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Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifica-

tions to sub-cyclotron global Alfv�en eigenmodes (GAEs) in low-aspect ratio, NSTX-like condi-

tions. Key parameters defining the fast ion distribution function—the normalized injection velocity

v0=vA and central pitch—are varied in order to study their influence on the characteristics of the

excited modes. It is found that the frequency of the most unstable mode changes significantly and

continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances

which drive the modes, and depending most substantially on v0=vA. This unexpected result is pre-

sent for both counter-propagating GAEs, which are routinely excited in NSTX, and high frequency

co-GAEs, which have not been previously studied. Large changes in frequency without clear corre-

sponding changes in the mode structure are signatures of an energetic particle mode, referred to

here as an energetic-particle-modified GAE. Additional simulations conducted for a fixed MHD

equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium

changes due to energetic particle effects. Published by AIP Publishing.
https://doi.org/10.1063/1.4998602

I. INTRODUCTION

High frequency fluctuations identified as global Alfv�en

eigenmodes (GAEs) and compressional Alfv�en eigenmodes

(CAEs) are routinely excited in beam-heated, low aspect

ratio tokamaks such as NSTX1–4 and MAST.5 These modes

are driven by the relatively large super-Alfv�enic ion popula-

tion that results from the low toroidal field, though they have

also been observed in DIII-D.6 GAEs are ideal shear Alfv�en

MHD modes with frequencies lying just below minima of

the Alfv�en continuum, e.g., xGAE � ½kkðrÞvAðrÞ�min. Their

existence results from coupling to the magnetosonic mode,

an equilibrium current, current density gradient, and finite

x=xci effects.7–11 “Nonconventional” GAEs may also be

excited above a local maxima in the continuum through

similar mechanisms.12 Due to their separation from the con-

tinuum, some GAEs may avoid substantial continuum damp-

ing. Consequently, these modes can be driven unstable by

the free energy in gradients in the energetic particle (EP) dis-

tribution. Instability requires energetic particles to resonate

with the wave through the general Doppler-shifted cyclotron

resonance x� kkvk � k?vDr ¼ ‘xci, with drive generated by

the anisotropy in beam-like distributions. The cyclotron har-

monic coefficient ‘ can be –1, 0, or 1 depending on the sign

and magnitude of the Doppler shift. Note that here and for

the rest of the paper, the “Doppler shift” refers to the shift in

the resonance due to a particle’s parallel and drift motion,

not the bulk rotation of the plasma.

GAEs were initially discovered in cylindrical plasmas7

(very large aspect ratio approximation) and later found to be

stabilized by finite toroidicity effects.13,14 These early works

considered only the ‘ ¼ 0 Landau resonance. In NSTX, the

beam injection velocity v0 can be 3� 6 times larger than the

Alfv�en velocity vA, which can result in a Doppler shift large

enough to satisfy the cyclotron resonance condition with

‘ ¼ 61 for sufficiently large kk. Cyclotron resonance-driven

GAEs which propagate against the direction of the plasma

current (cntr-GAEs) have been studied extensively and are

common in NSTX.1–3,15,16 Higher frequency co-GAEs

excited by the ‘ ¼ �1 resonance have not been studied

before this work or observed experimentally. Moreover,

most of the existing work on EP effects on high frequency

Alfv�en eigenmodes was focused on non-adiabatic beam

effects, i.e., beam contribution to the growth rate alone. The

model used here includes all fast ion effects fully self-

consistently, allowing excitation via cyclotron resonances,

EP modifications to the equilibrium, and an adiabatic contri-

bution to the GAE dispersion.

A detailed study of GAE properties is warranted because

of their potential effects on plasma heating profiles. In partic-

ular, in NSTX, the presence of GAEs and CAEs has been

linked to anomalously flat electron temperature profiles at

high beam power,17,18 which limits fusion performance and

could imperil future spherical tokamak development. The

inferred electron diffusion profile needed to generate this

flattening is not associated with any source of microturbu-

lence seen in gyrokinetic simulations of the core region

where gradients are absent.19 In the same discharges, the

thermal ion diffusivity is close to neoclassical, and multiple

diagnostics have ruled out large beam ion transport.17 There

are two previously proposed mechanisms in which GAEs

and CAEs can modify the electron temperature profile. One

involves the stochastization of electron orbits induced by the

presence of many overlapping modes of sufficient ampli-

tude.20 The other is an energy-channeling mechanism where

a core-localized CAE or GAE converts to a kinetic Alfv�en

wave (KAW) at the Alfv�en resonance location, which dampsa)Electronic mail: jlestz@pppl.gov
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efficiently electrons, effectively redirecting neutral beam

power from the core to the edge.21–24 These mechanisms

have been demonstrated numerically, though their quantita-

tive predictions do not presently reproduce the experimental

anomaly. Furthermore, GAEs are prone to frequency chirp-

ing in NSTX, which can modify the characteristics of fast

ion transport and presents opportunities for validating non-

linear theories.25 GAE “avalanches”—sudden, broad spec-

trum, large amplitude bursts—were also observed on NSTX,

with implications for fast ion transport.15 Further investiga-

tion of the character and properties of the sub-cyclotron

Alfv�en eigenmodes in simulations is motivated by their

impact on the thermal plasma.

Linear 3D hybrid simulations presented here demonstrate

that the high frequency shear Alfv�en waves excited in NSTX

conditions can be strongly nonperturbative—a fact that has

not been recognized before. Consequently, this mode could

be considered an energetic particle mode (EPM), or an ener-

getic-particle-modified global Alfv�en eigenmode (EP-GAE).

This is primarily concluded due to large changes in the fre-

quency of the most unstable mode in proportion to the maxi-

mum energetic particle velocity without clear corresponding

changes in the mode structure or location tracking the mini-

mum of the Alfv�en continuum. This behavior is pervasive for

both co- and counter-propagating modes for all examined

toroidal mode numbers, jnj ¼ 4� 16. If the resonant value of

vk is proportional to the injection velocity v0, then the large

frequency changes can be qualitatively explained by the reso-

nance condition. The most unstable mode frequency is deter-

mined to a large degree by features of the energetic particle

population, in addition to properties of the thermal plasma—a

key signature of energetic particle modes (EPMs).26 These

may be the first example of EPM-type fluctuations that are

excited at a significant fraction of the ion cyclotron fre-

quency, typically x=xci � 0:1� 0:5. The goal of this paper

is to study the properties of unstable EP-GAEs in simulations,

in order to guide future theoretical studies of these modes and

enable experimental tests of their distinguishing features.

This paper is organized as follows: The hybrid model

used to simulate the plasma is described in Sec. II. The pri-

mary simulation results which this paper seeks to explain are

detailed in Sec. III. The relative importance of changes to

the equilibrium versus changes to the fast ions in accounting

for this effect is investigated in Sec. IV. The poloidal mode

structure of the excited modes is shown for a range of EP

energies in Sec. V, and the frequency of the most unstable

mode for a wide variety of beam parameters is compared

against the shear Alfv�en dispersion relation. Lastly, the char-

acteristics of the resonant particles are examined in Sec. VI

as a function of the injection energy in order to clarify the

role that the resonant wave-particle interaction plays in set-

ting the frequency of the most unstable mode. A summary of

the key results and discussion of implications for NSTX-U is

given in Sec. VII.

II. HYBRID MODEL DESCRIPTION

To study these modes numerically, the hybrid MHD/

particle code HYM27–29 is used. HYM is an initial value code

run in full 3D toroidal geometry. A single fluid MHD ther-

mal plasma is coupled to energetic ions treated kinetically

with a full orbit dF scheme. Full orbit physics must be

retained for the fast ions in order to study waves excited by

cyclotron resonances. These two components interact via

current coupling through the thermal plasma momentum

equation

q
dV

dt
¼ �rPþ ðJ � JbÞ � B� enbðE� gdJÞ þ lDV; (1)

where q;V;P are the thermal plasma mass density, fluid

velocity, and pressure. The energetic particle (beam) density

and current are nb and Jb. The total plasma current is deter-

mined by l0J ¼ r� B, while l0dJ ¼ r� dB is the per-

turbed current. Nonideal MHD physics is introduced through

the viscosity coefficient m and resistivity g. In addition to Eq.

