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1. Introduction

The spatial distributions of electron and ion temperature and 
density, momentum, and current density are among the most 
critical factors in determining the stability and performance 
tokamak plasmas. The evolution of these profiles is governed 
by coupled nonlinear parabolic partial differential equa-
tions and must be carefully tailored to achieve desired oper-
ating regimes. External actuators can be used to manipulate 
the boundary conditions, source terms, (e.g. heating, current 
drive, momentum and particle injection from neutral beams 
or radio frequency waves), or the transport coefficients. Since 
first principles modeling of transport phenomena is com-
putationally challenging, reduced theory-based models are 
typically used for analysis of experimental results and predic-
tions for device design and experiment planning in predictive 
transport codes such as TRANSP [1, 2], CRONOS [3], and 
ASTRA [4]. These models are still, however, computation-
ally expensive, making their use for optimization of operating 

scenarios challenging, their use for between-shots predictive 
modeling impractical, and their use in real-time feedback con-
trol algorithms impossible. Recent work has demonstrated the 
benefits of using light-weight control-oriented physics-based 
transport models for scenario optimization [5–8] and control 
[9–12] of plasma profiles. The use of semi-empirical models as 
replacements for the most computationally intensive parts of 
the profile evolution model enables the rapid execution times 
required for use in real-time. However, empirical models and 
scaling laws are limited to particular operating regimes, moti-
vating efforts to enable high-fidelity results to be obtained with 
reduced computational cost. Neural networks have recently 
been applied as a means to rapidly calculate transport fluxes 
based on the results of first principles calculations [13–15]. 
This work continues along these lines by developing a real-
time capable high-fidelity model of neutral beam injection on 
the National Spherical Torus eXperiment Upgrade (NSTX-U) 
[16] based on the results of the TRANSP neutral beam module 
NUBEAM [17, 18]. The real-time capable model is referred 
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to as NubeamNet to distinguish it from the Monte Carlo code 
the model is based on.

NSTX-U, which completed its first plasma operation 
campaign in 2016 [19–21], aims to span between the pre-
vious class of spherical torus devices, like NSTX [22] or the 
Mega-Ampere Spherical Tokamak (MAST) [23], and future 
facilities planned to study plasma-material interaction [24], 
nuclear components [25], and demonstration of fusion power 
production [26, 27]. NSTX-U looks to build upon the results 
of NSTX [28] to improve the physics understanding of several 
key issues for future devices, including the scaling of elec-
tron transport with field and current [29–32], the physics of 
fast particles [33–38], and the achievement and sustainment 
of non-inductive, high-β scenarios [39–44]. One of the pri-
mary components of the upgrade project was the replacement 
of the ‘center stack’ (containing the inner-leg of the toroidal 
field (TF) coils, the Ohmic heating (OH) solenoid, and some 
divertor coils) with one capable of reaching much higher 
fields and providing more Ohmic flux for longer discharges. 
The second major upgrade was the addition of a second neu-
tral beam injector (NBI), aimed more tangentially, which sig-
nificantly increases the auxiliary heating power and neutral 
beam current drive, and adds flexibility in shaping the spa-
tial deposition of these quantities in the plasma. The upgrade 
increases the TF capability from 0.55 T to 1.0 T, the maximum 
plasma current from 1.3 MA to 2.0 MA, and enables full-field 
discharge durations of 5 s.

With the goal of taking full advantage of the new device 
capabilities, much progress has been made on the develop-
ment and simulation testing of new algorithms for advanced 
control applications (e.g. [45–50]), including current and 
rotation profile. The model-based profile control algorithm 
designs rely on empirical scalings for beam heating, current 
drive, and momentum injection, and it is anticipated that the 
availability of a fast but high-fidelity neural network model 
of NUBEAM will enable more accurate real-time calcul-
ations, improving profile estimation through better dynamic 
observers, and model predictive control performance through 
more accurate predictions. Furthermore, a neural network 
model of NUBEAM will provide a means to compare the 
model predicted neutron production rate to measured values. 
This comparison enables real-time monitoring of fast ion 
losses which could potentially be a useful signal in disruption 
prediction algorithms, as indicated in [51].

1.1. Organization

The paper is organized as follows: in section 2, the generation 
of the dataset used for model development and the selection 
of features is described. In section 3, the selection of model 
topology is described, and predictions of the validation dataset 
and timing in the NSTX-U real-time system are demonstrated. 
Section 4 shows prediction results on testing data not used for 
training or topology selection, while section  5 discusses an 
approach to determining when model predictions can be con-
sidered reliable. Section 6 shows simulation results of a pro-
posed design for a nonlinear observer that embeds the neural 
network calculations to estimate the poloidal flux profile 

evolution, as well as Zeff and fast ion diffusivity. Section  7 
includes discussion and plans for future work.

