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Abstract — The Thomson scattering (TS) diagnostic on the National Spherical Tokamak eXperiment
Upgrade (NSTX-U) has been an essential system for many operational campaigns due to its function of
measuring plasma electron density and temperature. Constructive feedback to improve the next plasma
discharge, however, has been limited because of in-between shots analysis. Plasma control, therefore,
desires a diagnostic system that is real-time capable. This contribution presents the development of software
that demonstrates the feasibility of a real-time TS diagnostic system for NSTX-U. The developed software is
able to evaluate the electron temperature and density within 2.5 ms.

The overall system requirement is specified by a 60-Hz timing cycle, which is driven by the TS laser pulse
rate. The real-time software processes the peak amplitudes of the detected photons, evaluates the electron
temperature and density, and then outputs them to an analog output card that is used to interface with the
NSTX-U control. The real-time software is implemented in an object-oriented architecture using C++11. C++11
software components include Abstract class, Atomic data types for synchronization, and a Hash data structure.
The software application makes use of multiple threads that run concurrently: a thread to acquire the photon peak
amplitude and feed a circular buffer, threads to evaluate the electron density and temperatures, and a thread that
supplies corresponding output voltages and feeds the output card.

In summary, the new real-time TS system has been proven to meet the 60-Hz system requirement. For
this reason, the software implementation was deemed successful. In future NSTX-U campaigns, this
diagnostic will be a great asset enabling real-time plasma density and temperature control.
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I. INTRODUCTION TO THE ANALYSIS WORKFLOW AND THE
UTILIZED HARDWARE

I.A. Background and Motivation

Thomson scattering (TS) is a known and widely
applied tool used to diagnose hot plasma. Its underlying
fundamental principle is the interaction of a high-energy
laser beam with free electrons of the plasma. Especially

in applications for magnetic confinement fusion, it is one
of the main profile diagnostic tools since it provides
a noninvasive, localized measurement of electron density
and temperature.1 For this reason TS diagnostics are very
common and installed on multiple fusion devices. Some
of the experiments that use the TS diagnostics method
include the Joint European Torus experiment,2 TFTR
(Ref. 3), DIII-D (Ref. 4), Alcator C-Mod tokamak,5

ADEX Upgrade,6 MAST (Ref. 7), Large Helical
Device8 (LHD), Helical Symmetry Experiment9 (HSX),
and Wendelstein 7-X (Ref. 10). The goal of the presented
project is to build a real-time analysis prototype for the*E-mail: rrozenbl@pppl.gov
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TS diagnostic tool at National Spherical Tokamak
eXperiment Upgrade (NSTX-U) that can calculate
plasma parameters. These parameters can then be used
by the NSTX-U plasma control system (PCS) to feedback
the plasma density and temperature during a shot. This
diagnostic tool consists of several lasers, which fire in
a predefined sequence.11–14 In addition, this project
demonstrates the real-time performance that can be
achieved using present-day commercial off-the-shelf
hardware and software technologies.

I.B. System Setup and Utilized Hardware Components

The real-time hardware can acquire data of eight
polychromators, i.e., eight spatial channels. Each
polychromator is equipped with up to six spectral filters
and associated avalanche photodiodes (APDs) to measure
the spectrum of the scattered light. The signals of the
APD detectors are digitized with an SIS3316-250–14
analog-to-digital converter (ADC) that operates at 250
Msamples s−1 with 14-bit resolution.15 The ADC is
connected to a server via a Solarflare16 Ethernet card.
There are four SIS3316 cards with 16 channels each,
which allows for the digitization of the eight spatial
channels and other required signals for the TS analysis.
The cards continuously digitize to a circular buffer,
whose readout is triggered by laser pulses. When the
cards are triggered, the peak values of the detected
pulse are extracted in the first step of the real-time
Multi-Pulse Thomson Scattering (MPTS) analysis
software. The real-time server that is used to process
the TS calculation is a ServeDirect server with 32
Gbytes Memory, Intel Xeon 2.2 GHz with 20 cores.
The output of the real-time MPTS server is done through
an analog output (AO) 16AO64 PCIE card, which has up
to 64 channels with 16-bit resolution.17

I.C. Layout of the Real-Time Analysis Software

The Real-Time Thomson software consists of (1) the
Read-Card thread, (2) Buffer-Read threads, (3) an AO
thread, (4) a thread that monitors the trigger event coming
from the digitizer card, and (5) the Laser thread. The
Read-Card thread reads an ADC channel that indicates
the laser energy and four ADC channels that indicate
which laser of the TS diagnostic was fired. It also reads
the data from each ADC channel on the card. This thread
stores the values in several circular buffers. There are
seven Read-Buffer threads running in parallel that are
assigned to read and process one specific spatial channel
consisting of up to six spectral channels. The Read-Buffer

thread retrieves the data from the circular buffer and finds
the signal’s peak, i.e., the maximum amplitude of the
detected laser pulse. Furthermore, the Read-Buffer thread
computes plasma electron temperature Te and electron
density ne as well as their errors (Te,error and ne,error). To
calculate ne, the energy of the fired laser is required. This
is provided by the Laser thread. This thread reads the
energy of the laser from a circular buffer. Furthermore,
the Laser thread then finds which laser fired by reading
from four circular buffers.