(1), the thermal plasma evolves according to the following

set of fluid equations:

E ¼ �V � Bþ gdJ; (2a)

@B

@t
¼ �r� E; (2b)

@q
@t
¼ �r � qVð Þ; (2c)

d

dt

P

qc

� �
¼ 0: (2d)

In fully nonlinear simulations (such as those presented

in Ref. 24), the pressure equation includes Ohmic and vis-

cous heating in order to conserve the system’s energy.

These effects are neglected in the linearized simulations

presented here, reducing to the adiabatic equation of state

in Eq. (2d) with c ¼ 5=3. The nonlinear system conserves

total energy exactly.30 The fields are evolved on a cylindri-

cal grid (z;R;/), while the particle quantities are computed

on a Cartesian grid (z, x, y) sharing the z grid points. A sec-

ond order accurate mapping between these two grids is

defined by quadratic splines. In these simulations, the parti-

cle grid has dimensions (120, 51, 51), with 500 000 par-

ticles used to represent the fast ions. The field grid is of size

(120, 120, 64) when simulating modes with toroidal mode

numbers jnj < 8, and a grid with dimensions (120, 96, 128)

is used to resolve the higher mode numbers. For specific

cases, up to four times larger grid sizes and 20 � 106 par-

ticles have been tested, which can result in slightly different

growth rates but have no impact on frequency or mode

structure. All simulations used a time step of Dt ¼ 0:05xci0

to evolve the vector potential A, bulk momentum, density,

pressure, and particle quantities. These fields are then used

to update the remaining field quantities.

The EP distribution is decomposed into an equilibrium

and perturbed part, F ¼ F0 þ dF. Each numerical particle

has a weight w ¼ dF=P where P is a function of integrals of

motion used for particle loading ðdP=dt ¼ 0Þ. These dF par-

ticles representing the fast ions evolve according to the equa-

tions of motion in the following equations:
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dx

dt
¼ v; (3a)

dv

dt
¼ qi

mi
E� gdJ þ v� Bð Þ; (3b)

dw

dt
¼ � F

P
� w

� �
d ln F0

dt
: (3c)

Since w / dF, particles with large weights indicate

regions of phase space with strong wave-particle interac-

tions. The simulations included in this study are linear,

meaning that the fluid equations described in Eq. (2) omit

nonlinearities in fluctuating quantities and the particle tra-

jectories are unperturbed from their equilibrium paths.

The equation for particle weights is also linearized, i.e.,

the w term is dropped from the RHS of Eq. (3c). Particle

weights are used to calculate the nb and Jb terms which

appear in Eq. (1).

The equilibrium fast ion distribution function is written

as a function of the constants of motion E, k, and p/. The

first, E ¼ 1
2

miv2, is the particle’s kinetic energy assuming no

equilibrium electric field. Next, k ¼ lB0=E is a pitch angle

parameter, where first order corrections in qEP=LB to the

magnetic moment l are kept for improved conservation.29

This correction is more relevant in spherical tokamaks than

conventional tokamaks since the fast ion Larmor radius can

be a significant fraction of the minor radius. In addition, k
can be regarded as a trapping parameter, since k < 1� � cor-

responds to passing particles, and particles with 1� � < k
< 1þ � are trapped, where � ¼ r=R0. Lastly, p/

¼ �qiwþ miRv/ is the canonical toroidal angular momen-

tum, conserved due to the axisymmetric equilibria used in

these simulations. In the previous expression, w is the poloi-

dal magnetic flux, and below w0 is its on-axis value. The dis-

tribution is assumed to be a product of nearly single variable

distributions: F0ðv; k; p/Þ ¼ F1ðvÞF2ðkÞF3ðp/; vÞ defined by

the following equations:

F1ðvÞ ¼
1

v3 þ v3
c

for v < v0; (4a)

F2ðkÞ ¼ exp � k� k0ð Þ2=Dk2
� �

; (4b)

F3 p/; vð Þ ¼
p/ � pmin

miR0v� qiw0 � pmin

� �r

for p/ > pmin: (4c)

The energy dependence, F1ðvÞ, is a slowing down func-

tion with injection velocity v0 and critical velocity vc (also

known as the “crossover velocity”31). A beam-like distribu-

tion in pitch is used for F2ðkÞ, centered around k0 and width

Dk. Characteristic profiles of beam density calculated by the

global transport code TRANSP32 and Monte Carlo fast ion

module NUBEAM33 motivate the polynomial form of

F3ðp/; vÞ. A prompt-loss boundary condition at the last

closed flux surface is imposed by requiring p/ > pmin

¼ �0:1w0. HYM is capable of including the energetic par-

ticles self-consistently or ignoring them when solving for the

equilibrium. Inclusion of the fast ions results in a modified

Grad-Shafranov equation29

@2w
@z2
þ R

@

@R

1

R

@w
@R

� �
¼ �R2P0 � HH0 � GH0 þ RJb/: (5)

G(R, z) is a poloidal stream function for the beam current,

defined as Jb;pol ¼ rG�r/. HðwÞ is defined from

hðR; zÞ ¼ HðwÞ þ GðR; zÞ and h(R, z) appears in the equilib-

rium field B ¼ r/�rwþ hr/. The last two terms on the

right hand side of Eq. (5) are the contributions from the fast

ions, which can generate pressure anisotropy, an increased

Shafranov shift, and more peaked current profiles. Although

the beam density is small, nb � ne, the current carried by the

beam can nevertheless be comparable to the thermal plasma

current due to the significant difference in energy between

the fast ions and thermal particles. For example, the ratio of

energy stored in the beam ions relative to the bulk thermal

plasma can exceed 30%. Since this study focuses on changes

to GAE frequencies as a function of the EP distribution,

understanding the effects of the energetic particles on the

equilibrium cannot be ignored. Specifically, changes to the

equilibrium may influence the mode frequencies since

the Alfv�en continuum is sensitive to the thermal plasma pro-

files. Hence, an accurate explanation of how the GAE fre-

quencies change with energetic particle parameters requires

proper accounting of the effects of the energetic particles on

the equilibrium. Presently, thermal plasma rotation is not

included in the equilibrium.

III. FREQUENCY DEPENDENCE ON FAST ION
PARAMETERS

This section describes results obtained from the self-

consistent hybrid simulations, e.g., those with an equilibrium

that self-consistently includes fast ion effects. Since linear

initial value simulations are conducted, only the mode with

the largest growth rate can be seen. Consequently, the results

in this section represent the properties of the most unstable

mode in each simulation. A filter for a single toroidal har-

monic is imposed on the simulation so that many distinct

eigenmodes can be studied independently.

Each of the simulations is based on the conditions of the

well-analyzed NSTX H-mode discharge 141398,3,16 which

has nominal experimental beam parameters of nb=ne

¼ 0:053 and v0=vA ¼ 4:9, while k0 ¼ 0:7;Dk ¼ 0:3; vc

¼ v0=2; and r¼ 6 are chosen to reproduce the beam ion dis-

tribution function calculated by NUBEAM. In ordinary NSTX

operations, v0=vA ¼ 3� 6 and k0 � 0:5� 0:7. In this set of

simulations, the normalized injection velocity v0=vA and the

central pitch k0 of the energetic particle distribution are varied

in order to explore their effect on characteristics of the excited

sub-cyclotron modes. Generally, unstable modes in the

simulations are identified as GAEs instead of CAEs when

dB? 	 dBk near the plasma core. This identification is sup-

ported by previous cross validation between experiment, HYM,

and the NOVA eigenmode solver. These efforts revealed good

agreement between experimental measurements, GAEs found

by NOVA, and the shear-polarized modes excited in HYM simu-

lations.1–3,34 The modes identified as GAEs have linear growth

rates ranging from c=xci ¼ 0:1%� 5%, with most around 1%
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or less. Normalized instead to the mode frequency yields

c=x ¼ 1%� 20%, with a few percent typical.

Unexpectedly, the frequency of the most unstable GAE

for a single toroidal harmonic changes significantly as the

energetic particle distribution is changed from one simula-

tion to the next. The change in frequency is not usually

accompanied by significant changes in the mode structure.

Most notably, varying the injection velocity by a factor of

two results in a factor of two change in the mode frequency.