2. Dataset and feature development

The motivation for the neural network model developed in this 
work is to closely approximate the results of the NUBEAM 
code quickly enough to enable use in real-time control appli-
cations, between shots analysis, and scenario optimization 
on NSTX-U. To this end, rather than attempting to create a 
model that accurately reproduces the entire predictive range 
of NUBEAM, which would require generating a comprehen-
sive dataset encompassing the complete physically possible 
range of all of the inputs to NUBEAM, we focus on a subset 
of inputs with ranges defined by the operating space of the 
NSTX-U’s first campaign in 2016. While it is theoretically 
possible to generate a single neural network model applicable 
to many or even all devices, beam geometries, and plasma 
conditions, it is more practical to develop dedicated models 
for specific machines or even specific plasma scenarios due 
to the smaller datasets required for training, and the resulting 
models are likely to require fewer neurons, making evaluation 
times better suited to real-time applications.

To generate the dataset, the interpretive TRANSP runs that 
are automatically run between NSTX-U shots were resub-
mitted with increased NUBEAM fidelity (5 ms time steps 
and 10 000 particles). With these settings and running with 16 
parallel processes, the wall time for the calculation of each 
time step is roughly 5 s. For each shot, a scan was conducted 
for key parameters, including Zeff and edge neutral density. In 
these scans, the anomalous fast ion diffusivity was considered 
to have the form

Df(ρ̂) = Df,1 + (Df,0 − Df,1)(1 − ρ̂αf)βf

and runs either used classical (Df,1 = Df,0 = 0), flat spatial pro-
files (Df,1 = Df,0 = Df,mag), or peaked profiles (Df1 = Df,mag, 
Df,0 = 0, αf = 2, βf = 4). The value Df,mag was selected from 
a uniform distribution between 1 and 50 000 cm2 s−1 for each 
run.

Randomized beam on-off modulations were applied, con-
strained by the minimum on and off times of the NSTX-U 
neutral beams (10 ms). Beam voltages were randomly selected 
from between 60 keV and 110 keV. Since the NSTX-U beams 
are not operated away from the optimal beam perveance, the 
selection of voltage determines the beam power, as well as the 
energy fractions.

A set of roughly 1000 runs based on approximately 250 
shots were used to create a database of nearly 100 000 time 
samples. Eighty percent of the shots in the dataset were ran-
domly assigned to be used for model training, ten percent 
were assigned to validation, and the final ten percent were 
reserved for testing. No NUBEAM results from the discharges 
assigned to the testing dataset were used to train models, while 
validation data was used to assess accuracy and generaliza-
tion during hyper parameter tuning. Inputs to the model were 
chosen to be: beam powers, edge neutral density, Zeff, electron 
temperature and density profiles, q profile, fast ion diffusivity, 
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major radius, minor radius, elongation, upper and lower tri-
angularity, plasma current, and toroidal magnetic field. The 
outputs to be predicted by the model were chosen to be the 
total neutron rate, shine through, charge-exchange and orbit 
loss, and profiles of beam heating to ions/electrons, beam cur-
rent drive and torque, fast ion pressure, and beam ion density. 
A table of inputs and outputs and corresponding symbols used 
in the text and figures are provided in table 1.

2.1. Reduction of profile data

Radially varying quantities are represented in TRANSP on a 
discrete grid of points in the normalized toroidal flux coor-
dinate ρ̂ , typically using between 20 and 60 points. Rather 
than fitting to this data directly, the radially varying quantities 
were first projected onto a set of basis functions. The basis 
functions for each quantity were chosen by applying principal 
component analysis to the dataset and keeping only the most 
significant modes, typically around 4. Aside from reducing 
the training dataset size and training time, the use of a reduced 
basis set helps the neural network model produces spatially 
smooth output profiles and avoids overfitting of noise in the 
profile dataset (either measurement noise in the case of inputs 
or noise due to the Monte Carlo scheme used in NUBEAM in 
the case of outputs). Figure 1 shows a heat map of the relative 
amount of the variance in the dataset explained by each mode 
for each of the profiles. The highlighted mode is the first one 

with a relative explained variance of less than 0.01. Only this 
mode and those with higher explained variance were kept in 
the reduced basis set. Figure 2 shows examples of the mean 
profile and modes for the safety factor profile and beam cur-
rent drive. For these profiles, the retained modes exhibit low 
spatial frequency variations with increasing frequency varia-
tions in the higher (less significant) mode numbers. Example 
profiles reconstructed from the reduced set of modes are com-
pared to the original jb and Pb,i profiles (from TRANSP run 
204991S28) in figure 3. In addition, comparisons of all data 
points from the TRANSP run for the pfast  and Tb,i profiles are 
shown in figure  4. Both figures  illustrate the accuracy with 
which the profiles can be reconstructed with just a few modes.

