibria—steering it clear of

evolutions through unstable equilibria which spawn uncontrol-

lable MHD instabilities. For example, a tokamak control sys-

tem that can measure dW in near real-time could be tasked with

maintaining a desired “distance-to-unstable-equilibrium”—i.e.,

dW > dWmin > 0—as a buffer to the formation of MHD insta-

bilities that accompany unstable equilibria. (dW will be defined

at the beginning of Sec. II.)

Any such pre-emptive active feedback MHD control

system would require (i) diagnosis and fitting of the plasma

equilibrium; (ii) analysis of the stability characteristics of

that equilibrium; and (iii) an active controller to steer the

plasma away from its stability boundaries, all within a time-

scale appropriate to the magnetic equilibrium evolution. This

work treats only the second of these three control system

components—namely, developing the capability for real-

time stability analysis.

In particular, in this paper we focus on the real-time analy-

sis of ideal MHD tokamak dW stability. (Additional work on

real-time resistive MHD stability analysis is also underway, but

lies beyond the scope of this paper.) We demonstrate the com-

putational viability of a near real-time ideal MHD stability anal-

ysis by reformulating the dW variational method in a setting

more familiar to control theory. Using a standard Hamilton-

Jacobi analysis, the plasma response matrix is shown to be the

solution of an ideal MHD matrix Riccati differential equation

(MRDE). Identifying the ideal MHD dW problem as a Riccati

problem brings to bear a range of flexible solution methods

which have long been developed in the control theoretic litera-

ture.7–12 Such methods facilitate the near real-time solution of

ideal MHD stability problems, and may also enable stability

studies for equilibria requiring stiff, high mode-number descrip-

tions (e.g., in stellarator and tokamak edge plasmas).

The dW Riccati formulation not only suggests improved

numerical methods for rapid and robust stability analysis,

but also highlights an intuitive physical interpretation of

the plasma response matrix, seemingly unemphasized in the
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existing plasma stability literature. In particular, we show

that the plasma response matrix is a bilinear form mapping

plasma perturbations to their effect on the plasma energy—

dW.

We demonstrate the efficacy of Riccati solution methods

with a practical example, by adapting Glasser’s “Direct

Criterion of Newcomb” (DCON) code1 for use in near

real-time. We replace DCON’s serial integration of its Euler-

Lagrange equations (ELEs) with a domain-decomposed inte-

gration of state transition matrices, effecting the code’s

parallelization and achieving a run-time much less than ITER’s

MHD evolution time. Although we demonstrate the applicabil-

ity of Riccati methods to DCON, a non-inertial 2D ideal MHD

code, we note that other MHD stability codes, which may

incorporate resistive, inertial, 3D, and edge effects, could also

benefit from such techniques. The ELITE,13,14 PEST,15,16

MARG2D,17 and resistive DCON18 stability codes, for exam-

ple, also solve stiff, spectrally decomposed linear ELEs, and

may benefit from the methods described here.

The remainder of this paper is organized as follows: Sec.

II demonstrates the equivalence of the ideal MHD Lagrangian

variational stability problem to an MRDE, emphasizing a

physical intuition for the plasma response matrix. Section III

describes the numerical advantage of treating the dW ELE

integration as a control theoretic MRDE problem, a problem

widely explored in the control theory literature. Section IV

presents additional methods used to achieve high performance

in the real-time, parallelized adaptation of the DCON code,

and characterizes this performance. Section V summarizes

and concludes.

II. THEORY

The dW stability analysis solves for the least stable per-

turbations to a plasma equilibrium—in particular, the spatial

plasma displacements N that most reduce the plasma’s

potential energy (releasing, in the process, kinetic energy).

This change in potential energy is denoted by the functional

dW½N;N†�. A plasma equilibrium with dW> 0 is said to be

ideal-MHD-stable, while dW< 0 indicates ideal-MHD-

instability.