Since these modes are a non-negligible fraction of the cyclo-

tron frequency (x=xci � 0:1� 0:5), this can represent a dra-

matic change in frequency of hundreds of kilohertz. As

GAEs are expected to have frequencies slightly below a min-

imum of the Alfv�en continuum, such large changes in fre-

quency with beam parameters clashes with their orthodox

MHD description. In contrast, CAEs excited in similar simu-

lations do not exhibit the same strong frequency dependence

on fast ion parameters. Instead, the frequency of the most

unstable CAE is nearly constant except for jumps in fre-

quency at specific values of v0=vA, which are also accompa-

nied by a clear change in the poloidal mode number.35

For sufficiently large beam injection velocities, GAEs

propagating both with and against the direction of plasma

current/beam injection are excited in the simulations.

Analysis of the wave-particle interactions shows that co-

GAEs and cntr-GAEs are driven by the Doppler-shifted

cyclotron resonance with ‘ ¼ �1 and ‘ ¼ 1, respectively.

Counter-propagating GAEs are commonly observed in

NSTX discharges, while the co-propagating GAEs are yet to

be detected. This is primarily due to geometric constraints of

the neutral beam sources, since the co-GAEs are typically

excited in the simulations when the energetic particle popu-

lation has very low values of k0�0:5,35 whereas the typical

regime for NSTX is k � 0:5� 0:7. The additional beam

sources on NSTX-U are more tangential and thus, different

beam mixtures could potentially excite modes propagating in

either direction in future experiments, given sufficiently

large v0=vA.

For cntr-GAEs, the frequency of the most unstable

mode decreases as injection velocity increases, whereas it

increases for co-GAEs. Figure 1 shows how the frequency

changes with the normalized injection velocity v0=vA for

each toroidal mode number jnj ¼ 8� 10, where both co- and

counter-propagating GAEs are excited in this set of simula-

tions. Each point on the figure represents an individual simu-

lation conducted with the energetic particle distribution from

Eq. (4) parametrized by values of ðv0=vA; k0Þ in a 2D beam

ion parameter scan. For each distribution, the equilibrium is

re-calculated to self-consistently capture the EP effects on

the thermal plasma profiles. It is clear that the frequency of

the most unstable mode in each simulation depends linearly

on the injection velocity, except for some outliers near mar-

ginal stability. The central pitch k0 of the distribution also

impacts the frequency, though this effect is not as pro-

nounced. Especially noteworthy is the continuous nature of

the change in frequency with injection velocity.

Even at the smallest investigated increments of

Dv0=vA ¼ 0:1, the change in frequency remains proportional

to the change in injection velocity. This suggests the exis-

tence of either a continuum of modes which are being

excited or very densely packed discrete eigenmodes. In the

case of discrete eigenfrequencies, one would expect to see a

discontinuous “staircase” pattern in the frequency of the

most unstable mode as a function of the injection velocity; a

single discrete eigenmode with constant frequency would be

the most unstable for some range of v0=vA, with a jump to a

new frequency when a different discrete mode becomes

more unstable for the next velocity range. However, this is

not what is observed, at least to the resolution of Dv0=vA

¼ 0:1. Overall, GAEs propagating with or against the plasma

current exhibit a change in frequency proportional to the

change in the normalized injection velocity of the energetic

particles. The direction of this change matches the sign of kk,
implicating the Doppler shift in the resonance condition as

the likely explanation.

Moreover, these modes are global eigenmodes in the

sense that the fluctuations oscillate at the same frequency at

all points in space, and that the mode structure is converged

at long times (once the mode has grown long enough to dom-

inate the initial random perturbations). Comparing the loca-

tion of these modes relative to the Alfv�en continuum can

also help elucidate the character of these modes. Since these

modes have been identified as GAEs in previous experimen-

tal and numerical analysis, one would expect them to be radi-

ally localized near a local minimum of the continuum with

frequency near that value. For example, previous HYM simu-

lations of a separate NSTX discharge with smaller nb=ne

demonstrated excitation of a GAE with the expected charac-

teristics, in particular with a frequency just below a mini-

mum of the Alfv�en continuum.1,2 If instead the modes

substantially intersect the continuum, strong continuum

damping would make their excitation unlikely, or suggest

that they may not be shear Alfv�en eigenmodes at all. The

continuum is calculated using the q(r) and n(r) profiles from

the self-consistently calculated equilibrium for three separate

cases, and shown in Fig. 2. The left-most case has

v0=vA ¼ 5:5; nb=ne ¼ 3:8%, and the mode peaks quite close

to an on-axis minimum of the continuum. In the middle figure,

v0=vA ¼ 4:5; nb=ne ¼ 5:3%, and the GAE actually occurs

above the minimum, but nonetheless avoids intersecting the

continuum due to its limited radial extent. The right-most

FIG. 1. Change in frequency for jnj ¼ 8� 10 GAEs as a function of normal-

ized injection velocity v0=vA. Cntr-GAEs are marked by circles, and co-

GAEs are marked by squares. Color denotes the central pitch k0 of the EP

distribution in each simulation.
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case is v0=vA ¼ 5:5; nb=ne ¼ 5:3%, and moderately overlaps

the continuum. These examples demonstrate that as the rela-

tive fast ion pressure becomes larger, either through increased

density or energy, the modes can depart from their textbook

description.

A limitation of this analysis is that kinetic corrections to

the MHD continuum could become important for an accurate

comparison in this regime. For instance, Kuvshinov has

shown that in a single fluid Hall MHD model, the kinetic

corrections to the shear Alfv�en dispersion due to finite

Larmor radius effects are nbk2
?q

2
?=neð1þ k2

?q
2
?Þ, which is

equivalent to a Pad�e approximation to the full ion-kinetic

response.36 Near peak beam density, nb=ne can approach

20% in these simulations, and large fast ion energies can

yield k?q? � 2, which yields a roughly 15% correction from

this term. Developing a model of the continuous spectrum

including fast ions self-consistently would make this com-

parison more definitive, but is beyond the scope of this work,

as it represents a quite substantial enterprise itself.

IV. EQUILIBRIUM VS FAST ION EFFECTS

The purpose of this paper is to determine numerically if

these large changes in frequency (as large as 20%–50%, or

100–500 kHz) can be explained by energetic particle effects,

or if they can be interpreted some other way. Since the pre-

ceding results were from simulations which included EP

effects self-consistently in the equilibrium, one possible

explanation is that increasing the beam energy is modifying

the equilibrium (and Alfv�en continuum), indirectly changing

the characteristic GAE frequency. While nb=ne is small (of

order 5%) in these simulations, the fast ion current can be

comparable to the thermal plasma current due to large beam

energies. Previous work has demonstrated the substantial

effects that the beam contribution can have on the equilib-

rium.29 Moreover, there is recent work showing that the

inclusion of alpha particles can significantly deform the

Alfv�en continuum.37 It is important to investigate if these

changes in frequency can be attributed to changes in the self-

consistent equilibrium or changes in the fast particles driving

the mode, independent of the equilibrium. The latter would

be typical of nonperturbative energetic particle modes, while

the former would fit well with an MHD description of GAEs.

A. Equilibrium effects

In order to distinguish between these competing interpre-

tations, these simulations were first reproduced at decreased

EP density, since this decreases the ratio of the beam current

to thermal plasma current, which is the key parameter con-

trolling the impact of EP effects on the equilibrium profiles.

These additional simulations are conducted for representative

examples of both counter- and co-propagating GAEs. In the

former case, an n¼ 6 mode driven by a beam distribution

parametrized by v0=vA ¼ 5:5; k0 ¼ 0:7 is studied, and for the

latter, an n¼ 9 mode driven by a v0=vA ¼ 5:5; k0 ¼ 0:3 distri-

bution is selected. By varying nb=ne with fixed v0=vA and

combining with the previous simulation results which were

conducted for constant nb=ne and varying v0=vA, the frequen-

cies can be plotted against J 
 nbv0=nevA / Jbeam=Jplasma. If

the frequency depends on this parameter in the same way in

both sets of simulations, then it can be concluded that the

large changes in frequency of the GAEs seen in the simula-

tion are due to the EP-related changes to the equilibrium.

The results of this comparison are shown in the top plot

of Fig. 3 for the cntr-GAE and the bottom for the co-GAEs.