2.2. Beam slowing down time effects

Due to the slowing down time of fast ions, the various effects 
of a beam on the plasma depend on the time history of the 
beam and the discharge. Therefore, it cannot be expected that 
a model trained only on instantaneous values of the inputs 
should accurately predict the output behavior (unless the 
dataset is only made up of steady-state results). While many 
approaches could be taken to include time history effects in 
the model, including recurrent neural networks, the simple 
but evidently effective approach taken here is to augment the 
inputs of the model with a set of causal low-pass filtered ver-
sions of the individual beam powers. To account for the poten-
tial range of slowing-down times possible at different plasma 
conditions, the beam powers are filtered with time constants 
0.02 s, 0.05 s, and 0.1 s. A simple first-order filter described by

ẋ =
u − x
τLP

 (1)

is used, where u is the instantaneous input (beam power), x 
is the filtered output, and τLP is the filter time constant. An 
example of the expanded input signals used for beam line 1 A 
for run 204991S28 are showing in figure 5.

Table 1. Symbols and descriptions of the inputs and outputs of the 
developed reduced beam model.

Inputs Outputs

Symbol Name Symbol Name
Zeff Effective charge sneutron Total neutron rate
n0,out Edge neutral 

density
Pshine Shine-through 

power
R0 Major radius Pcx Charge-exchange 

loss power
κ Elongation Porb Orbit loss power
Ip Plasma current Pb,e Beam heating 

(electrons) profile
a Minor radius Pb,i Beam heating 

(ions) profile
Bφ,vR Vacuum toroidal 

field
Tb,e Beam torque 

(electrons) profile
δu Upper triangularity Tb,i Beam torque 

(ions) profile
δl Lower triangularity nb Beam ion density 

profile
Pinj Injected power  

for each beam
jb Beam current 

drive profile
ne Electron density 

profile
pfast Fast ion pressure

Te Electron 
temperature profile

q Safety factor 
profile

Df Anom. fast ion 
diffusivity profile

Figure 1. Relative explained variance of the modes for each profile 
showing that nearly all of the variance is explained by a small 
number of modes (note the log scale). The last mode kept in the 
model for each profile is highlighted in white (this mode and those 
to the left of it are kept in the model).
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2.3. Standardization

Because the neural network training results are sensitive to the 
magnitude of the variance of the features, the input and output 
features were all independently standardized to zero mean 
and unit variance prior to training. Likewise, when using 
the trained model for prediction, the input features are first 
formed by projection of profile data and expansion of beam 
power inputs, then standardized. The inverse transformation 
is applied to the predictions of the model prior to projecting 
the predicted output profile modes onto the significant modes 
to produce predicted spatial profiles.

3. Model topology selection

A fully connected neural network topology was chosen for 
the models developed in this work. To provide improved esti-
mates and a sense of the uncertainty of the estimated values, 
an ensemble of 5 models was trained, each using a randomly 
selected subset of the training dataset and all using the same 

neural-network topology. The output of the ensemble is taken 
to be the average output of the models, and the standard-devia-
tion of the mean of the model predictions is used to provide an 
estimate of the uncertainty of the predicted output. A diagram 
of the complete model, including the projection, filtering, and 
standardization procedures described in the previous section, 
is shown in figure 6.

The choice of the number of hidden layers and hidden-layer 
nodes was selected through scoring how well models general-
ized to the shots in the validation dataset in a grid scan of the 
hyperparameters. The procedure was also used to select the 
weight on the L2-norm of the model coefficients, a regulariza-
tion term in the loss function minimized during training of the 
neural networks1. As an example, regression plots comparing 
estimated and predicted total neutron rates for the training and 
validation sets for two different model topologies are shown 

(a) (b)

Figure 2. Examples of mean and modes for profiles: (a) safety factor profile (b) beam current drive.

(a) (b)

Figure 3. Examples of profiles reconstructed from reduced number of modes (solid line) and original TRANSP data (circles) at various 
times in run 204991S28.

