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ABSTRACT

Three-dimensional nonlinear simulations of Alfv�en eigenmodes in the subcyclotron frequency range show a robust physical stabilizing
mechanism via modest off-axis beam injection, in agreement with experimental observations from the National Spherical Torus Experiment
(NSTX-U). Experimental results from NSTX-U have demonstrated that neutral beam injection from the new beam sources with large tan-
gency radii deposits beam ions with large pitch, which can very effectively stabilize all unstable Global Alfv�en Eigenmodes (GAEs). Beam-
driven GAEs have been linked to enhanced electron transport in NSTX, and the ability to control these modes will have significant implica-
tions for NSTX-U, ITER, and other fusion devices where super-Alfv�enic fast ions might be present. Nonlinear simulations using the HYM
code have been performed to study the excitation and stabilization of GAEs in the NSTX-U right before and shortly after the additional off-
axis beam injection. The simulations reproduce the experimental finding, namely, it is shown that off-axis neutral beam injection reliably
and strongly suppresses all unstable GAEs. Before additional beam injection, the simulations show unstable counter-rotating GAEs with
toroidal mode numbers and frequencies that match the experimentally observed modes. Additional off-axis beam injection has been modeled
by adding beam ions with large pitch and varying density. The complete stabilization occurs at less than 7% of the total beam ion inventory.
New analytical theory of GAE (de)stabilization has also been derived, suggesting a different interpretation for the GAE stabilization mecha-
nism compared to previous publications.

https://doi.org/10.1063/1.5116357

I. INTRODUCTION

Two types of subcyclotron frequency Alfv�en eigenmodes (AEs)
of compressional and shear polarization, namely, Compressional
Alfv�en eigenmodes (CAEs) and Global Alfv�en eigenmodes (GAEs)
have been frequently observed during neutral beam injection (NBI) in
the National Spherical Torus Experiment (NSTX/NSTX-U),1–3 as well
as other beam-heated devices such as MAST4,5 and DIII-D.6,7 These
modes have frequencies of a fraction of the ion cyclotron frequency
(0.1–1xci), and are driven unstable through the Doppler shifted cyclo-
tron resonance with the super-Alfv�enic NBI ions.1,2,8 Subcyclotron fre-
quency AEs can be excited by fast ions in other laboratory devices if
the fast ion velocity is large enough to Doppler-shift the mode fre-
quency into the ion cyclotron range. Thus, these modes can be excited
in ITER due to super-Alfv�enic velocities and strong anisotropy of the
beam ions. They can also be excited by alpha particles near the outer

edge of ITER plasma due to anisotropies in the alpha particle distribu-
tion. In NSTX, observations link these modes to flattening of electron
temperature profiles and anomalously low central temperature at high
beam power;9,10 therefore, the ability to control them will have signifi-
cant implications for NSTX-U, ITER, and other fusion devices where
super-Alfv�enic fast ions might be present.

The numerical study presented in this paper focuses on proper-
ties of counterpropagating Global Alfv�en eigenmodes (GAEs) for the
NSTX-U experimental parameters. It has been motivated by the excit-
ing experimental discovery of a strong stabilizing effect that large pitch
(vjj=v � 1) beam ions from the new beam sources have on these
modes.11,12 Thus, the NSTX-U results show that the use of any of the
three additional neutral beams with large tangency radii provides an
excellent technique to control the counterpropagating GAEs excited
for jnj ¼ 8–13 and frequencies up to 0.5xci. Moreover, the complete
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stabilization of all unstable GAEs in NSTX-U has been robustly
achieved by a relatively small population of resonant high-pitch ions.11

The injection velocities of the NBI ions in NSTX were large com-
pared to the Alfv�en velocity, V0 > 2� 4VA, the beam beta was compa-
rable with thermal plasma beta, while a strong anisotropy in the fast-ion
pitch-angle distribution could serve as the energy source; therefore, a large
number of beam-driven modes could be excited. In the early stages of the
NSTX experimental campaign, all modes observed in the frequency range
between 0.2 and 1.2 xci were identified as compressional AEs due to 1)
large frequencies, and 2) agreement between the CAE frequency spectra
and some observations.1 However, initial 3D linearized simulations8,13

using the HYM code predicted instability of counterpropagating AEs
with the shear Alfv�en polarization and characteristic features consistent
with those of GAEs.14 In simulations, the unstable GAEs were shown to
have relatively large parallel wave numbers, kjj (sufficient to satisfy the
Doppler shifted cyclotron resonance condition), and frequency below the
minimum of the Alfv�en continuum. Later, the experimental observations
on NSTX also found subcyclotron frequency modes with dispersion
more complicated than the CAE dispersion and characteristic features
consistent with those of the GAEs.2 Since then, GAEs have been routinely
observed in both the NSTX and NSTX-U.11,12,15