The AO thread outputs a two-dimensional vector
consisting of eight values, according to the eight analyzed
spatial channels, when all the threads finish computing
the plasma parameters. For each spatial channel, it out-
puts four computed plasma parameters to the AO card.
The analog card must be calibrated, and the above values
need to be adjusted, with the preset value, which is stored
in an MDSplus tree.18 The program then ends after
a preset number of samples. Afterward, all raw data,
i.e., the peak values, as well as the computed plasma
parameters are archived to the MDSplus tree.

II. DATA STRUCTURE/IMPLEMENTATION OF CIRCULAR
BUFFERS

The C++11 unordered map structure maps a physical
card and channel to a spatial channel and spectral
channel. This map structure is filled during the program
initialization by grabbing the required information from
the MDSplus tree. The data structure used for storing the
digitized data is a circular buffer. The advantage of this
kind of data structure is that the elements are pushed and
read from the top of the vector in constant time.

There are two pointers to access the circular vector:
One points to the head, and the other points to the tail. As
new data are pushed into the array, the tail pointer is
incremented, and modulo operation occurs with
a capacity variable. This ensures that the tail pointer will
reset to the beginning of the vector after the vector
capacity is reached. The tail and the head pointer are
atomic C++11 types. The atomic type in C++11 enables
multiple threads to access the variable without causing
race conditions, and the resulting behavior is well defined.
To enable more efficient use of atomic variables without
the need for locking, memory order release is used to store
the atomic head and atomic tail. This prevents the compiler
from changing the order of read and write operation after
the store operation. For the same reason as stated above,
memory order acquire is used for load operation to prevent
reordering of write and read instructions before the load
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operation. The vector is empty when the two pointers are
equal. When the programs start, both pointers are set to the
start of the vector. The memory for the vectors is allocated
when the programs start. This is done to minimize memory
allocation during the program run.

The data structure of a circular buffer is presented in
Fig. 1. In Fig. 1, “Spatial Channels” is a C++11 two-
dimensional vector, and the “Lane Buffer” is a C++11
class. In addition, the “Circular queue” is a two-dimen-
sional C++11 vector that contains “Voltages,” which is
a C++11 vector of doubles.

III. DATA PROCESSING WORKFLOW

III.A. Initialization

The program reads the MDSplus tree to initialize the
unordered map data structure that maps physical cards
and channels to the spatial channels and polychromators.
It also reads the calibration values for all the cards and
the values used to initialize the cards. The program then
reads 20 samples from digitizer cards and computes the
average signal baseline and standard deviation. These
values will be subtracted from the peak values that are
read from the digitizer cards.

III.B. Main Program Execution

The real-time MPTS architecture is described in Fig. 2.
The programs consist of ten parallel threads running in
tandem. The Card-Reader thread waits for an atomic

variable to be incremented by the Trigger thread to tell it
that a laser incident occurred. After that, it first reads the
energy of the laser and then reads four channels to deter-
mine which laser fired. It pushes this data information to an
energy buffer and laser-fired buffers. Afterward, the thread
reads all physical cards and channels and stores these peaks
in circular buffers by using the unordered-mapped data
structures that map the spatial channels and polychromator
to the physical card and channel.

The Trigger thread waits for the SIS3316 digitizer
acquisition control status register to indicate that the data
acquisition is completed and then increments an atomic
integer variable to indicate that the card was triggered.
Each Buffer-Read thread is assigned a unique index
number. The Buffer-Reader threads wait for the
SIS3316 digitizer to be triggered by monitoring for an
atomic integer that is constantly incremented by the
Trigger thread. If this is greater than the last time the
trigger happened, the thread continues to read the peaks
from the circular buffer and reads only the spatial channel
that was assigned to it. The thread loops through all the
spectral channels for the corresponding spatial channels
that are stored in the unordered map and then stores them
in a vector of six doubles. After all six peaks are
extracted, a function calculates the density and tempera-
ture of the plasmas.