In this section, we present a new, intuitive derivation of

the following claim, which introduces the plasma response
matrix as a map from perturbations at the plasma edge to

their corresponding effect on plasma potential energy:

Claim: The minimum fluid dW, for a stable, axisymmet-

ric plasma equilibrium, is given by

dW N;N†
� �

¼ N†ð1ÞPð1ÞNð1Þ; (1)

where w¼ 1 indicates the plasma edge, NðwÞ 2 CM is a

Fourier-decomposed perturbation (spatial displacement) of

the plasma on flux surface w (truncated at M poloidal mode

numbers), and where matrix P is a solution to the MRDE

P0 ¼ G� P� K†½ �F�1 P� K½ �: (2)

WP � Pð1Þ is called the plasma response matrix.

The prime in P0 above denotes a derivative with respect

to w—the flux label (radial) coordinate. The w-dependent

matrices fF ¼ F†, G ¼ G†, and K 6¼ K†g 2 CM�M describe

the ideal MHD couplings between poloidal mode perturba-

tions and the plasma equilibrium, and their resulting effect

on the plasma’s energy—see a description of their calcula-

tion in Ref. 1.

We demonstrate this claim in the following sections by

(Sec. II A) reviewing the ideal MHD dW Lagrangian formu-

lation; (Sec. II B) Legendre transforming to a Hamiltonian

setting; (Sec. II C) applying Hamilton-Jacobi theory; and

(Sec. II D) reformulating the resulting dW analysis as an

MRDE Riccati problem.

A. Revisiting the dW Lagrangian

We begin by restating Eq. (19) of Ref. 1, which neatly

captures in matrix form the change in energy dW resulting

from the least stable magnetic perturbations of a general axi-

symmetric toroidal plasma

dW N;N†
� �

�
ð1
0

LðN;N0;N†;N†0;wÞdw

¼ 1

2l0

ð1
0

N†0FN0 þN†0KNþN†K†N0 þN†GN
� �

dw:

(3)

Here, 0 	 w 	 1 is a flux surface label (radial) coordinate

extending from the magnetic axis to the plasma edge, and

plasma perturbation N 2 CM is a vector whose entries repre-

sent a radial displacement of the plasma in the direction of ŵ,

Fourier-decomposed into M modes. (Such modes may be

labeled by their toroidal and poloidal mode numbers (n, m),

respectively: Nðm;nÞ exp ½iðmh� nfÞ�.) Although they are

Hermitian adjoints, N and N† are taken to be independent

dynamical variables, capturing the degrees of freedom in their

independent real and imaginary parts. We treat this integral

for the perturbed energy as the action integral of the dW
Lagrangian, with coordinate w acting in lieu of a time parame-

ter. Matrices fFðwÞ;GðwÞ; andKðwÞg are as described above.

Since a plasma is unstable to those perturbations which

reduce its potential energy, we seek to characterize the per-

turbations N that minimize dW. A necessary condition at any

local extremum of dW is that its variational dðdWÞ vanishes

for arbitrary variations to the perturbations, fdN; dN†g. It is

in this sense that L in Eq. (3) represents the appropriate

Lagrangian for stability analysis in our system.

B. Transforming to the Hamiltonian

Noting that L is Hermitian, and assuming our system is

stable to all perturbations—(i.e., L is positive definite)—then

L is convex, and we are free to Legendre transform this vari-

ational problem to its Hamiltonian formalism.19 (As our

method is intended to pre-emptively analyze plasma stability

before MHD instabilities arise, this is an entirely natural

assumption to make.) Defining q1 � N and q
†
2 � N†, our sys-

tem’s canonical momenta (absorbing 1/2l0 for convenience)

are
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p
†
1 � Lq0

1
� LN0 ¼ ðN†0Fþ N†K†Þ;

p2 � L
q†0

2

� LN† 0 ¼ ðFN0 þ KNÞ: (4)

We thus derive the quadratic Hermitian Hamiltonian

Hðq1; q
†
2; p

†
1; p2;wÞ � p

†
1q01 þ q

†0

2 p2

� �
� Lðq1; q

†
2; p

†
1; p2Þ

¼ N†0FN0 � N†GN
� �

¼ q
†
2 p

†
1

� �

�
K†F�1K�G �K†F�1

F�1K F�1

 !
q1

p2

 !
:

(5)

When treating the system dynamically, we have been careful

to separate q1 from q
†
2. Nevertheless, we note that ðq1Þ

† ¼ q
†
2

and ðp1
†Þ† ¼ p2. Throughout the remainder of this paper, we

duly omit such subscripts.