The red squares are simulations with fixed beam density and

differing injection velocity (the same conditions as those

shown in Fig. 1), whereas the blue circles show simulations

where the EP distributions share a single value of v0=vA and

have varying nb=ne. For both co- and cntr-GAEs, increasing

beam density results in a modest decrease in mode fre-

quency. This likely reflects changes in the equilibrium, and

is supported by work done by Slaby et al. which found that

the continuum frequencies are decreased in the presence of

increased alpha particle pressure.37 Also apparent in this

FIG. 2. Alfv�en continuum for n¼ 6, including poloidal harmonics with jmj � 3, for the self-consistent equilibrium with different beam parameters – left:

v0=vA ¼ 5:5; nb=ne ¼ 3:8%, center: v0=vA ¼ 4:5; nb=ne ¼ 5:3%, right: v0=vA ¼ 5:5; nb=ne ¼ 5:3%. The thick horizontal lines mark the frequency and loca-

tion of the mode excited in each simulation, where the darkness is proportional to the average amplitude of dB?. The m ¼ �1; 0; 1 branches of the continuum

are labeled for reference.
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comparison is that the mode has a different stability thresh-

old in J depending on if J is decreased through nb=ne or

v0=vA, as the mode can still exist for small J provided that

v0=vA is sufficiently large. The mode frequency exhibits a

linear dependence on EP density, with the slope for the two

modes studied differing by a factor of two. The change in

frequency due to this effect is less than 20% of the magni-

tude of the change due to changing beam energy at constant

beam density. Moreover, it has the opposite sign of that seen

in the first set of simulations for the co-GAEs, which

increase in frequency as v0=vA increases. These results dem-

onstrate that changes to the equilibrium, proportional to

Jbeam=Jplasma, are not the primary cause of the large changes

in frequency.

B. Fast ion effects

Since the previous results suggest that the frequency

changes cannot be an equilibrium effect alone, the direct

effects of the energetic particles should be isolated from the

changes in the equilibrium. To do this, complementary simu-

lations are conducted where the equilibrium is no longer cal-

culated self-consistently to include the beam contribution.

Instead, the equilibrium is solved for considering only the

effects of the thermal plasma. This “MHD-only” equilibrium

is calculated with the same total current as the self-consistent

one, and the plasma pressure is set to be comparable to the

total thermal and beam pressure. These simulations will

serve as a definitive test of the effects of the different ener-

getic particle parameters on the excited mode frequency and

structure for a single, fixed equilibrium.

The simulations are repeated for the same n¼ 6 counter-

and n ¼ 9 co-propagating GAEs as introduced in Sec. III.

The results correspond to the green triangles on Fig. 3. The

simulations with the fixed “MHD-only” equilibrium and

changing beam velocity reproduce the trend and approximate

magnitude of the frequency shifts observed in simulations

with the self-consistent equilibria (labeled “SC” on the

figure) for both the n¼ 6 cntr-GAEs and n¼ 9 co-GAEs. In

order to distinguish between the various frequency depen-

dencies, the following conventions are adopted for the differ-

ent types of simulations conducted. dx=dJ is the slope of

the most unstable mode frequency with respect to J for

simulations conducted with self-consistent equilibria and

varying v0=vA, which are the red squares in Fig. 3. These

simulations represent the total frequency dependence on J
since the changes to v0=vA alter both the equilibrium profiles

and the location of resonant particles in phase space (detailed

in Sec. VI). Changes in frequency in simulations with self-

consistent equilibria with varying nb=ne only, the blue

circles, are purely due to changes in the equilibrium, so that

slope is labeled as ð@x=@J ÞEQ. Varying v0=vA for a fixed

MHD-only equilibrium is a pure energetic particle effect on

the frequency, associated with ð@x=@J ÞEP and shown as the

green triangles. The effects on the GAE frequencies due to

equilibrium and energetic particle effects appear to be nearly

linear, succinctly stated in Eq. (6), which is accurate to

within 5% for the two cases studied in Fig. 3. This further

supports that there are two independent factors determining

the GAE frequency, and that the nonperturbative energetic

particle influence on the mode dominates over the effects

due to EP-induced changes to the equilibrium.

dx
dJ �

@x
@J

� �
EQ

þ @x
@J

� �
EP

¼ nevA
1

v0

@x
@nb
þ 1

nb

@x
@v0

� �
: (6)

For completeness, a final set of “MHD-only” simulations

were conducted where the beam energy is fixed and the

beam density is varied. The changes in frequency due to

varying this parameter are much smaller than any other,

though they imply a negative partial derivative for both types

of modes, similar to the SC EQ effect. This effect is labeled

NR for non-resonant since it results from changes to the

energetic particles, but not how they resonantly interact with

the mode. It can be attributed to the small change of the con-

tinuum frequencies due to the change in total density when

nb is changed. For small nb=ne, this can be estimated as

@x=@J jv0=vA
¼ �ðvA=2v0Þ kkB0=

ffiffiffiffiffi
ne
p	 


which evaluates to a

slope of approximately –0.02 for the cntr-GAE case and

FIG. 3. Frequency changes of modes as J ¼ nbv0=nevA / Jbeam=Jplasma is

varied under different conditions. (Red) Equilibrium includes EP self-

consistently (“SC”); injection velocity v0=vA is varied, while beam density

nb=ne is constant. (Blue) SC equilibrium; nb=ne is varied, v0=vA is constant.

(Green) Equilibrium determined without EP contributions (“MHD-only”);

v0=vA is varied, nb=ne is fixed. Top: counter-propagating n¼ 6 mode.

Bottom: co-propagating n¼ 9 mode.
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–0.03 for the co-GAE case, which are of the right magnitude

to explain the effect shown in the figure, and also very close

to the less than 5% discrepancy in Eq. (6). The relative mag-

nitudes of these different effects are summarized in the fol-

lowing equation:

Dx � Dxð ÞEP 	 Dxð ÞEQ 	 Dxð ÞNR: (7)

V. MODE STRUCTURE AND DISPERSION

In order to determine if these are ideal MHD eigenmo-

des or strongly energetic-particle-modified modes such as

EPMs, inspection of the mode structure is necessary. If

MHD modes, one would expect that changes in frequency

would be associated with some qualitative change in the

mode structure, such as the presence of different poloidal or

radial harmonics, marking a new eigenmode. Conversely, in

a nonperturbative energetic particle regime, the mode struc-

ture can be preserved even as the frequency changes signifi-

cantly, such as in the theory and observation of chirping

modes38–40 or in the case of fishbones.41,42 In these simula-

tions of GAEs, the mode structure is usually qualitatively

unaffected by the large changes in frequency which accom-

pany changes in the normalized EP beam energy.

Quantitative changes are typically subtle, including slight

changes in the radial location, mode width, or elongation. A

key difference between chirping modes, fishbones, and the

GAEs studied here is that the first two fundamentally involve

FIG. 4. Mode structure of n¼ 6 cntr-GAE excited by EP with k0 ¼ 0:7 and

v0=vA ¼ 4:5; 5:0; 5:5 in self-consistent simulations, with frequencies

x=xci ¼ 0:214; 0:178; 0:141. The fluctuation shown is dB? in the rR� B0

direction. (a) Poloidal structure at a single toroidal angle, slice taken at an

angle shown by the radial line in (b). (b) Toroidal structure at the midplane.

Circles indicate the last closed flux surface and magnetic axis. (c) Fourier

amplitude of generalized poloidal harmonics along the # ¼ rw�r/ direc-

tion, summed over all toroidal angles.

FIG. 5. Mode structure of n¼ 9 co-GAE excited by EP with k0 ¼ 0:3 and

v0=vA ¼ 5:2; 5:6; 6:0 in self-consistent simulations, with frequencies

x=xci ¼ 0:239; 0:264; 0:289. The fluctuation shown is dB? in the rR� B0

direction. (a) Poloidal structure at a single toroidal angle, slice taken at an

angle shown by the radial line in (b). (b) Toroidal structure at the midplane.

Circles indicate the last closed flux surface and magnetic axis. (c) Fourier

amplitude of generalized poloidal harmonics along the # ¼ rw�r/ direc-

tion, summed over all toroidal angles.
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nonlinear physics, whereas the latter is a linear mode with

nonperturbative EP modifications.

This endeavor is complicated by the fact that the

GAEs — the counter-propagating modes especially — may

interact with the continuum and excite a kinetic Alfv�en

wave, inferred through the presence of a well-localized dEk
fluctuation on the high field side and coincident short-scale

modulation of the dB? mode structure near this region. The

coupling of the KAW with the compressional mode in HYM
simulations was studied in depth in a recent publication,24

which identified key signatures of the KAW in the simula-

tion which can also be leveraged in the case of the GAEs.