General properties of GAEs have been studied previously in
cylindrical and toroidal geometries.14,16–19 A GAE is a global MHD
mode with frequency just below the minimum of the Alfv�en contin-
uum x < minðxAÞ, and owes its existence to the coupling between
the shear and compressional waves. For a typical NSTX q profile, the
minimum of xA occurs close to the magnetic axis, resulting in the
mode localization in the core. Due to their localization, the main fea-
tures of GAE modes observed in NSTX simulations are generally simi-
lar to cylindrical GAE modes. Early studies of energetic particle
excitation of GAEs were performed for fast ion velocities V0�VA, and
considered a resonant excitation for regular Cherenkov resonance
x ¼ kjjvjj.

16 In this case, the GAE growth rates were found to be very
small c/x < 0.1%, and modes strongly damped by the resonant elec-
trons (in cylinder) and due to sideband (mostly mþ 1) coupling to
continuum (in toroidal geometry).16 In contrast, low-frequency toroi-
dal Alfven eigenmodes (TAE) were found to be more dangerous, with
larger growth rates, due to small kjj and c � 1=k2jj scaling.

For NSTX, the beam ion injection velocities are large, V0

> 3 VA, and the cyclotron resonance condition x� kjjvjj � xd

¼ lxci can be satisfied for l¼ 1 (normal cyclotron resonance) for
counterpropagating GAEs, where xd is drift frequency. The cyclotron
resonance instability has different dependence on kjj, and larger kjj
modes can be strongly unstable, including the GAE modes. Beam-
driven GAEs for different NSTX discharges have been studied using
the HYM code,8,13,20 where growth rates were found to be of the order
c/x� 0.2%–10%, with frequencies x¼ 0.1� 0.5xci. The calculated
range of the unstable toroidal mode numbers, frequencies, and mode
polarizations have been compared with experimental observations.21

A recent extensive numerical study of GAEs for a wide range of beam
ion parameters also revealed that strong energetic particle modifica-
tions to GAEs can occur in NSTX-like conditions.22

Previous analytical studies of GAE2,23 (and CAE2,24) excitation
by energetic ions in NSTX have assumed either delta-function or very
narrow distribution in pitch parameters, and failed to take into
account finite injection velocity of the NBI ions, effectively assuming
that vjj;res=v0 � 1, where vjj;res is the resonant velocity. Calculations

of the GAE linear growth rate based on the local dispersion relation,
given in the Appendix of this paper, demonstrate why this is a poor
assumption, and correct previously obtained instability condition.
This also suggests different interpretation for the GAE stabilization
mechanism by new beams in the NSTX-U, compared to the one sug-
gested initially.12

This paper presents results of 3D nonlinear numerical simula-
tions that have been performed to study the excitation and stabiliza-
tion of counterpropagating GAEs in the NSTX-U shot #204707 right
before (t¼ 0.44 s) and shortly after (t¼ 0.47 s) the additional off-axis
beam injection. Simulations using the HYM code closely match the
experimental observations and confirm a robust physical stabilizing
mechanism via modest off-axis beam injection.11 The numerical
model and results of simulations of beam driven GAEs for different
toroidal mode numbers are described in Secs. II and III. The calculated
range of the unstable toroidal mode numbers, frequencies, and ampli-
tudes are compared with experimental observations11,12 in Sec. III.
Section IV focuses on GAE stabilization by the injection of high-pitch
beam ions from new beam sources. Numerical results are compared
with a new analytical study described in the Appendix. The summary
and conclusion are given in Sec. V.

II. MODEL AND CODE DESCRIPTION

The hybrid code HYM21,25,26 has been used to investigate proper-
ties of beam ion driven global Alfv�en eigenmodes in NSTX-U. The
HYM code is a 3D nonlinear, global stability code in toroidal geometry,
which treats the fast ions using df particle simulations. The HYM code
is unique in that it includes a full-orbit kinetic description of thermal
and/or fast ions, allowing for the ion-cyclotron resonances. Several dif-
ferent physical models of thermal plasma are implemented, including
kinetic description of thermal ions.25 The code version used in this
work utilizes the one-fluid resistive MHDmodel to represent the back-
ground plasma. The physical model is briefly described in this section.