1 The loss function is given by floss =
1
2 ||ŷ − y||22 + α

2 ||w||
2
2 where ŷ is the 

set of model prediction, y  is the set of true values and w is the set of neuron 
weights.

Nucl. Fusion 59 (2019) 056008
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in figure 7, while comparisons for the fast ion pressure profile 
are shown in figure 8. The results show that the fit has little 
to no degradation when moving from training data to valida-
tion data (not used for training model coefficients) for either 
topology. For the results shown, the higher complexity model 
is a better fit to both the training data and validation data. The 
mean of the R2 2 for all of the output variables is plotted in 
figure 9(a) as a function of number of nodes per layer, with dif-
ferent colored markers for each number of layers considered. 
Evidently, multiple hidden layers is a significant improvement 
for all numbers of nodes tested. Two and three hidden layers 

converge to very similar values beyond 150 nodes per layer. 
While the four layer model out performs the others for small 
numbers of nodes, it is surpassed by the two and three layer 
models beyond 50 nodes per layer, indicating the model is too 
complex and results in overfittting of the training data. The 
results are plotted in figure 9(b) as a function of the number 
of free parameters in each model. The dependence of R2 on 
model topology for three selected outputs (shine through, 
beam driven current, and charge-exchange loss, respectively) 
is shown in figure  10. It is clear that each output has dif-
ferent dependence on topology, with some continuing to show 
improvement, albeit small, at 300 nodes per layer (shine-
through), and some reaching a maximum around 125–150 
nodes per layer (charge-exchange losses). The dependence on 
the number of layers also varies, with some (shine through 
and beam-driven current) showing slight improvement with 
multiple layers, and others (charge-exchange losses) shown 
a significant improvement with multiple layers, mostly inde-
pendent of the number of nodes per layer.

To demonstrate the real-time applicability of the model, 
the main calculations required by the model (profile reduc-
tion, normalization, and neural network evaluation) were 
implemented in the NSTX-U real-time computer. A scan of 
model topology was tested using the real-time implementa-
tion to assess the scaling of calculation time with model com-
plexity as well as cycle to cycle variations in timing. Results, 
shown in figure 11, show that models with complexity near 
that required to optimize the model fit can be run within the 
typical 200 µs cycle time of the NSTX-U control system, 
e.g. 3 layers of 100 nodes each. Times are evidently around 
104–105 times faster than the NUBEAM calculations in the 
database. Cycle to cycle variation was found to be less than  
2 µs. Recent advances in real-time PCIe-based internode com-
munication in the NSTX-U control system [52] will enable 
offloading calculations to a dedicated computer with enough 

(a) (b)

Figure 4. Comparison of actual profile data to the reconstructed profile data using a reduced number of modes for (a) fast ion pressure and 
(b) torque to ions for TRANSP run 204991S28.

Figure 5. Example of expanded set of input signals used to 
incorporate time history of beam powers, including instantaneous 
(unfiltered) power and filtered values from run 204991S28. Values 
for beam line 1 A are shown.

2 The coefficient of determination R2 is calculated as R2 = 1 −
∑

i(yi−fi)2
∑

i(yi−ȳ)2 , 

where y  is a vector of observations, ȳ is the mean observation, and f  is a 
vector of predicted values.
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cores to simultaneously calculate the models for uncertainty 
quantification as well as calculation of the sensitivity of out-
puts to changes in inputs needed by real-time control and 
optim ization algorithms.

4. Predictions of testing dataset

After studying the topology with the validation dataset, the 
model using 3 layers and 100 nodes per layer was selected 
and used to predict the output for the inputs in the testing 
dataset. Figure 12 shows time traces of the NubeamNet pre-
diction, with the shaded region representing ±  one standard 
deviation of the mean of the model ensemble, compared to 
the NUBEAM calculations for run 204738S33. Depicted are 
(a) the beam current drive at ρ̂ = 0.421, (b) fast ion pres sure 
at ρ̂ = 0.053, (c) total neutron rate, and (d) beam heating of 
electrons at ρ̂ = 0.421, where ρ̂  is the normalized toroidal 
flux coordinate. Figure 13 compares the profiles predicted by 
NubeamNet (shaded region represents  ± one standard devia-
tion of the mean of the model ensemble) to the NUBEAM cal-
culated profiles for run 204738S33 at several times during the 
shot: (a) beam current drive, (b) fast ion pres sure, (c) heating 
to ions, and (d) torque to electrons. The results show strong 
agreement throughout the shot, even in the presence of beam 
modulations. The expected NUBEAM results are typically 
within one standard deviation of the NubeamNet ensemble 
mean. Despite using a reduced set of profile modes, the pre-
dictions are able to accurately reproduce the shapes of pro-
files. For example the model is able to capture the fact that 
the beam current drive and electron torque are peaked off-axis 
at t  =  0.438 s and move toward the magnetic axis in subse-
quent times shown. Finally, regression plots for the testing 
dataset are shown for the neutron rate and fast ion pressure in 
figure 14. Comparing to the results shown in figures 7 and 8, it 

is evident that the model generalizes well to the data that was 
not used in training or topology selection.