Some of the more dramatic changes in the mode structure

can be attributed to gradual suppression or excitation of

KAW features, which has dominant dB? polarization just as

the GAEs do. This can be subjectively distinguished from

the GAE structure since the KAW has a characteristic

“tilted” structure near the Alfv�en resonance location,

whereas the GAE is usually concentrated between the axis

and mid-radius, often towards the low-field side. Figure 4

shows how the mode structure evolves as a function of v0=vA

for the n¼ 6 cntr-GAE in fully self-consistent simulations.

Visually, the structure could be assigned a poloidal mode

number of m¼ 0 or m¼ 1/2 since it has a single peak.

Fourier decomposition in the generalized poloidal direction

ð# ¼ rw�r/Þ yields the same answer, some mix of m¼ 0

and m¼ 1. From v0=vA ¼ 4:5 (first column) to v0=vA ¼ 5:5
(last column), the frequency changes by 34%, or about

175 kHz, yet no new poloidal or radial harmonic emerges.

Qualitatively, the structure becomes broader as v0=vA

increases, and also gradually shifts towards the low field

side, as can be seen in the midplane slices.

For co-GAEs, there is even less change. Generally, the

co-GAE structure is more broad radially and more elongated

than the cntr-GAE structure. The poloidal structure of the

co-GAEs looks very similar when excited by energetic par-

ticles with v0=vA ¼ 5:2� 6:0, as shown in Fig. 5. Again,

Fourier decomposition yields m ¼ 0� 1, matching visual

intuition, and remaining unchanged as v0=vA is varied. For

the case shown, the frequency changes by more than 20%,

equivalent to 150 kHz. In contrast to the cntr-GAE, the co-

GAEs migrate slightly towards the high field side for larger

EP energies. Similar to the cntr-GAEs, this constancy of the

mode structure despite large changes in frequency would be

very atypical of MHD eigenmodes. Since these modes are

m¼ 0 or 1 with n¼ 9, the approximation kk � k/ ¼ n=R is

justified. Hence, this change in the mode location to lower R
tends to increase kk. Furthermore, vA has its minimum near

the magnetic axis, so the local Alfv�en speed can also change

due to shifts in the mode location. It is then possible that a

change in the mode location could occur such that the fre-

quency changes while conserving x � kkvA without chang-

ing the mode numbers. However, this would necessarily

move the mode away from an extremum in the Alfv�en con-

tinuum (if it were originally near one when excited by lower

v0=vA), leading it to intersect the Alfv�en continuum, which

typically results in strong damping. This is essentially what

was observed in the “MHD-only” simulations and shown in

Fig. 2. Since counter-propagating Alfv�en eigenmodes with

shear polarization have typically been identified as perturba-

tive GAEs in NSTX plasmas both experimentally1,3 and in

simulations,2 it is necessary to determine if their frequencies

lie close to the shear Alfv�en dispersion, xA ¼ kkvA, or if they

deviate significantly due to the large frequency changes with

beam parameters. While perturbative GAEs should have fre-

quencies shifted somewhat below the Alfv�en frequency, the

difference should be small, e.g., �10% and often much

less.7 For accuracy, the dispersion relation should be evalu-

ated at the mode location. Calculating vA at the mode loca-

tion is only nontrivial due to the mode structure being broad,

though this is easily solved by defining the mode location to

be the dB2 weighted average of R. The parallel wave number

is less well defined. In a large aspect ratio tokamak, it is

accurately represented by the familiar formula kk
¼ ðn� m=qÞ=R. However, this is only valid for � ¼ r=R
� 1 and requires m to be well defined. In contrast, these sim-

ulations are carried out at the low aspect ratio of NSTX,

where � � 3=4, and there is often no clear poloidal harmonic

present in the mode structure, as discussed in Sec. V. For

FIG. 6. Comparison of mode frequencies to shear Alfv�en dispersion with kk
and vA evaluated at the peak mode location. The solid line indicates x
¼ kkvA and the dashed line indicates linear fit to simulation data. Color:

toroidal mode number of the simulated mode. Top: cntr-GAEs. Bottom: co-

GAEs.
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high n numbers, the approximation kk � k/ becomes more

reliable since typically nq>m for the modes excited in the

simulations. However, this is a poor approximation for the

cntr-GAEs which may have, for instance, n¼ 4 and

m ¼ 2� 4. As an alternative, the most literal interpretation

of kk is used, that is the peak in the Fourier spectrum of the

fluctuation when projected onto the background field lines

near the mode location with a field-line following code. This

method is sufficient to determine if the mode frequencies are

at least “near” the shear Alfv�en frequency, as in Fig. 6.

For both counter- and co-propagating modes, there is a

clear correlation between the frequency of the modes and the

shear Alfv�en dispersion, as expected for GAEs. However,

the cntr-GAEs show significant deviation from this relation

for low jnj modes, while the co-GAEs show a steeper than

expected slope. The co-GAEs are well fit by the relation

x ¼ 1:57kkvA � 0:17. The deviations from the shear Alfv�en

dispersion are not explained at this time. A complete expla-

nation likely requires modification of the GAE dispersion to

include beam contributions to the eigenequation nonpertur-

batively, as well as coupling to the compressional mode. In

order to remain consistent with the simulation results, the

modification must at least include a term proportional to

kkv0. One route to pursue would be to build upon the theory

developed by Berk et al. for reverse-shear Alfv�en eigenmo-

des (RSAE) which employs energetic particle effects to

localize the eigenmode near local extrema in the Alfv�en con-

tinuum.43,44 In particular, Eq. (5) of Ref. 43 includes terms

proportional to hnhi and kkhJkhi which could help explain the

results in Fig. 3. The derivation of an accurate dispersion for

the EP-GAE is left for future work.

VI. RESONANT PARTICLES

Ultimately, the resonance condition is determined to be

responsible for key properties of these modes. Investigation

of the properties of the resonant particles identified in the

simulation with explanations supported by analytical theory

can shed light on the origins of the unusual features of these

modes.

A. Influence of the resonance condition

Since a dF scheme is employed, the particle weights can

reveal information about resonant particles. The weights will

evolve according to Eq. (3c). Hence, weights with large magni-

tudes correspond to regions of phase space with large changes

in the distribution function, e.g., particles which interact

strongly with the waves. Particles can resonate with the wave

through the general Doppler-shifted cyclotron resonance

x� hkkvki � hk?vDri � x� hkkvki ¼ ‘hxcii: (8)

On the right hand side of Eq. (8), the drift term k?vDr is

being neglected. For improved accuracy, the drift term may

be approximated as ðs=qR0Þvk with integer s as in Ref. 45 for

very passing particles (a similar term would also appear due

to the poloidal dependence of xci). For the conditions in

these simulations, the drift term is much smaller than kk
unless s is quite large, s � 5, which should be an inefficient

resonant interaction. Due to these considerations, the analy-

sis in this section will proceed with s¼ 0. The resonance

condition can also be conveniently rewritten in terms of

orbital frequencies as

x� nhx/i � phxhi ¼ ‘hxcii: (9)

Above, p is in general an arbitrary integer, but equal to the

negative poloidal mode number ð�mÞ when s¼ 0 as ana-

lyzed here. For modes satisfying Eq. (8) with 0 < x < xci

and vk > 0, counter propagation ðkk < 0) implies ‘ > 0, and

co-propagation implies ‘ � 0. In principle, particles could

interact with the modes through j‘j > 1 resonances.

However, this would require much larger Doppler shifts and

particle velocities. A preference for j‘j ¼ 1 is confirmed in

the simulations. While the ‘ ¼ 0 resonance is present in

some of the simulations for the co-GAEs, it is usually sub-

dominant to ‘ ¼ 1 (visible in Fig. 7). Consequently, attention

is restricted to the cases where ‘ ¼ 61, which also leads to

the correspondence ‘ ¼ �sign kk. Combining Eq. (8) with

the presumed shear Alfv�en dispersion, an expression can be

FIG. 7. Frequency and approximate vk of resonant particles with largest

weights. The solid line is the expression from Eq. (10) required by the dis-

persion and resonance condition, assuming s¼ 0. Frequency and velocity

normalized by on-axis values of xci and vA. Top: cntr-GAEs. Bottom: co-

GAEs.
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written for the frequency of the excited mode as a function

of the resonant vk of the EP driving it unstable

x ¼ hxcii
‘þ hvki=vA

for ‘ ¼ 61 ¼ �sign kk: (10)

Although vk is not a constant of motion, it can be represented

to lowest order in l for each particle as

vk � v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xci

xci0
k

r
: (11)

Figure 7 shows the parallel velocity [approximated by Eq.