The two plasma components, i.e., fast ions and thermal plasma,
are coupled using a current coupling scheme.27,28 In this scheme, the
momentum equation for the thermal plasma is

qdV=dt ¼ �rpþ ðJ� JbÞ � B=c� qnbðE� gdJÞ þ �DV; (1)

where q, V, and p are the thermal plasma density, velocity, and pres-
sure; nb and Jb are the beam ion density and the beam ion induced cur-
rent, B ¼ B0 þ dB is the total magnetic field, E is the perturbed
electric field, J ¼ c=4pr� B and dJ ¼ c=4pr� dB are the total and
perturbed plasma currents, and � is a viscosity coefficient.

Equation (1) can be obtained by adding momentum equations
for the thermal ions with density ni and thermal electrons, neglecting
the electron inertia, and using a quasineutrality condition: ne¼ nb þ
ni. The rest of the fluid equations are

@B
@t
¼ �cr� E;

@q
@t
¼ �r � ðVqÞ;

@p
@t
þV � rpþ cpr �V ¼ ðc� 1Þ½gJ � dJþ �ðr�VÞ2

þ �ðr �VÞ2�;
E ¼ �V� B=cþ gdJ:

(2)
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Here, the pressure equation includes Ohmic and viscous heating, and
c¼ 5/3. It is assumed that the fast ion pressure can be comparable to
that of the thermal plasma, but the beam ions have a low density
nb � ne. In this case, the MHDOhm’s law (2) applies.

The above model does not include the electron Landau damping
for GAE modes, which is found to be negligible;29 the thermal ion
Landau damping is small due to the high frequency of the modes. The
continuum damping is included via the dissipative terms in Eq. (1).
The current-coupling scheme implemented in the HYM code pos-
sesses the physically relevant conservation properties, which enabled,
in particular, the proof of the existence of global-in-time weak solu-
tions for the resistive equations of the HYM code.28 In the dissipation-
less limit, the current-coupling scheme is shown to be Hamiltonian,30

therefore avoiding nonphysical instabilities27 that could be associated
with typical pressure coupling schemes.

The model and numerical scheme implemented in the HYM
code conserve the total energy,21 which is the sum of the fluid energy
(magnetic field and thermal plasma) and the beam ion energy

Etot ¼
ð

B2

8p
þ p

c� 1
þ q

V2

2

� �
d3x þ

ð
mi

v2

2
F d3vd3x;

and F is the beam ion distribution function. A second-order, time cen-
tered, explicit scheme is used for time stepping, with smaller time steps
for field equations (subcycling). A fourth-order finite difference and
cylindrical geometry are used to advance fields and apply boundary
conditions, while a 3D Cartesian grid is used for the particle pushing
and gathering of fast ion density and current density. For a typical
nonlinear run, a 144 � 60 � 256 cylindrical (Z, R, /) grid is used,
with a 144 � 101 � 101 (Z, X, Y) grid for particle pushing, and the
particle time step dt¼ 0.05/xci with 32 substeps for MHD equations,
and a total of 2–10 M simulation particles. The total energy is con-
served in fully nonlinear runs within 10% of the wave energy, provided
that the numerical resolution is sufficient for the mode of interest.

The beam ions are described as kinetic particles using the particle-
in-cell (PIC) simulation method and full-orbit equations of motion. The
delta-f method31 is used to reduce numerical noise in the simulations.
In this method, the equilibrium distribution function of NBI ions needs
to be known analytically, and the equation for the perturbed distribution
function dF¼ F� F0 is integrated along the particle trajectories

dx
dt
¼ v;

dv
dt
¼ qi

mi
E� gdJþ v � Bð Þ;

dw
dt
¼ �ðp� wÞ dðln F0Þ

dt
;

(3)

where w¼ dF/P is the perturbed particle weight, and F0 is the equilib-
rium distribution function, taken to be a function of the particle inte-
grals of motion32 F0 ¼ F0ðe; k; p/Þ, where e is the particle energy,
k ¼ lB0=e is the pitch variable, p/ ¼ �wþ Rv/ is the normalized
toroidal angular momentum, and l is an adiabatic invariant l¼ l0