5. Ensemble uncertainty as an indicator  
of extrapolation

A potential weakness of the presented modeling approach is 
the possibility for large errors if the neural network is pre-
sented with inputs that are outside of the training region, 
since neural networks models are not able to extrapolate. 
Furthermore, because the input space is high-dimensional, it 
is not trivial to determine whether a particular input should 
be considered to be inside the training region. The potential 
impact of extrapolation errors is application specific, so the 
appropriate approach to mitigating this issue will depend on 
the future uses of the model. Nonetheless, we present one pos-
sible heuristic solution for detected extrapolation that takes 
advantage of the ensemble approach used in this work.

First, the normalized cumulative sum of the distribution 
of ensemble uncertainties for the predictions on the training 
data is calculated, and a likelihood pstd  is specified. From 
this, a threshold value tstd,i for the standard deviation of each 
ensemble output i is determined such that the standard devia-
tion of ensemble predictions of i is expected to be less than 
tstd,i with a likelihood of pstd . Figure 15(a) shows the cumula-
tive sum of standard deviations for the neutron rate prediction 
for the training set, along with lines indicating pstd = 0.8 and 
tstd,neutron. The same value of pstd  was used to calculate thresh-
olds for the other outputs. For each of the predictions on the 
training set, nabove is calculated as the number of outputs for 
which the standard deviation exceeds the output’s threshold 
tstd,i. The normalized cumulative sum of the distribution nabove 
is then calculated for the training set and the threshold tn such 
that nabove is expected to be less than tn with a likelihood of 

Figure 6. Diagram of the real-time capable beam model, including the processing described in section 2 and the neural network ensemble 
described in section 3.

Nucl. Fusion 59 (2019) 056008
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p n is determined. The cumulative sum of nabove is shown in 
figure 15(b), along with lines for p n  =  0.95 and tn.

Ensemble prediction standard deviations for any given 
sample can then be compared with the values tstd to deter-
mine nabove, which can in turn be compared to tn. Predictions 
for which nabove > tn can be considered unreliable. As a test, 
a series of predictions was made based on the inputs from 
TRANSP run 204738S33. To test whether the approach can 
detect extrapolation, a scan was done in which the elongation 
input was changed from 1.0 to 3.0. Figure 16 shows the his-
togram of elongation in the training set overlaid with the frac-
tion of samples in the test found to be unreliable as a function 
of elongation. The fraction of unreliable samples is lowest 
for elongations that occurred frequently in the training set, 
increases for elongations that occurred less often in the training 
set and rises toward one outside of the interval that was trained 
on. As mentioned above, the appropriate response to finding 

an unreliable prediction will depend on the specific applica-
tion of the model. For example, in the case of offline applica-
tions, if inputs in a region of interest are found to produce 
unreliable predictions, the training dataset could be expanded 
through additional NUBEAM calculations to include nearby 
points. The model could then be trained/updated to improve 
its reliability in the region of interest.

6. Example application: real-time current profile 
observer with parameter estimation

For interpretive analysis of experimental results with 
TRANSP, the fast ion diffusivity used in NUBEAM is typi-
cally adjusted in order to match the predicted and measured 
neutron rates. This procedure is most typically done by 
assuming a fast ion diffusivity profile shape and scanning the 

(a) 3 layers, 100 nodes, training (b) 3 layers, 100 nodes, validation

(c) 1 layer, 50 nodes, training (d) 1 layer, 50 nodes, validation

Figure 7. Log-scale histograms of regression results for total neutron rate prediction. The top row shows results for 3 layers, 100 nodes 
for the (a) training data and (b) validation data, while the bottom row shows results for 1 layer, 50 nodes for the (c) training data and (d) 
validation data.
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(a) 3 layers, 100 nodes, training (b) 3 layers, 100 nodes, validation

(c) 1 layer, 50 nodes, training (d) 1 layer, 50 nodes, validation

Figure 8. Log-scale histograms of regression results for fast ion pressure profile (includes all radial locations). The top row shows results 
for 3 layers, 100 nodes for the (a) training data and (b) validation data, while the bottom row shows results for 1 layer, 50 nodes for the (c) 
training data and (d) validation data.