(11)] of the EP with the largest weights, plotted against the

frequency of the most unstable mode in each simulation. The

relation between the mode frequency and parallel velocity of

the most resonant particles generally adheres to Eq. (10),

shown in the figures as the solid line. For co-GAEs, the con-

dition is essentially obeyed, with some deviation due to a

combination of drift term corrections and errors in the

approximate expression for the resonant value of vk. In gen-

eral, Eq. (10) suggests that the frequency of the excited

mode is inversely proportional to the parallel velocity of the

resonant particles. While for co-GAEs, the opposite trend is

seen for fixed n – frequency increases with parallel velocity

instead of decreases – this is anticipated by the resonance

condition. Since kk / n, the Doppler shift will increase with

vk at constant n. For cntr-GAEs, the mode frequencies still

cluster near the curve representing Eq. (10), though there is

substantial spread inherited from the deviations from the

shear Alfv�en dispersion due to ambiguous kk as discussed in

Sec. V.

The mode frequency’s sensitivity to the fast ions’ loca-

tion in the phase space is reminiscent of energetic particle

modes where the EPM frequency tracks typical particle orbit

frequencies. Although the cyclotron and orbital frequencies

are not constants of motion, a unique value of each can be

calculated for each dF particle as an orbit-averaged value. In

Fig. 8, the shaded contours show the characteristic frequen-

cies of the resonant particles in each simulation, where the

resonant particles are defined as those with weights in the

top 5% at the end of the simulation. As the injection velocity

increases, the resonant particles migrate to larger toroidal

frequencies and smaller cyclotron frequencies. The lines

imposed on the plot of toroidal vs cyclotron frequency repre-

sent the relation expected by the Doppler shifted cyclotron

resonance in the form of Eq. (9). The resonant particles in

each simulation cluster around these lines, showing that the

frequency of the most unstable mode is being set by the loca-

tion of the resonant particles in this phase space. In other

words, the mode frequency adapts to the energetic particle

attributes in order to satisfy the resonance condition. It is

also helpful to examine where the resonant particles exist in

the constant-of-motion space, ðv; k; p/Þ, which are the natu-

ral variables for the distribution function. This is shown in

the top plot of Fig. 8. The resonant particles move towards

higher energy as those regions become accessible with the

larger injection velocity. For each distribution, a curve repre-

senting constant vk is shown, with the value determined by

averaging over all resonant particles. Each shaded contour

roughly tracks this line of constant vk, with value increasing

with increasing v0=vA.

Overall, Fig. 8 demonstrates a clear linear relation

between the energetic particle parameters and the frequency

of the excited mode, a hallmark quality of energetic particle

modes.46 This finding contradicts the conventional “beam-

driven MHD mode” paradigm where the energetic particles

provide drive but otherwise do not affect the excited MHD

mode. On the one hand, a resonant wave-particle interaction

is necessary to drive the mode unstable, in which case it is

natural that the frequency of the mode matches the combined

orbital and cyclotron motion of the resonant particles.

However, it is quite remarkable that the frequency of the

mode is changing without clear changes in the mode struc-

ture. If this were a perturbative MHD mode, then one would

expect that the changes in frequency would correspond to

changes in the mode structure, i.e., poloidal or radial mode

FIG. 8. Resonant particles for n¼ 6 cntr-GAE excited by v0=vA ¼ 4:0� 5:5.

Top: Shaded contours show the location of the resonant particles in pitch-

velocity ðk; vÞ constant of motion space. Curves are contours of constant vk
determined by a w-weighted average of vk over all resonant particles.

Bottom: orbit-averaged toroidal and cyclotron frequencies of resonant par-

ticles. Solid lines show the resonance condition for each mode, averaging

xh over all resonant particles and using the dominant p in Eq. (9) for each

mode.
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numbers. Alternatively, if only a single, specific eigenmode

were being excited, then its frequency should not change as

the energetic particle population does—the mode would

simply pick out the same resonant particles as v0=vA is

increased. In view of these findings, this mode formerly

identified as a GAE from ideal MHD theory must be strongly

altered by nonperturbative energetic particle effects, and

thus could be considered as an energetic particle mode. This

is different from the energetic particle modes commonly

observed in experiments and discussed in the literature (fish-

bone, E-GAM, etc.) which typically have much lower fre-

quencies, on the order of orbital frequencies.26 To our

knowledge, this is the first evidence of an EPM that is driven

by a cyclotron resonance and with a frequency that can be an

appreciable fraction of the cyclotron frequency.

B. Relationship between injection and resonant
velocities

The key takeaway is that if the resonant value of vk is

proportional to the injection velocity v0, then the large fre-

quency changes of these GAEs are qualitatively explained

by the resonance condition. This is plausible based on the

perturbative GAE growth rate expression derived by

Gorelenkov et al. in Ref. 1. The growth rate for the fast ion

distribution defined in Eq. (4) is approximately propor-

tional to

c / �g3=2

ð1�g

0

dK
K

1� Kð Þ2
J0ðzÞ þ J2ðzÞð Þ2ðK� K0ÞF0:

(12)

This expression is derived in Appendix. Here, K 
 kxci=
xcio ¼ E?=E; z ¼ k?q?, and g ¼ Eres

k =E0 is the parallel

energy of the resonant fast ions relative to the injection energy.

All terms in the integrand are strictly nonnegative except for

�ðK� K0Þ, which is positive for K < K0. Therefore, for

g > 1� K0, the integral is strictly positive, which yields a suf-
ficient condition for net drive from the energetic particles. If

the exact marginal stability were near this threshold, then it

would explain why the simulation results imply that the reso-

nant parallel velocity is proportional to the injection velocity.

However, without reliable calculations of the damping of the

mode due to interaction with the bulk plasma—most notably

continuum damping—to compare with, this sufficient condi-

tion can lend intuition but not a definitive explanation of why

vres
k is seemingly proportional to v0, since the marginal stability

condition could shift substantially depending on the magnitude

of the continuum damping.

To complement the preceding argument regarding the

condition for marginal drive from the fast ions, the unsimpli-

fied growth rate derived in the Appendix in Eq. (A6) can be

evaluated numerically to determine how the maximum

growth rate depends on its three independent parameters

v0=vA; g, and a ¼ kk=k? for a cntr-GAE ð‘ ¼ þ1Þ with

k0 ¼ 0:7. The sum of Bessel functions embedded in Jm
‘ ðzÞ

[see Eq. (A2)] is the main obstacle to gaining intuition about

the growth rate’s dependencies by inspection or calculus.

The parameter a enters through this Bessel term, since its

argument can be rewritten as

z ¼ k?q? ¼
k?v?
xci
¼ k?

kk

kkvA

xci

v?
vA
¼ 1

a
x
xci

v0

vA

ffiffiffiffiffiffiffiffiffiffiffiffi
gK

1� K

r
: (13)

Above we have used x � kkvA, which is an approxima-

tion made in the calculation which arrived at Eq. (12). Note

also that x is not an independent parameter due to Eq. (10).

Moreover, this calculation is only valid for x� xci, so the

integration will be restricted to x=xci < 0:5. A common

tokamak approximation is k? 	 kk, or equivalently a� 1.

The HYM simulations reveal that while k?� kk, it is not sig-

nificantly greater for these modes in the compact NSTX

geometry. Fourier transforms of the numerical mode struc-

ture yield characteristic values of a ¼ 0:3� 1.

The integrand with v0=vA ¼ 5:0; a ¼ 0:5;K0 ¼ 0:7 is

shown in Fig. 9(a), revealing complicated dependence on

FIG. 9. (a) integrand of the growth rate integral, from Eq. (A6), for a

cntr-GAE with K0 ¼ 0:7. a ¼ kk=k? ¼ 0:5 and v0=vA ¼ 5:0 are chosen as

typical values. The vertical dashed line shows the central value K0 ¼ 0:7,

the horizontal dashed line shows the sufficient condition for net drive at

g ¼ Eres
k =E0 ¼ 1�K0, and the solid line shows the value of g that maxi-

mizes the growth rate. (b) integral of left plot with respect to K, showing

growth rate as a function of g. The vertical lines match horizontal lines on

left plot. Units are arbitrary in both since constants are excluded.
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both the integration variable K and the parameter g.