The original Lagrangian problem may therefore be

reframed; we must find the plasma perturbations q (and their

conjugate momenta p) which extremize the action according

to the Hamiltonian of Eq. (5),

0 ¼ d
ð1
0

p†q0 þ q†0p� H
� �

dw

¼
ð1
0

dp†q0 þ dq†0p� dq† @H

@q†
� dp† @H

@p†

� 	
þ c:c:


 �
dw:

(6)

After an integration by parts, the perturbations which satisfy

this variation are found to be those obeying Hamilton’s equa-

tions of motion (EOM)

dq

dw
¼ @H

@p†
and

dp

dw
¼ � @H

@q†
; (7)

which can be expressed compactly in the following 2M
degree-of-freedom linear dynamical system, the dW EOM:

q

p

 !0
¼ �F�1K F�1

G� K†F�1K K†F�1

 !
q

p

 !
: (8)

The integration by parts of the second term in Eq. (6)

yields an additional boundary term, which must vanish at

extrema of the action:

p†dqj10: (9)

In axisymmetric toroidal magnetic systems, regularity condi-

tions require that all modes—except those with jmj ¼ 1—

vanish at the magnetic axis: Nð0Þ � qð0Þ ¼ 0. The (n, m)

¼ (1, 1) mode, on the other hand, finitely displaces the mag-

netic axis such that Nð1;1Þð0Þ 6¼ 0. (Such a displacement of

the axis gives rise to sawteeth oscillations.)

Numerically, however, it is insufficient to choose the cor-

responding “natural” set of initial conditions: q(0)¼ 0 for all

modes jmj 6¼ 1, and p(0)¼ 0 for jmj ¼ 1. This is because the

magnetic axis represents a regular singular point of the ordi-

nary differential equation (ODE), Eq. (8). (As we shall later

discuss, a Riccati solution for this ODE with such initial condi-

tions would be ill-conditioned.) As suggested in Ref. 1, a rig-

orous treatment of the magnetic axis would therefore require

an asymptotic expansion of the M regular extremal modes at a

small distance from the axis. Such an effort lies beyond the

scope of this work, and we shall at present impose q(0)¼ 0

boundary conditions for all modes. We note that this choice

effectively omits extremal jmj ¼ 1 modes from our analysis.

As for boundary conditions at the plasma edge, we are in

general interested in a tokamak equilibrium’s stability to both

internal plasma perturbations, for which Nð1Þ ¼ 0, and exter-
nal perturbations, which have displacements at the plasma

edge. Consequently, we do not impose edge boundary condi-

tions a priori, and will be interested in the behavior of all M
independent solutions to Eq. (8) consistent with the boundary

conditions we have selected on the axis.

C. Hamilton-Jacobi theory

We now solve our system using a classical strategy of

Hamiltonian theory, canonically transforming to the correspond-

ing Hamilton-Jacobi problem (as described in Ref. 19). In this

approach, the problem is transformed by performing a canonical

transformation that zeros the Hamiltonian everywhere. Recalling

that any canonical transformation ðq; p; HÞ 7!ðQ;P; KÞ must

preserve the Lagrangian up to a total “time” derivative

p†q0 þ q†0p� H ¼ P†Q0 þQ†0P� K þ dF

dw
; (10)

we use a type-2 generating function, demanding that

F ¼ F2ðq; q†;P;P†;wÞ �Q†P� P†Q (11)

and setting K¼ 0. This canonical transformation, substituted

into Eq. (10), yields three equations (or five, including equiv-

alent adjoints)

p ¼ @S

@q†
;

Q ¼ @S

@P†
;

0 ¼ H þ @S

@w
:

(12)

Here, H ¼ Hðq; q†; p; p†;wÞ is our Hamiltonian, and S is

Hamilton’s principal function, a solution to

F2 ¼ Sðq; q†;P;P†;wÞ; (13)

for which we must solve. Substituting Eqs. (12) into Eq. (5),

we find that S satisfies the following first-order second-

degree partial differential equation (PDE):

Sw þ q† Sq

� � K†F�1K�G �K†F�1

�F�1K F�1

� 	
q

Sq†

� 	
¼ 0:

(14)

Subscripts of S in the equation above denote partial deriva-

tives, e.g., Sq � @S=@q.
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Before solving this PDE for S (as we will do in

Sec. II D), we note that K¼ 0 implies constant QðwÞ � b

and PðwÞ � a, because Q0 ¼ @K=@P ¼ 0 ¼ �@K=@Q ¼ P0.
Substituting from Eq. (12) for the partial derivatives of S,

therefore, the total derivative of S is found to be

dS

dw
¼ �H þ p†q0 þ q†0p

� �
: (15)

Upon comparison with the first line of Eq. (5), we note that

we have recovered the well-known result of Hamilton-Jacobi

theory

Sðq; q†; a; a†;wÞ ¼
ðw

Ldwþ const: (16)

We may choose the overall constant that can be freely

added to any solution of Eq. (14) in order to achieve a physical

interpretation of S. In particular, the regularity assumption of

our perturbations at the magnetic axis, (as well as the vanish-

ing measure dw at the axis), encourages us to set S(w¼ 0)¼ 0.

S may then be regarded as the action of our system, which

tracks the “cumulative change” in plasma energy due to an

extremal perturbation NðwÞ between the magnetic axis and a

given flux surface w—i.e., on the interval [0, w]. The impor-

tance of this choice for S is underscored by noting that, at the

plasma edge, S(w¼ 1) corresponds to the value of dW

Sjw¼1 ¼
ð1
0

Ldw ¼ dW N;N†
� �

: (17)

Equation (14) is therefore a dynamical equation for the

action and, by extension, for the cumulative energetic cost of

a plasma perturbation. When solved at the plasma edge, Eq.

(14) implicitly maps the edge perturbation to its correspond-

ing least stable excited modes, and measures the impact of

such modes on the plasma potential energy. Indeed, given ini-

tial conditions, a solution for the action S to Eq. (14) would

yield the corresponding solutions for q and p as well.

D. The Riccati formulation

We may now solve for S. Let us assume (and we shall

prove in a moment) that our dynamical variables obey a lin-

ear dependence

pðwÞ ¼ PðwÞqðwÞ (18)

for some matrix P. (Note matrix P—sans serif—is not to be

confused with transformed canonical coordinate vector P.)

Using the product rule to take the derivative of Eq. (18), and

substituting from our dynamical Eq. (8), we derive the ideal
MHD dW Riccati formulation

P0 ¼ G� P� K†½ �F�1 P� K½ �: (19)

(By the self-adjointness of this ODE, we observe that P is

everywhere Hermitian if it is anywhere Hermitian.) Once

the linear relationship in the dynamical variables Eq. (18) is

assumed, the Riccati Eq. (19) is an equivalent formulation of

the dynamical Eq. (8) resulting from the dW analysis. We

note the equivalence of the Riccati matrix P to the critical

determinant matrix W in Eq. (58) of Ref. 1. Indeed, the

Riccati formulation is a natural setting for the study of a

Hamiltonian system’s stability.

We now observe that, given Eqs. (12) and (18), it is nat-

ural to attempt a solution for S of the form

Sðq; q†; a; a†;wÞ ¼ q†PðwÞq: (20)

We see that substituting this relation for S into the dynamical

action PDE of Eq. (14) immediately reproduces the Riccati

ODE in Eq. (19). The validity of the solution Eq. (20) for S
is thereby demonstrated.

Despite the complexity of the nonlinear PDE Eq. (14), the

Hamiltonian structure of our problem allows us to show that

the above solution for S is nearly unique. In particular, the line-

arity assumption of Eq. (18) and the first of the transformed

dynamical Eqs. (12) require Sðq; q†; a; a†;wÞ ¼ q†PðwÞq
þ f ða; a†;wÞ for some function f. Upon substitution into Eq.

(14), then, and after applying Eq. (19) for P0 ¼ @P=@w, one

discovers that this solution for S must have @f=@w ¼ 0 as

well. Since the vectors fa; a†g are constant for all w, we are

left to conclude that, indeed, Eq. (20) is the unique solution of

our PDE, up to a constant.

We have only left to show, then, that there exists a

matrix PðwÞ satisfying the linear relationship in Eq. (18).