þ l1. Expression for l includes first-order and some of the second-
order corrections32 in qi/L, where L is the equilibrium magnetic field
scale length. In Eq. (3), P is the distribution function of simulation par-
ticles (markers) and p¼ F/P is the “equilibrium” particle weight. At
the beginning of simulation, the simulation particles are loaded with

distribution P0ðe; p/Þ, which is also a function of the integrals of
motion, so that both the distribution function of simulation particles
and the physical distribution function satisfy: dP=dt ¼ dF=dt ¼ 0,
and p ¼ F0ðt ¼ 0Þ=P0ðt ¼ 0Þ ¼ const along the trajectory.

For the simulations presented in this paper, the equilibrium dis-
tribution function is taken to be of the form:32 F0 ¼ F1ðvÞF2ðk;
vÞF3ðp/; vÞ, where v ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2e=mi

p
is the particle velocity, and functions

F1;2;3 are defined by

F1ðvÞ ¼ C=ðv3 þ v3�Þ;
F2ðk; vÞ ¼ exp ð�ðk� k0ðvÞÞ2=DkðvÞ2Þ;

F3ðp/; vÞ ¼ ðp/ � pminÞ=ðpmax � pminÞ
� �a

; for p/ > pmin;

where F0 ! 0 for v > v0 or p/ < pmin; v0 is the injection velocity, and
we assumed v� ¼ v0=2. The coefficient C in slowing-down distribution
F1(v) is set to 1 for v < v0, but C ¼ exp ½�ðv � v0Þ2=Dv2� for v > v0,
with Dv ¼ 0:05 v0, i.e., there is an exponential “tail” for velocities over
the injection velocity, modeling the high energy tail.33 This is done to
keep both F1 and @F1=@v continuous, and to avoid dealing with deriva-
tives of a step function in the df scheme. The pitch parameter depen-
dence on energy (v) is chosen for good match to TRANSP results:
k0ðvÞ ¼ k00½1� vð1� v=v0Þ� and DkðvÞ ¼ Dk0½1þ dð1� v=v0Þ�,
with v¼ 0.3 and d¼ 2. The typical parameters for the pitch-angle distri-
bution used in this paper are Dk0¼ 0.3 and k00¼ 0.65. The function
F3ðp/; vÞ is used to match the TRANSP profiles of the beam ion density,
where a¼ 3 is a numerical parameter, the condition p/ > pmin describes
a prompt-loss boundary, and pmax ¼ R0v � w0, where R0 and w0 are
the major radius and poloidal flux at the axis (it is assumed that w0 < 0,
and w¼ 0 at the plasma boundary). Because of the difficulty in inverting
the pitch parameter distribution, the simulation particles are loaded at
the beginning of the simulation with P0 ¼ F1ðvÞF3ðp/; vÞ, so that the
particle equilibrium weights are proportional to F2(k, v).

A generalized form of the Grad-Shafranov equation solver has been
used, which includes, nonperturbatively, the effects of the beam ions
with anisotropic distribution.32 The beam ion beta in the NSTX(-U) can
be relatively large, and the beam ion current density can be comparable
to that of the thermal plasma. As a result, significant modifications of the
equilibrium can occur due to self-consistent inclusion of the beam ions:
more peaked current profile, anisotropic total pressure shifted relative to
the flux surfaces, and increase in Shafranov shift—which all can have an
indirect effect on stability properties. The HYM equilibrium solver is a
free boundary solver, which calculates the equilibrium in a cylindrical (Z,
R) domain, but it has an option to make an iterative fit to a given plasma
shape using the FREE_FIX code.34 Some of the plasma profiles from the
simulations described in Sec. III are shown in Fig. 1. Due to a relatively
small beam injection velocity in the NSTX-U shots considered here,
v0�2VA, the profile fit to the TRANSP results is very good. However in
the NSTX cases, with larger normalized beam velocity, i.e., v0 � 5VA,
the kinetic modifications to the calculated equilibrium profiles can be sig-
nificant,21 complicating comparison with TRANSP, which does not
account for these effects.