Generally, decreasing a makes the details of the integrand

even more intricate, as more zeros of Jm
‘ ðzÞ become con-

tained within the integration region. Visualized this way it is

clear why the sufficient condition for net drive from the ener-

getic particles exists: at sufficiently large g, the upper inte-

gration bound excludes the regions of the velocity phase

space which damp the wave. The cutoff at very small g is

imposed due to the condition x=xci < 0:5, which ensures

that x� xci. Figure 9(b) shows the growth rate’s depen-

dence on g for these specific values of v0=vA and a, demon-

strating a local maximum exceeding the sufficient threshold

for net drive at g ¼ 1� K0 (dashed line). This optimal value

of g is also marked on the left plot with the solid line near

g ¼ 0:36.

Numerical integration can be performed over a range of

values of v0=vA; g, and a in order to determine if the growth

rate prefers changing the frequency of the mode as v0=vA is

varied, which would explain the simulation results. These

scans are shown in Fig. 10. For v0=vA � 2:5 and a � 0:4,

there is a clear preference for g � 0:36 in order to maximize

the growth rate, as the optimal value of g is within 1% of this

value in this range of parameters, which also encompasses

the properties of the simulated modes. This calculation

implies that the energetic particle drive is maximized for a

mode resonantly excited by a subpopulation of fast ions with

parallel velocity at a specific fraction of the injection veloc-

ity, explaining the connection between the injection velocity

and resonant parallel velocity. Then, the frequency depen-

dence due to the resonance condition becomes

x ¼ ‘xci þ kkv0

ffiffiffi
g
p ¼ ‘ xci � jkkjv0

ffiffiffi
g
p� �

: (14)

Above we have used the fact that ‘ ¼ �sign kk. In the

case of cntr-GAEs ð‘ ¼ þ1Þ, the Doppler shift is less than

the cyclotron frequency, and so the preferred mode fre-

quency decreases linearly as a function of v0. Conversely,

co-GAEs excited by the ‘ ¼ �1 resonance have a Doppler

shift exceeding the cyclotron frequency, so the frequency of

the most unstable mode will increase linearly with increasing

v0. While this result reproduces the frequency trend of the

most unstable modes from the simulations, the calculation is

limited by not including the sources of bulk plasma damping.

It is fair to assume that the thermal damping will affect each

mode similarly, and hence, the maximum growth rate argu-

ment could remain valid. However, the amount of continuum

damping each mode subjects to vary substantially depending

on quantitative details of the mode structure and differences

in the self-consistent equilibria generated by fast ion popula-

tions of different injection velocities. Simplified analytical

calculations have been performed in order to understand the

numerical results, and they do not include the effects of con-

tinuum damping. Nonetheless, the presence of this frequency

dependence both in simulations with signs of coupling to the

continuum (via the appearance of short scale structures near

the ideal Alfv�en resonance location) as well as in those

where they are absent indicates that the impact of continuum

damping may not be crucial to developing a qualitative

understanding of this phenomenon. The determination of the

most unstable mode based on maximizing drive from the fast

ions may be suitable to describe the robust numerical results.

VII. SUMMARY AND DISCUSSION

Hybrid simulations have been conducted to study how

the properties of high frequency shear Alfv�en eigenmodes

depend on parameters of the energetic particle distribution in

NSTX-like low aspect ratio conditions. In simulations that

solve for the equilibrium with self-consistent inclusion of

energetic particle effects, it is found that the frequency of the

most unstable GAE changes significantly with the energetic

particle parameters. The frequency changes most signifi-

cantly with the normalized injection velocity v0=vA, which

shows a clear linear relation. With increasing injection

velocity, counter-propagating modes have a decrease in fre-

quency, while co-propagating modes increase in frequency.

The linear dependence and sign of the change are consistent

with the Doppler-shifted cyclotron resonance condition.

FIG. 10. (a) Growth rate as a function of v0=vA and g ¼ Eres
k =E0 for

a ¼ kk=k? ¼ 0:5. Dashed curve shows the x=xci � 0:5 boundary, where

the integration is restricted to in order to satisfy x� xci. The dashed hori-

zontal line is the sufficient drive condition g ¼ 1� K0. The solid curve

shows the value of g which maximizes the growth rate as a function of

v0=vA. (b) Growth rate as a function of a and g for v0=vA ¼ 5:0. The solid

curve and dashed line have the same definition as that for the left. Units are

arbitrary in both since constants are excluded.
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However, there are no clear concurrent changes in the

mode structure that would indicate that these frequencies

correspond to distinct eigenmodes, especially for the co-

GAEs. Moreover, the frequencies change continuously as a

function of the injection velocity, not in a discrete stair-

stepping pattern one would expect if different discrete

eigenmodes were being excited. In contrast, the frequencies

of compressional modes excited in the simulations are

largely unaffected by the fast ions, and modes with distinct

frequencies have different poloidal mode numbers.

At fixed injection energy, the frequency of both co- and

counter-propagating modes decreases as the normalized EP

density nb=ne is increased, though the frequency change is an

order of magnitude less than that caused by changing the injec-

tion energy. Although there was some difficulty in determining

a reliable value of kk for these modes due to a low aspect ratio

and poorly defined m numbers, the modes do roughly obey the

shear Alfv�en dispersion relation x � ½kkðrÞvAðrÞ�r¼r0
, evalu-

ated at the mode location, to within 10%� 20%. Lastly, the

substantial changes in frequency persist even when the ener-

getic particles are ignored in the equilibrium solver, implying

that the change in frequency directly due to changes in the

energetic particle population is much larger than the indirect

change in frequency due to changes in the equilibrium from

fast particle contributions.

Put together, these results call into question the descrip-

tion of these modes as the global Alfv�en eigenmodes

described by ideal MHD theory. Since GAEs are shear

Alfv�en MHD modes, in order to be weakly damped they

must have frequencies just below a minimum of the Alfv�en

continuum. Large frequency shifts with changing beam

parameters can displace the modes from being localized near

these extrema, and lead them to intersect the continuum

where they would be expected to suffer strong damping. The

energetic particles are clearly exerting a nonperturbative

effect on the modes since the eigenfrequency is changing

without clear corresponding changes in the mode structure

that would indicate excitation of a different eigenmode.

Instead, these results could be interpreted as defining a high

frequency energetic particle mode, regarded here as an ener-

getic-particle-modified global Alfv�en eigenmode (EP-GAE).

For excitation, the mode must be resonant with a sub-

population of energetic particles with a specific value of vk.
As the injection velocity is increased, new values of vk
become accessible. It was shown that the drive from the fast

ions is maximized for a resonant parallel velocity at a

specific fraction of the injection velocity, given the same

degree of anisotropy. As the resonant value of vk changes,

both x and kk must also change according to the resonance

condition and the approximate dispersion. An energetic par-

ticle mode defined by a continuum of kk values to choose

from as the injection velocity is varied is consistent with

these findings. This is unusual since energetic particle modes

typically have much lower frequencies which track the char-

acteristic energetic particle orbital frequency.46 In contrast,

the modes excited in these simulations can be an appreciable

fraction of the cyclotron frequency, x � 0:1� 0:5xci for the

range of toroidal harmonics jnj ¼ 4� 16, and have

frequencies which track a combination of the energetic parti-

cle orbital and cyclotron frequencies.

There have been previous studies showing an MHD

mode’s eigenfrequency changing in proportion to energetic

particle velocity. One is the so-called “resonant toroidicity-

induced Alfv�en eigenmode” (RTAE), which is characterized

by the mode frequency decreasing in order to remain in reso-

nance with fast particles as TEP=Ti decreases.47 Cheng et al.
remark that this trend can lead the RTAE to have a frequency

much below the characteristic TAE gap frequency that it is

associated with, just as the GAEs in these simulation results

can be significantly displaced from the minimum in the

Alfv�en continuum. In addition, previous hybrid gyrokinetic

simulations have demonstrated a transition from TAE to a

lower frequency kinetic ballooning modes (KBM) as the

maximum energetic particle energy is increased.48 During

this transition, the frequency of the KBM changes in propor-

tion to the energetic particle velocity, similar to the results

presented here.