We do so by construction, finding P explicitly, as follows.

We concisely rewrite Eq. (8) in the form

x0ðwÞ ¼ LðwÞxðwÞ; where x ¼
q

p

 !
: (21)

We then consider the fundamental matrix of solutions U for

this ODE, a 2M� 2M matrix whose columns form a com-

plete basis for all possible solutions of the system

UðwÞ ¼
j j

x1ðwÞ 
 
 
 x2MðwÞ
j j

2
64

3
75

U0ðwÞ ¼ LðwÞUðwÞ

where Uð0Þ ¼ 12M�2M:

8>>>><
>>>>:

(22)

Note that U0 � Uð0Þ may in general be any nonsingular

matrix, so long as it spans the space of all possible initial con-

ditions for the ODE. (We choose U0 ¼ 1 in the definition

above merely for its simplicity.). Since the fundamental matrix

forms a complete basis, a solution satisfying any boundary

condition can be formed from a linear combination of its col-

umns—a feature we now put to use.

Since U0 ¼ 1 is nonsingular, x0 ¼ U0c for some con-

stant coefficient vector c. But by ODE linearity, it must then

hold true for all w that xðwÞ ¼ UðwÞc. Combining these rela-

tionships, we find a familiar result from linear ODE theory

xðwÞ ¼ UðwÞ U�1
0 x0

� �
¼ UðwÞx0: (23)

032507-4 Glasser, Kolemen, and Glasser Phys. Plasmas 25, 032507 (2018)



(The economy of the choice U0 ¼ 1 lies in the cancellation

of the inverse factor above.) In this way, UðwÞ is to be

regarded as the state transition matrix—or propagator—of

the system, which maps ODE solutions forward in w.

Therefore, given the fundamental matrix of solutions

UðwÞ, we may map forward any initial conditions that are

imposed at w¼ 0. In particular, we may write Eq. (23) as

qðwÞ
pðwÞ

 !
¼

UqqðwÞ UqpðwÞ
UpqðwÞ UppðwÞ

 !
q0

p0

 !
(24)

for any initial conditions q(0)¼q0, p(0)¼ p0.

This expression is sufficient to assert a general linear

dependence between q and p in any such linear system of

ODEs. After all, given p0 ¼ P0q0, we see that

pðwÞ¼ UpqðwÞþUppðwÞP0

� �
q0

¼ UpqðwÞþUppðwÞP0

� �
UqqðwÞþUqpðwÞP0

� ��1
qðwÞ:

(25)

To specify this linear dependence for our q0¼ 0 bound-

ary conditions at the axis, however, we must modify this

analysis; in particular, we set q0 ¼ 0 
 p0. Substituting this

relation into Eq. (24), after a short manipulation we again

find a linear mapping from qðwÞ to pðwÞ

pðwÞ ¼ ðUppðwÞU�1
qp ðwÞÞqðwÞ: (26)

This relation is in the desired form of Eq. (18), and satisfies

our choice of boundary conditions. The matrix factor in Eq.

(26) thus provides a solution to the ideal MHD dW Riccati

equation, proving our claim.

We briefly comment here on the numerical difficulty

posed by the “natural” boundary conditions for the tokamak,

with q0 6¼ 0 for jmj ¼ 1 modes, as discussed in Sec. II B. In

particular, such “natural” boundary conditions fail to pro-

duce a well-conditioned Riccati solution because in such a

case there is no linear transformation from the set of all q0 to

the set of all p0, nor vice versa. In other words, the “natural”

boundaries require that the set of M q0 vectors and the set of

M p0 vectors are both degenerate. An asymptotic expansion

of solutions slightly off-axis would repair this degeneracy.

E. Analysis: The plasma response matrix

At the plasma edge, the Riccati solution

Pð1Þ ¼ Uppð1ÞU�1
qp ð1Þ � WP (27)

comprises the plasma response matrix. It may be regarded as

the plasma permeability, or the “conjugate momentum” cre-

ated per unit of plasma displacement—i.e., WP � p=q.