III. BEAM-DRIVEN GLOBAL ALFV�EN EIGENMODES IN
NSTX-U
A. Linear stability

Numerical simulations using the HYM code21 have been per-
formed to study the excitation and stabilization of counterpropagating

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 092507 (2019); doi: 10.1063/1.5116357 26, 092507-3

https://scitation.org/journal/php


GAEs in the NSTX-U shot #204707 right before (t¼ 0.44 s) and
shortly after (t¼ 0.47 s) the additional off-axis beam injection
[Figs. 2(a) and 2(b)]. In this section, the simulation results for plasma
and beam parameters corresponding to t¼ 0.44 s are described and
compared with the experimentally observed unstable modes.

In this shot, at t¼ 0.44 s, the plasma was heated by 3.3MW of
two deuterium beams with tangency radii inboard of the magnetic axis
(R0¼ 1.08 m) at Rtan 	 0.7 and 0.5 m, and the injection energies 76
keV and 87 keV, respectively (beams labeled 1a and 1c in Ref. 11). The
main plasma parameters at t¼ 0.44 s were nb ¼ 7:7� 1018 m�3; ne
¼ 3:3� 1019m�3 (peak values), Bt¼ 0.546T at the axis R0¼ 1.08 m,
and Ip¼ 0.61 MA. The corresponding normalized parameters as used
in the simulations are nb=ne ¼ 0:236; bbeam ¼ 0:135; bplasma ¼ 0:08,
the beam injection velocity v0¼ 2VA, and k0¼ 0.65.

A set of linearized simulations has been performed to investigate
the stability of different toroidal Fourier harmonics with toroidal
mode numbers jnj ¼ 6� 13. The summary of numerical results is
presented in Fig. 2(c), which shows the calculated growth rates of

unstable modes, and their real frequencies normalized to the ion cyclo-
tron frequency at the axis, fci¼ 4.15MHz. HYM simulations repro-
duce the experimental finding [Fig. 2(a)], namely, before additional
beam injection the simulations show unstable counter-rotating GAEs
with toroidal mode numbers n¼�11 to�8, as well as a weakly unsta-
ble n¼�7 mode, and frequencies that match the experimentally
observed unstable GAEs [Fig. 2(c)]. Numerical simulations show that
all unstable modes are counter-rotating GAEs, which have shear
Alfv�en wave polarization in the core with small dBjj (Fig. 3). The
unstable modes in simulations also have small main poloidal mode
numbers with m 
 3, and are localized near the minimum of Alfv�en
continuum, at R � 120 cm for the n¼�10 mode. The most unstable
toroidal mode number, n¼�10, is consistent with the experiment.
Frequencies for unstable GAEs, x/xci¼ 0.35–0.4, are calculated in the

FIG. 1. (a) Plasma boundary, (b) beam density, and (c) q-profiles for NSTX-U shot
204707 t¼ 0.44. Comparison of profiles from TRANSP (dotted) and HYM Grad-
Shafranov solver (solid).

FIG. 2. (a) Spectrogram on magnetic fluctuations (jnj ¼ 8–11 counter-GAEs); (b)
injected beam power; (c) growth rates and frequencies of unstable counter-GAEs
from HYM simulations. The blue line is Doppler-shift corrected frequencies,
points—experimental values; fci¼ 4.15 MHz.

FIG. 3. Radial profiles of (a) two components of dB? (red and green) and dBjj
(black); (b) dn=n0 for n¼�10 counter-GAE. The magnetic axis is located at
R¼ 1.08 m.
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plasma frame (no bulk plasma rotation included in the numerical
model). When the bulk plasma toroidal rotation is taken into account
via Doppler-shift correction to frequencies, the calculated values [blue
line in Fig. 2(c)] match experimental ones (t¼ 0.44 s) reasonably
closely. The calculated growth rates [Fig. 2(c)] for the GAEs with
n¼�10 and n¼�11 are c/xci¼ 2.2% and 1.6%, respectively, which
is higher than those estimated from the experimental data12 (c/
xci¼ 0.84% and 0.6%), probably, due to inaccuracy of the beam ion
distribution function fit, and an underestimated damping by the bulk
plasma MHDmodel.