(a) (b)

Figure 9. Mean R2 across all output variables as a function of number of nodes per layer (a) and number of free parameters (b).

Nucl. Fusion 59 (2019) 056008
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magnitude in a series of simulations to find the best match. 
This is time consuming and becomes challenging when the 
diffusivity varies in time. To improve upon this procedure, a 
scheme for changing the fast ion diffusivity magnitude auto-
matically during the run was recently added to TRANSP. 
The scheme is a proportional-integral-derivative control law 
treating the fast ion diffusivity profile magnitude as an actu-
ator to decrease the neutron rate matching error. TRANSP has 
options to apply a similar approach to modify Zeff to match 
the measured current profile evolution. These schemes pro-
vide a means for estimating plasma parameters that are uncer-
tain or unmeasured from available measurements and models, 
however, they rely on running TRANSP and NUBEAM and 
are therefore not suitable for real-time use. One potential 
application of the neural network developed in this work is in 
the development of dynamic observers to enable this estima-
tion to be performed in real-time. While additional reduced 
models are required to develop an observer for all of the pro-
files and parameters tracked in TRANSP, we present simu-
lation results of a preliminary design here. The NubeamNet 
neural net is combined with a reduced model of magnetic dif-
fusion to design an estimator for the current profile, effective 
charge, and anomalous fast ion diffusivity. For the purposes 
of this demonstration, we consider a model like the one used 

for current profile control design for DIII-D in [9, 10]. The 
poloidal flux diffusion equation is given by

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂2

1
ρ̂

∂

∂ρ̂

(
ρ̂F̂ĜĤ

∂ψ

∂ρ̂

)
+ R0Ĥη(Te)

⟨̄jNI · B̄⟩
Bφ,0

 (2)
with boundary conditions given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0, (3)

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −µ0

2π
R0

Ĝ
∣∣∣∣
ρ̂=1

Ĥ
∣∣∣∣
ρ̂=1

I(t).
 (4)

We assume the bootstrap current is negligible or can be 
approximated as a time-independent profile. The terms ρ̂b, 
F̂ , Ĝ , and Ĥ  are equilibrium-dependent geometric quantities, 
which are defined in detail in [53] and are assumed to be 
known and time-independent for the purposes of this work. It 
is assumed that the electron temperature profile is known and 
time-independent, and that the resistivity is given by

η(ρ̂) = Zeff
kη(ρ̂)
Te(ρ̂)

3/2

. (5)

The proposed approach will be extended in future work 
to include additional reduced models for the resistivity, boot-
strap current, and geometric quantities in order to relax the 
assumptions made here.

The NubeamNet model is used to calculate the beam cur-
rent drive component of ⟨̄jNI·B̄⟩

Bφ,0
 as well as the total neutron rate.

For observer design, this model is discretized in time and 
space:

xk = f (xk−1, uk) + wk (6)

zk = h(xk−1, uk) + vk (7)

where xk ∈ Rng is the vector of state estimates (ng is the 
number of points in the spatial discretization of the magnetic 
diffusion equation. The left and right boundary points are not 
included in xk as they are prescribed. The vector includes the 
two estimated parameters Zeff and Df). zk ∈ Rnm is a vector of 

(a) (b) (c)

Figure 10. R2 as a function of number of nodes per layer for (a) shine through, (b) beam-driven current, and (c) charge exchange losses.

Figure 11. Calculation time as a function of model complexity 
tested on the NSTX-U real-time control computer.
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nm measurements, wk ∈ Rng and vk ∈ Rnm are the process and 
measurement noise, assumed to be zero mean Gaussian white 
noise with covariances Qk and Rk respectively. f  and h are non-
linear system and output functions, respectively.

It is assumed that the boundary poloidal flux is known 
from magnetic measurements using a real-time equilibrium 
reconstruction code, along with the inputs to the neural net-
work. The plasma current and total neutron rate are assumed 
to be measured in real-time. In-domain measurements of the 
poloidal flux gradient are also considered (results with and 
without in-domain measurements are compared).