The Riccati formulation clarifies how WP is appropri-

ately viewed as the bilinear form which maps a perturbation

q(1) at the plasma surface to its associated energetic cost,

dW. This interpretation emphasizes the importance of its

eigenvalues in studies of plasma stability. In particular, the

system’s energy due to a perturbation is expressly given by

combining Eqs. (17) and (20)

dW N;N†
� �

¼ Sjw¼1 ¼ N†ð1ÞPð1ÞNð1Þ � N†ð1ÞWPNð1Þ:
(28)

The foregoing relation appears in Ref. 1 in the context of a

proof of Newcomb’s criterion. However, recognition of its

connection to Hamilton-Jacobi theory and the Riccati equa-

tion—and, by extension, the wider control literature—has

been absent in the plasma stability literature.

We note that the quadratic Hamiltonian of Eq. (5) imme-

diately renders our problem on a similar footing to linear

quadratic regulator (LQR) control problems that feature qua-

dratic cost functions. This is the cause of the appearance of

the Riccati equation in each case. Identifying our problem

as a Riccati problem is quite profitable: Techniques for solv-

ing such problems are well-developed, even when the ODEs

involved are stiff, or singular. Such techniques can therefore

be leveraged to improve plasma stability codes, as we now

show.

III. NUMERICAL FEATURES OF THE RICCATI
SOLUTION

Identifying the dW stability problem as an MRDE con-

nects plasma stability calculations to the wider academic litera-

ture devoted to solving Riccati problems. The stiffness of ideal

MHD ODE solutions is common in Riccati boundary value

problems (BVPs), and methods for overcoming it are widely

discussed, for example in Refs. 8–11. Solutions for approaching

singular Riccati ODEs feature in the literature as well: Ref. 11,

for example, describes a solution method for singular Riccati

ODEs that integrates through the equation’s singularities.

Such literature suggests that in solving for WP, it may at

times be advantageous not to integrate the Hamiltonian sys-

tem of Eq. (8), but rather solve for the plasma response matrix

via the Riccati Eq. (19), directly. In high mode-number 3D

stellarator and tokamak edge calculations, for example, where

stiffness can render the Hamiltonian system nearly insoluble,

such an alternative could prove decisive.

The parallel implementation of Riccati solutions has

also received wide attention in the literature.12 A common

technique for solving matrix Riccati control problems, which

immediately renders their solution in parallel, is that of state

transition matrices7 (introduced in Sec. II D). We briefly

explore how state transition matrices afford a parallelizable

solution to the ideal MHD Riccati problem, and further miti-

gate the difficulties caused by stiffness as well as the singularity

of solutions at the rational surfaces. We then discuss the paral-

lel adaptation of DCON, using these features, in Sec. IV.

Viewing our ODE’s fundamental matrix of solutions U
as a control theoretic state transition matrix—or propaga-
tor—proves quite useful in solving the dW EOM [Eq. (8)].

In particular, as seen in Eq. (24), U is an operator that maps

solutions forward in w. As a result, any interval of the ODE

Eq. (22) can be subdivided, so that U is recovered from a

multiplication of its subpropagators

xðw2Þ ¼ Uðw2;w0Þxðw0Þ ¼ Uðw2;w1ÞUðw1;w0Þxðw0Þ;
(29)

032507-5 Glasser, Kolemen, and Glasser Phys. Plasmas 25, 032507 (2018)



where Uðwi;wiÞ ¼ 1 is the initial condition for subinterval i.
Integration of Eq. (22) across subdomains is thereby reduced

to the multiplication of matrices that may each be indepen-

dently calculated, which affords an integration of the EOM

in parallel.
Furthermore, since the ultimate aim of our calculation is

WP ¼ Pð1Þ ¼ Uppð1ÞU�1
qp ð1Þ, we are free to transform the

cumulative subpropagator 8N � 1

UN �
YN
i¼1

Ui;i�1 �
YN
i¼1

Uðwi;wi�1Þ (30)

by any right-multiplied linear operator of the form RN

¼ XN 0

YN AN

� 	
with AN nonsingular. For example, the product

U21 U10R1ð ÞR2 ¼
Uqq Uqp

Upq Upp


 �
21

Uqq Uqp

Upq Upp


 �
10

R1

 !
R2

(31)

leaves

WP ¼ ðU2qpA1A2ÞðU2ppA1A2Þ�1 ¼ U2qpU2
�1
pp (32)

invariant. In particular, this enables us to perform Gaussian

elimination (via column reduction) on the right-side columns

of each cumulative subpropagator, separating orders of mag-

nitude spanned by the stiff solutions of the ODE. This crucial

advantage mitigates otherwise catastrophic numerical error

in taking the matrix product of subpropagators, which may

span many orders of magnitude (�Oð10MÞ, say).