Although the exact dispersion of the EP-GAE has not

yet been determined, it is clear that it is fundamentally

affected by the energetic particles nonperturbatively, leading

to a departure from its previous perturbative MHD descrip-

tion. In addition to the interest to basic plasma physics of the

discovery of a high frequency energetic particle mode with

frequencies tracking the combined orbital and cyclotron

motion, there are also potential implications for NSTX-U

which should be explored in the future. The simulations pre-

sented here show that the nonperturbative regime for these

modes was routinely accessed in NSTX operating condi-

tions. The basic picture of an energetic beam driving a MHD

mode of the thermal plasma without modifying its attributes

breaks down in conditions where Jbeam is comparable to

Jplasma. Even with the nominal factor of two increase in toroi-

dal field in NSTX-U which will tend to decrease v0=vA, these

modes may still be unstable due to the increase in beam

power,49 though early operations indicate that they can be

suppressed with the addition of off-axis injection.50

NSTX experiments have established a robust link

between sub-cyclotron Alfv�en modes and anomalous elec-

tron temperature flattening.17,18 Both of the existing theoreti-

cal mechanisms proposed to explain how Alfv�enic modes

could generate this anomalous heat diffusivity have previ-

ously assumed that they are accurately described as perturba-

tive ideal MHD GAEs.2,20,21 Since it has now been shown

that there can be quite substantial nonperturbative correc-

tions to this description, the polarization and mode structure

of these modes may be quite different from those assumed

by these previous analyses. In particular, Gorelenkov et al.
investigated how several overlapping GAEs could collec-

tively stochasticize electron orbits and enhance the radial

diffusion. Nonperturbative modifications of the mode char-

acteristics could alter the thresholds in a number of overlap-

ping modes and mode amplitudes required to generate the

level of diffusion necessary to explain the experimental

observations. While compressional modes have received

more attention for their potential to channel energy away

from the core to the edge through mode conversion to kinetic

Alfv�en waves,23,24 GAEs also couple to KAWs in
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principle21,22 and may also contribute. At least in the case of

GAE-KAW mode conversion, the simulation results pre-

sented here suggest that nonperturbative inclusion of the

energetic particles should be further explored for a more

accurate description of that coupling in application to energy

channeling in fusion conditions. Examining the impact of

these corrections on previous quantitative predictions of

anomalous electron heat transport will be the subject of

future work.

Prospects for future experimental verification of the EP-

GAE are promising, as its defining characteristics should be

observable in suitably designed experiments on NSTX-U.

Analysis without such dedicated experiments may prove

challenging since it is necessary to separate the changes in

mode frequency due to the change in beam energy (the non-

perturbative effect) from the changes in the equilibrium

(MHD effect). The preferred approach would be to repro-

duce a discharge multiple times with different beam voltages

for each shot so that the time evolution of the equilibrium

profiles can be factored out of the observed change in fre-

quency, such as the experiments conducted in Ref. 51.

Measurement of the change in frequency due to this effect

could be further complicated by chirping, which sometimes

occurs for the high frequency Alfv�enic modes in NSTX.

Fortunately, existing analysis shows that this usually takes

the form of symmetric chirping (as opposed to monotonic

frequency sweeping) about the linear mode frequency.38 In

this case, the frequency dependence on v0=vA should still be

detectable. In addition to the signature change in frequency

in proportion to the injection velocity, the gradual shift of

the counter-propagating mode further towards the low field

side with increasing beam energy as discussed in Sec. V may

be observable with reflectometer measurements.3,52
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APPENDIX: GAE GROWTH RATE

The GAE growth rate for x=xci � 1 is calculated per-

turbatively for the fast ion distribution function used in these

simulations. Beginning with Eq. (16) of Ref. 1 and ignoring

coefficients, the growth rate is proportional to

c /
ð

dEdE?I2d h� hresð ÞG0�‘ �E�G‘ � E
@

@E þ
‘xci

x
@

@E?

� �
F0:

(A1)

The delta function enforces the resonance condition by eval-

uating the integrand at the resonant locations along the par-

ticle’s trajectory. Additionally, I2 is the resonance factor

defined in Eq. (47) of Ref. 53, and represents the time dura-

tion of the wave-particle interaction in one pass through the

resonance layer. Combination of Eqs. (16) and (17) from

Ref. 1 implies the simplified relation I2vkdðh� hresÞ=
8pqR ¼ dðx� kkvk � ‘xciÞ, which in concert with the delta

function identity dðf ðxÞÞ ¼ dðx� x0Þ=jf 0ðx0Þj yields the

transformation I2dðh� hresÞ / dðEk � Eres
k Þ=jkkj, ignoring

constants.

Moreover, G‘ ¼ v?ð�iJ0‘ðzÞ; J‘ðzÞ=zÞ; G0‘ ¼ v?ð�iJ0‘ðzÞ;
‘J‘ðzÞ=zÞ, where J‘ is the Bessel function of the first kind of

order ‘ with argument z ¼ k?q? ¼ k?v?=xci. Also introduce

a 
 kk=k?. Then the GAE polarization is E1 ¼ iða2x=
xciÞE2 � E2, and the coordinates are defined by 2̂ ¼ k?=k?
and 1̂ � 2̂ ¼ B0=B0.

Define Jm
‘ ðzÞ via G0�‘ �E�G‘ � E ¼ jE2j2v2

?J
m
‘ ðzÞ. The ‘

subscript is the resonant cyclotron coefficient, and the m
superscript is either G for GAEs or C for CAEs. The full

expression for JG
‘ is

JG
‘ ¼

‘J2
‘

z2
þ ð1þ ‘Þxa2

xci

J‘J
0
‘

z
þ xa2

xci

� �2

J02‘ : (A2)

To leading order in a2x=xci � 1, JG
‘ � jE2j2v2

?‘ðJ‘=zÞ2
¼ v2

?ðJ‘�1 þ J‘þ1Þ2=4‘ for ‘ 6¼ 0, which is the dominant reso-

nance for the modes studied here. For ‘ ¼ 61; J‘�1 þ J‘þ1

¼ J0 þ J2 since J�� ¼ ð�1Þ�J� . However, all terms in JG
‘

will be kept for numerical integration, since they can be

important when x=xci and a are small but not trivially so.

Defining the operator in brackets as P̂ 
 @
@E þ ‘ðxci=xÞ

@
@E?, it can be rewritten into derivatives with respect to E and

K 
 kxcio=xci ¼ E?=E for convenience.

P̂F0¼
1

E E
@

@Eþ
‘xci

x
�K

� �
@

@K

� �
F0

¼�2

E
3

4

1

1þ E0=4Eð Þ3=2
þ ‘xci

x
�K

� �
K�K0

Dk2

� �" #
F0 :

(A3)

Interestingly, the chosen equilibrium fast ion distribu-

tion is an eigenfunction of this operator. Note that for x=xci

� 1; ð‘xci=x� KÞ � ‘xci=x. Furthermore, the first term in

Eq. (A3) is at most 3/4, which is much less than the second

term, except in the small region where ðK� K0Þ�3Dk2x=
4xci0 < 0:05 even for x=xci0 ¼ 1=2. Numerical integration

can demonstrate that this region does not contribute to the

integral significantly. Thus, P̂F0 can be approximated as

P̂F0 � �
2‘xci

Dk2xE
K� K0ð ÞF0: (A4)

Lastly, change variables of integration from ðE; E?Þ to

ðEk;KÞ, which has the Jacobian dEdE? ¼ ½Ek=ð1� KÞ2�
dEkdK. After performing the integration over Ek with the

delta function to enforce the resonance condition and intro-

ducing g ¼ Eres
k =E0, the growth rate is approximately propor-

tional to

c / �g3=2

ð1�g

0

dK
K

1� Kð Þ2
‘JG

‘ ðK� K0ÞF0: (A5)
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The integration bound results from

Ek ¼ Eð1� KÞ < E0ð1� KÞ. Since the integrand is nonneg-

ative for K < K0 (note ‘JG
‘ is positive except where it is

very small), the integral is strictly positive for

Eres
k =E0 > 1� K0. This represents a sufficient condition for

net drive of the wave due to the contribution from the fast

ions. Without these simplifications, and denoting AðK0;DkÞ
as a complicated normalization function, the growth rate for

‘ 6¼ 0 is proportional to

c / � g3=2

jx� ‘xcij

ð1�g

0

dK
K

1� Kð Þ2
Jm
‘ ðzÞ

� 3

4

1

1þ 1� K
4g

� �3=2
þ ‘xci

x
� K

� �
K� K0

Dk2

� �2
64

3
75

� AðK0;DkÞnbv0

b
1� K

� �3=2

þ 1

8

exp � K� K0ð Þ2

Dk2

 !
: (A6)
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