A typical discrete-time extended Kalman filter is used. The 
predict and update equations are written as:

x̂k|k−1 = f (x̂k−1|k−1, uk) (8)

Pk|k−1 = FkPk−1|k−1FT
k + Qk (9)

ỹk = zk − h(x̂k|k−1, uk) (10)

Sk = HkPk|k−1HT
k + Rk (11)

Kk = Pk|k−1HT
k S−1

k (12)

x̂k|k = x̂k|k−1 + Kkỹk (13)

Pk|k = (I − KkHk)Pk|k−1 (14)

where Fk and Hk are Jacobian matrices formed by linear-
izing the system and output functions around the current state 
estimates. These matrices are formed numerically based on 
evaluation of the model equations (including the neural net-
work for NUBEAM). This step requires many evaluations of 
the neural network (2ng  +  1), however, the calculations can 
be trivially parallelized for each element of the state vector if 
enough real-time CPUs are available. Furthermore, it is likely 
that the linearization does not need to be performed at every 
update time. These implementation details will be addressed 
in future work. The matrices Qk and Rk represent the process 

(a) (b)

(c) (d)

Figure 12. Time traces comparing NubeamNet prediction (dashed line, shaded region represents  ±  one standard deviation of the model 
ensemble) to the NUBEAM calculation (solid line) for run 204738S33. (a) beam current drive at ρ̂ = 0.421, (b) fast ion pressure at 
ρ̂ = 0.053, (c) total neutron rate, and (d) beam heating of electrons at ρ̂ = 0.421.
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(a) (b)

(c) (d)

Figure 13. Comparison of profiles predicted by NubeamNet (dashed line, shaded region represents  ±  one standard deviation of the model 
ensemble) to the NUBEAM calculated profiles (solid line) for run 204738S33 at several times during the shot. (a) Beam current drive, (b) 
fast ion pressure, (c) heating to ions, and (d) torque to electrons.

(a) 3 layers, 100 nodes, training (b) 3 layers, 100 nodes, validation

Figure 14. Log-scale histograms of regression results for the testing data set for neutron rate and fast ion pressure profile (includes all 
radial locations). Results shown for 3 layers, 100 nodes.
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and measurement noise covariances, respectively, while Pk  is 
the state estimation error covariance and Kk is the Kalman 
gain used to update state predictions based on measurements.

6.1. Simulation results

The design is tested against a simulated current profile evo-
lution with magnetic diffusion equation  parameters taken 
from shot 204118 at t  =  0.6 s. The six beams are set to have 
equal powers that vary in time. The total power waveform is 
shown in figure 17. The simulated magnetic diffusion equa-
tion uses a value of Ip = 0.96 MA as its boundary condition. 
The evolution of the boundary flux required to maintain this 
value of total current is shown in figure  17. Time-varying 
values for Zeff and Df are used, as indicated by the red lines in 
figures 18(c) and (d).

The observer is initialized with a perturbed initial condi-
tion ψ0,obs(ρ̂) = ψ0,sim(ρ̂)− 0.004 sin(2πρ̂). Initial values of 
Zeff,obs and Df,obs are chosen from random Gaussian distri-
butions centered on the initial values used in the simulated 
model. Measurements are corrupted by additive Gaussian 
white noise. The observer model parameters are taken to be 
the same as those used in the simulation model.

Two simulation cases are shown: the first with only meas-
urements of the plasma current, boundary flux, and total 

(a) (b)

Figure 15. (a) Likelihood of occurrence for values of the neutron rate standard deviation. The value of pstd  is shown in black while the 
corresponding threshold tstd,sneutron is shown in red. (b) Likelihood of occurrence for the number of faults (outputs that exceed tstd,i) per 
sample. The value of p n is shown in black while the corresponding threshold tn is shown in red.

Figure 16. Ensemble uncertainty as an indicator of extrapolation: 
histogram of elongation values in the training dataset (red bars) 
overlaid with the fraction of samples with nabove > tn for different 
values of elongation (with other inputs taken from test run 
204738S33).

(a)

(b)

Figure 17. Power (a) and ψb (b) used in the simulations.
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neutron rate as inputs to the observer, and the second with the 
addition of four interior measurements of the flux gradient (a 
proxy for pitch angle measurements).