Another advantage of the domain-decomposed integration

of the state transition matrix is its suitability for integrating

near singular rational surfaces. We note that subpropagators

are invertible, and therefore satisfy

U21 ¼ U�1
12 : (33)

This feature admits a convenient reversibility of the direction

of integration, which may be leveraged to assist at the singu-

lar surfaces, as follows.

As is well known, the ideal MHD dW EOM have regular

singularities at rational surfaces, at the magnetic axis, and at

the separatrix. However, as was previously noted in Ref. 20,

the solutions to the EOM are well-behaved when they are

integrated away from the singular surfaces; a solution which

asymptotically diverges in the forward direction of integra-

tion decays in the reverse direction. Therefore, no numerical

instability is created, and the integrated modes retain their

linear independence. (Such behavior is illustrated in Fig. 1.)

As a result, integration across a singular surface may be

achieved by integrating backward from the left side of the

singular surface, and taking the matrix inverse of the result-

ing subpropagator. This is then multiplied with the forward-

integrated subpropagator on the right of the singular surface.

Using asymptotic expansions at the singular surfaces as ini-

tial conditions renders this integration even more numeri-

cally robust by effectively separating the solution subspaces.

It is worth further emphasizing the freedom that subdi-

viding the domain of integration affords. Its adaptability

may render it useful for calculations beyond the ideal MHD

model, providing a convenient technique for resistive and

high toroidal mode number MHD stability problems, for

example. The authors’ early efforts at adapting resistive

MHD D0 calculations—which are known for their numerical

FIG. 1. (a) The forward integra-

tion of modes without modifica-

tion exhibits asymmetric

behavior near the singular point.

On approach to w ¼ ws, all

modes are dominated by their

projection along the asymptoti-

cally diverging singular mode

and numerically lose their linear

independence. (b) A reversal of

the integration to the left of the

surface restores symmetry and

linear independence to the solu-

tions on both sides of the singu-

larity. (c) Highlighting the

resonant modes at ws—i.e.,

qðwsÞ ¼ m=n. (d) Integration

reversal for w < ws and exclu-

sion of the resonant modes

together reduce the solution

scaling by more than 4 orders of

magnitude.
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intractability—have demonstrated the method’s flexibility

and robustness, though a full discussion of this extension

lies beyond the scope of the present work.

IV. A PARALLEL IMPLEMENTATION: DCON

We chose to apply Riccati methods to the ideal DCON

code due to its comparatively rapid solution time and wide-

spread use. Using the techniques described in Sec. III, we

adapt the ODE integration of DCON, which comprises �90%

of the code’s total runtime.

A. Grid-packing algorithm

In our application of the Riccati solution techniques to a

parallel adaptation of DCON, we integrate the ODE of Eq.

(22) using the ZVODE21 complex adaptive integrator. We par-

allelize this integration with OpenMP,22 subdividing the inter-

val between the magnetic axis and plasma edge. The increased

computational cost of our ODE near ill-behaved surfaces (to

wit, the magnetic axis and separatrix, and the rational surfaces

between them), requires a careful division of integration

intervals.

We find that a modification to a grid-packing algorithm

suggested in Ref. 18 works adequately to load-balance the

computation. In particular, we numerically fit a form-factor

dsðwÞ ¼
X

i

ai

1þ bijw� wsi
j dw (34)

to estimate the time of integration near a point w, located at

some distance from each nonanalytical surface wsi
. The coef-

ficients fai; big are determined by the surface type of wsi

(axial, rational surface, or edge separatrix). The total time

of integration over an interval ½w1;w2� is therefore estimated

to be

s ¼ c0 þ
ðw2

w1

dsðwÞ; (35)

where c0 is fit to the unavoidable initialization time of the

integrator on each subinterval. The grid is then chosen to

minimize s for a given number of subintervals.