The linear growth rates are sensitive to distribution function
parameters, especially since the resonant particles are located in the
“tails” of the Fðe; kÞ distribution, as can be seen in Figs. 4(b) and 4(c),
where the HYM fast-ion distribution function from n ¼�11 GAE
simulations (t¼ 0.44 s) is shown on the energy vs pitch contour plots.
Colored contour plots show the beam ion distribution function as cal-
culated by TRANSP [Fig. 4(a)] and as used in HYM [Figs. 4(b) and
4(c)]. The contour plots of Fðe; vjj=vÞ from simulations are overlaid
with scatter plots, indicating the location of resonant particles. The
location of resonant particles roughly follows the resonant lines,
shown as solid black lines for the Doppler-shifted cyclotron resonance
corresponding to vjj ¼ vres ¼ 1:4 VA, and sideband (m6 1) resonan-
ces. The scatter plots (color dots) show resonant particles (defined as
large-weight particles in df simulations, where w/p¼ dF/F), with parti-
cle color corresponding to beam ion energies: from 35 keV (green) to
100 keV (red) (this color scale is used for particles in Fig. 5). Note that
for a comparison with the TRANSP plot, Fig. 4(b) shows a projection
of the beam ion distribution into the (e; vjj=v) plane, where vjj is the
instantaneous parallel velocity. In contrast, Fig. 4(c) shows the beam
ion distribution in terms of orbit-averaged parallel velocity, showing,
in particular, a population of trapped particles with hvjji=v 	 0, and
that all resonant ions are passing (which can also be inferred from
Fig. 7). An apparent “gap” between lower and higher energy resonant
particles at 80 KeV in Figs. 4(b) and 4(c) corresponds to vjj=v � 0.6 or k¼ k0¼ 0.65, i.e., where the largest term in the equation for df weight

is zero, because @F0=@k ¼ 0 (these resonant particles have nearly zero
weights, and therefore are not shown).

Since scatter plots in Fig. 4 (and Fig. 5) show simulation (i.e.,
marker) particles, which have different equilibrium weights (p¼ F/P),
their density on the plots might misrepresent the corresponding den-
sity of physical resonant particles. However, these plots do show the
location of the resonances in the phase space. In addition, in Figs. 4
and 5 the simulation particles are labeled as “resonant” when their
value of w/p¼ dF/F is large compared to average. Therefore, all reso-
nant regions are shown, including those from regions of phase-space
where F (and, possibly, dF) is very small.

For counterpropagating GAEs, the local resonant condition for
passing particles can be written as x� kjjvjj � xd � lxci ¼ 0, where
xd is the drift frequency and l¼ 1. Due to poloidal angle dependencies
of xci � B0ð1þ � cos hÞ, and drift frequency xd � sin ðwþ hÞ, mul-
tiple resonances are possible, and the general resonant condition can
be written approximately as24

x� n�m
q

� � vjj
R0
� ðsþ rÞ

vjj
qR0
� xci ¼ 0; (4)

where n(m) is the toroidal (poloidal) mode number, s and r are inte-
gers related to xci and xd dependence on h, respectively, q 	 q0, and

FIG. 4. Contour plots of fast-ion distribution for t¼ 0.44 s; (a) TRANSP calculated, (b)
and (c) from HYM simulations of n¼�11 GAE; (c) same as (b) but with orbit-
averaged vjj . Resonant lines are shown as solid black lines for vjj ¼ 1:4 vA plus side-
bands. Overlaid scatter plots (color dots) show resonant particles (simulation particles).
Particle colors correspond to beam ion energies (this color scale is used in Fig. 5).

FIG. 5. Scatter plots of resonant particles from the linear phase of n¼�11 GAE
simulations. (a) Orbit averaged cyclotron frequency vs parallel velocity is shown;
(b) time-averaged values of ðv � dEÞw (a.u.) of resonant particles. The same color
scheme as in Fig. 4.
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the orbit-averaged particle parallel velocity and cyclotron frequency
are denoted with bars. Multiple resonances can be seen in Fig. 5(a),
which shows orbit-averaged cyclotron frequencies and parallel veloci-
ties of the resonant particles. Lower-energy ions (green in Fig. 5) sat-
isfy the resonant condition (4) for the same value of (sþ r) and their
averaged parallel velocity is vjj;res 	 1:4VA, whereas resonant ions
from the tail of distribution (orange-red) satisfy at least 5 sideband
resonances.