6.1.1. Parameter estimation without in-domain state measure-
ments. In this test, the observer is tested without in-domain 
measurements of the poloidal flux or poloidal flux gradient. 
Figures 18(a) and (b) compare the measured plasma current 

and total neutron rate (the simulated values with added Gauss-
ian noise) to the values estimated by the observer. The observer 
is able to adjust the states (including estimates of Zeff and Df 
to minimize the output estimation error and providing esti-
mates that are not very sensitive to the measurement noise. 
The estimates of Zeff and Df are shown in figures 18(c) and (d) 
compared with the actual values used in the simulation. It is 
evident that the estimates converge to the actual values and can 
track step changes in these parameters. The estimated values of 
poloidal flux at several in-domain locations are compared with 
the simulated values in figure 19. Although the estimates conv-
erge to the actual values, the estimates closer to the magnetic 
axis converge more slowly due to the higher temperatures in 
the core (slower dynamics) and the lack of in-domain measure-
ments in the observer to help drive the estimation error to zero.

6.1.2. Parameter estimation with interior measurements. In 
this test, the observer is tested with in-domain measure-
ments of the poloidal flux gradient ∂ψ∂ρ̂  at four locations, 
ρ̂ = [0.05, 0.21, 0.47, 0.74]. Again, the observer adjusted 
the states (including estimates of Zeff and Df to minimize 
the output estimation error, as seen in figures 20(a) and (b). 
The estimates of Zeff and Df, shown in figures 18(c) and (d) 
converge to the actual values used in the simulation. Perfor-
mance is similar to the case without in-domain measurements. 
Like the measurements of plasma current and total neutron 
rate, the output estimation for the in-domain measurements 
is kept close to zero throughout the simulation, as shown in 

(a) (b)

(c) (d)

Figure 18. Parameter estimation without in-domain state measurements: observer estimates of plasma current and total neutron rate (a) and 
(b), compared to noisy measured values (grey). Estimates of Zeff and Df (blue) compared to actual values (red). Shaded regions represent 3 
standard deviations of the estimated values.

Figure 19. Parameter estimation without in-domain state 
measurements: observer estimates of poloidal flux at several spatial 
locations compared to actual (unmeasured) values (black). Shaded 
regions represent 3 standard deviations of the estimated values.
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figure 21(a). The estimated values of poloidal flux at several 
in-domain locations, compared with the simulated values in 
figure 19(b) converge to the actual values much faster than in 
the case without in-domain measurements.

7. Discussion and conclusions

A neural network model for evaluating the beam heating, cur-
rent drive, torque, and other effects of the NSTX-U neutral 

beam system on the plasma has been developed. The model 
was trained on NUBEAM results calculated for the dis-
charges in the first NSTX-U campaign. The speed of the 
resulting model makes it potentially useful for many real-time 
applications, as well as optimization for scenario develop-
ment. Simulation results of a proposed design for a nonlinear 
observer that embeds the neural network calculations to esti-
mate the poloidal flux profile evolution, as well as Zeff and fast 
ion diffusivity, are presented.

(a) (b)

(c) (d)

Figure 20. Parameter estimation with in-domain state measurements: observer estimates of plasma current and total neutron rate (a) and 
(b), compared to noisy measured values (grey). Estimates of Zeff and Df (blue) compared to actual values (red). Shaded regions represent  
3 standard deviations of the estimated values.

(a) (b)

Figure 21. Parameter estimation within-domain state measurements: (a) observer estimates of poloidal flux gradient at several locations 
compared to measured values (grey). (b) Poloidal flux estimates at several spatial locations compared to actual (unmeasured) values (black). 
Shaded regions represent 3 standard deviations of the estimated values.
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As an alternative to the approach presented here, a 
reduced analytical model for rapid calculation of the fast 
ion distribution, like the one presented in [54] could also be 
used in these applications. The analytical approach is cur-
rently much slower (25 ms versus 150 µs for the neural net-
work approach), and requires simplifying assumptions to be 
made that are not required in the neural network approach. 
However, the neural network requires a large dataset and can 
only make predictions in the region of operating space for 
which it has been trained, as discussed above. The speed of 
the neural net makes it ideal for quickly calculating sensitivi-
ties or performing iterative calculations. It may be beneficial 
to combine the approaches, relying on the neural network 
for applications with the most stringent timing requirements, 
while using the analytical model to generate training data for 
the neural network or to provide intermittent real-time vali-
dation of the neural network results, e.g. to detect whether or 
not the inputs to the neural network are outside the training 
region.

Future work will include developing training sets and 
neural network models based on predicted discharges to 
make the model useful for planning future NSTX-U cam-
paigns. Models for other devices will also be developed. 
Alternative approaches to handling the time-history depend-
ence, including recurrent neural networks, will be explored. 
The observer design presented in this work will be expanded 
upon and tested against a database of shots. Following this, 
the observer will be implemented in the real-time system, and 
use of the neural network model in feedback control algo-
rithms will be pursued.
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