The plasma parameter calculation function first
determines if the peak can be used for calculation. For
example, if the channel is saturated or the channel is
inactive, the peak will be marked as bad. Each peak is
then adjusted by subtracting the average baseline preshot
voltage, and the adjusted peak values are passed to

Fig. 1. The circular buffer consists of a circular queue that has a pointer that points to the head and a pointer that points to the tail
of the queue. The circular queue contains multiple voltages.
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a function, which fits the Thomson spectrum. This func-
tion attempts an iterative Thomson spectrum fitting on
the inputted peaks. If it does not converge after a preset
amount of time, it will exit the function.

The AO thread waits for all eight threads to complete
or exit the iterative calculations by waiting for the atomic
variable increment of each thread to reach 8. The thread
then searches for the corresponding output voltage for
each calculated plasma parameter in a preset lookup
table. The thread uses a binary search19 algorithm to
find a corresponding voltage for each plasma parameter
and then outputs the converted voltage of the calculated
density, temperature, density error, and temperature error
for each of the eight threads to the analog card. The real-
time analysis function that produces the above density,
temperature, temperature error, and density error was
tested extensively and benchmarked. First, a previous
shot was inputted into the postshot analysis code, and
the output data were recorded. Then, the same shot was
inputted into the real-time analysis code, and the output
data were recorded as well. The postshot output data were
compared to the real-time output data. The postshot and
real-time analysis are in good agreement, and the small
scatter might occur due to the different numerical
implementations.20 Nevertheless, these differences do
not cause any systematic differences in the outputted Te
and ne (Ref. 20).

III.C. Archiving

At the end of a plasma discharge, i.e., when the
preset numbers of samples are fulfilled, the peak values
from the archive vectors are stored in the MDSplus tree

using segmented records. When the peaks are read from
the digitizer card, a time stamp, read from the local server
clock, is stored in a vector. In addition, the values of the
calculated plasma parameters are stored in a vector dur-
ing the program run. At the end of the plasma discharge,
these values are also stored in the MDSplus tree together
with the corresponding time stamps.

IV. SOFTWARE OPTIMIZATION

Vector references are passed into functions; this is
done to avoid copying the entire vector structure into the
function’s working stack. All large array and vectors are
allocated memory during the program initialization;
therefore, each function and thread can access and store
information in the vectors without allocating new mem-
ory. The unordered map data structure is used to access
the corresponding values for each key in constant time.
A binary search algorithm is used to efficiently search the
corresponding voltage in a lookup vector. Since accessing
the MDSplus tree is slow, all initialization parameters that
are stored in the MDSplus tree are read and stored into
vectors and unordered maps during program initializa-
tion. The program is compiled with the GNU Compiler
Collection (GCC) compiler21 option of o3. With this
option, the compiler optimizes the code for speed of
execution. The program spends most of its time fitting
the Thomson spectrum, i.e., calculating ne, Te, ne error,
and Te error. We were able to reliably reduce the function
execution time to 2.5 ms.

The threads are synchronized using C++11 atomic
types. This atomic type avoids the data race condition;
therefore, the operating system does not need to perform

Fig. 2. The real-time MPTS Architecture contains a Reader Card thread that reads channels from the analog-to-digital cards and
inserts the voltages into the spatial channels. In addition, it contains a Laser thread and multiple Read Buffer thread that read the
voltages from the spatial channel. Furthermore, it contains one Output thread that converts temperature and density parameters
produced by the Read Buffer threads to analog voltages that are outputted to the AO card.
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a context switch on a waiting thread that needs to run.
Each thread is scheduled to run on its own core, and the
threads run in first-in, first-out (FIFO) schedule.22

Only after the shot ends will the program archive the
data to the MDSplus tree. During the run, the program
stores the raw data and computed values to preallocated
vectors in memory. To test a case scenario, we let the
operating system schedule the threads and assigned them
to different cores. The program was able to meet a 60-Hz
deadline execution by using the above schedule techni-
que. The optimization was not pushed to its maximum
level. For this reason, it should be possible to optimize
more and increase the execution rate.

V. SUMMARY

This project demonstrated the implementation and
successful testing of an easily scalable prototype real-
time TS analysis system. A big advantage of this system
setup is that it works independently of the NSTX-U PCS.
There is no direct interaction between the real-time
MPTS server and the PCS servers, which would require
clock synchronization.20

The Thomson spectrum fitting function was able to
compute the plasma parameters, namely, Te, ne, Te error,
and ne error, in 2.5 ms. Furthermore, this real-time frame-
work (hardware and software) was able to run for 30 min
reading from four ADC cards and evaluate and output
eight spatial channels. The real-time system was able to
keep a 60-Hz rate, read out the ADCs, process the laser
data, and output the results to the AO card. All of this
was accomplished with commercially available hardware.
In the future, the AO card will output the computed
plasma parameters to the NSTX-U PCS, which will use
this input to control the plasma in NSTX-U in real time.
To test this system prototype further, it will be installed at
the TS diagnostic of the LHD stellarator.23
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