The importance of grid-packing is emphasized in Fig. 2.

It is apparent that without an effective packing scheme, the

benefit of parallelization would be quite limited; a single

interval might otherwise require runtime comparable to run-

times of the entire parallelized code.

B. Performance and accuracy

As shown in Fig. 3, the eigenvalues of DCON’s plasma

response matrix are reproduced with high accuracy using our

new parallel methodology. For this ITER-relevant CHEASE-

generated23 EFIT24 equilibrium with two rational surfaces, even

without a complete optimization of the parallel DCON code,

our initial implementation consistently achieves a fluid ODE

integration time of �185 ms. Given a projected ITER confine-

ment time of sE � 5 s,25 such computation speed may be suffi-

cient for an ideal MHD control system implementation at ITER.

After further scaling, such speed may enable a demonstration of

ITER-relevant control schemes on operational machines as

well, such as DIII-D, where confinement time is estimated to be

sE � 200 ms.26 The above results were achieved using 2.4 GHz

Intel Broadwell processors, with 28 cores.

As a further test of our new method, we plot in Fig. 4

the ten smallest energy eigenvalues of the plasma response

matrix over the course of DIII-D shot #163518.27 This QH-

mode shot was chosen because its lack of ELMs allowed for

a fair comparison between the two methods—(i.e., one with-

out ELM-induced reconstruction issues). The accurate, rapid

analysis of such a shot’s time-varying dW—which corre-

sponds to the smallest plotted energy eigenvalue—would be

FIG. 2. Time of integration is seen to spike on intervals near the magnetic

axis and singular surfaces for a naive, even-interval integration (blue). After

applying the grid-packing scheme, the computation time per interval is sub-

stantially smoothed (orange).

FIG. 3. Plasma response matrix eigenvalues are accurate to within 0.04% of

the original DCON code for a CHEASE-generated23 EFIT24 equilibrium.
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critical to any real-time ideal MHD control system of the

type we have described.

One factor ostensibly limiting the scalability of our

approach is a tradeoff between the speedup of a parallel inte-

gration over a finer subdivision of intervals, on the one hand,

and the increased time required to matrix-multiply the result-

ing subpropagators, on the other. As one might expect, how-

ever, this constraint turns out to be quite loose, due to the

computational ease of matrix multiplication. As depicted in

Fig. 5, the benefit of parallelization is likely to extend to a

much larger number of processors.

V. CONCLUSION

We have leveraged the dW problem’s quadratic

Hamiltonian structure to derive an alternate representation of

the ideal MHD plasma response as a solution to a Riccati dif-

ferential equation. In doing so, we have sought to connect

ideal MHD stability to the wider control literature and

highlighted the plasma response matrix’s intuitive interpreta-

tion as the bilinear form mapping perturbations to their ener-

getic cost. We have used control theoretic Riccati methods

to adapt the generic tokamak dW stability analysis and dem-

onstrated the success of this new methodology by modifying

the ideal DCON code to achieve runtimes appropriate for

tokamak ideal MHD stability control. In particular, we have

shown the numerical advantages of using common MRDE

state transition matrix techniques in finding robust solutions

for the dW EOM in parallel.

We surmise that the abundant literature on the solutions

of Riccati equations may be exploited to simplify ideal

MHD dW stability analyses beyond the treatment explored

here. As noted earlier, one might, for example, consider inte-

grating the MRDE, Eq. (19) itself, to solve for the plasma

response matrix WP in stiff stellarator and tokamak edge cal-

culations. Although the singularities of this equation can be

just as virulent as the singularities of the dynamical ODE in

Eq. (8)—these nonanalytical features appear unavoidably in

the coefficients of the MRDE themselves, after all—asymp-

totic expansions would likely prove useful in the solution of

Eq. (19) at singular surfaces. A further advantage of solving

Eq. (19) directly is that where P is ill-behaved, the dual
Riccati equation for S � P�1 can be equivalently solved

instead:

S0 ¼ �SGSþ 1� SK†½ �F�1 1� KS½ �: (36)

(This expression is derived from the formula

P0 ¼ ðS�1Þ0 ¼ �S�1S0S�1 ¼ �PS0P (37)

for the matrix derivative.)
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