Even in the case considered in this section, that is, of the unstable
GAEs driven by the beam ions from the old NSTX-U beam sources,
there are two groups of resonant particles, either driving the mode or
taking the energy from the mode, depending mostly on their pitch
parameter. As described earlier, there is a gap in the resonant particle
scatterplot at energies close to 80 keV in Figs. 4(b) and 4(c), occurring
where @F=@k 	 0. This gap (approximately) separates the two particle
groups. Analysis of the simulation data shows that the beam ions with
initial energies of about half of the injection energy (50 keV–70 keV)
and high pitch of vjj=v � 0.8–0.9 are responsible for the instability
drive, and higher energy resonant particles (over 80 keV) have a stabi-
lizing effect. The energy exchange rate between the beam ions and the
mode can be calculated as DK ¼

Ð
ðdjb � dEÞd3x ¼

P
ðvm � dEÞwm,

where djb is the perturbed beam ion current, w is the df weight, andm
is the particle index. Figure 5(b) shows time-averaged values of ðv
�dEÞw for the resonant particles. It can be seen that the lower energy
particles are giving energy to the mode, while energetic particles from
the tail of the distribution are taking energy (particle energy color
scales are the same as in Fig. 4). The sum over all particles in the simu-
lation gives DKtot¼�0.037 (a.u.) for a total rate of change of the beam
ion kinetic energy, which is comparable to DKres¼�0.029, which is
the change in the kinetic energy of the resonant particles only (defined
as large-weight particles, so that the fraction of resonant particles is
Nres/Nb¼ 0.037). As expected, there is little energy exchange between
the mode and nonresonant particles in the simulation. Calculation of
partial sums for groups of resonant particles with different initial ener-
gies gives: DKresðe < 2Þ ¼ �0:104 and DKresðe > 2Þ ¼ 0:075, and
shows that particles from the tail have a strong stabilizing effect (here,
the normalized injection energy is e0 	 2). This has been directly con-
firmed in simulations by “turning off” (i.e., setting their weights to
zero, w¼ 0) the contribution from high-energy ions with e � e0,
which increased the linear growth rate almost by a factor of two for
the same unstable mode frequency.

Discussion in the Appendix compares simulation results with a
simple analytical expression for the linear growth rate derived in a
local approximation, and compares them with previous studies. It
is shown, in particular, that the approximate instability condition:
2 < k?qb < 4 previously obtained for counter-GAEs2 does not apply
in general, and that the most unstable modes can have small values of
k?qb < 1, as has been found in the simulations. In addition, expres-
sion for the growth rate Eq. (A2) becomes

c
xci
¼ p

nbxci

nijkjjj
Aejj

ðkm

0
e
@f
@e
þ @f
@k

xci

x
� k

� �� �
J21
n2

kdk

ð1� kÞ2
; (5)

for the beam ion distribution f ¼ f ðv; kÞ ¼ A exp ð�ðk� k0Þ2=
Dk2ÞHðv0 � vÞ=ðv3 þ v3�Þ, where H(x) is a step function,
ejj ¼ v2jj;res=2, and A is the normalization. The integrand in Eq. (5) is
expressed in terms of k using the resonant condition vjj ¼ vjj;res and
k 	 e?=e, so that 2e ¼ v2 ¼ v2jj;res=ð1� kÞ, etc. The integration limit

is km ¼ 1� v2jj;res=v
2
0, where vjj;res ¼ ðxci � xÞ=jkjjj and v0 is the

injection velocity. For typical beam parameters, the expression in
square brackets is positive, when k � k0 � 2=3Dk2x=xci; this condi-
tion, therefore, defines regions of the phase-space, which drive the
instability. As can be seen from Fig. 4(b), for a given resonant velocity,
lower energy particles will have small values of k (driving), and high
energy particles have larger values of k, which can be larger than k0,
i.e., stabilizing. The additional stabilizing effect comes from @f =@e in
Eq. (5), because the distribution function has large gradients near the
injection energy.

As shown in the Appendix, the main driving term in the
expression for the growth rate is proportional to f ðv0; kmÞ
� exp ½�ðkm � k0Þ2=Dk2�. It is also shown that condition km < k0 is
a sufficient condition for the instability (all resonant particles are driv-
ing), and that the growth rate will be largest in cases when
jkm � k0j < Dk. Strongly unstable modes will have frequencies in the
range ð1þ v0=vAÞ�1 < x=xci < ð1þ v0=vA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0
p

Þ�1 and small
k?. This instability regime has been missed by previous studies,2,23

which effectively assumed that km¼ 1 (vjj;res � v0). Higher frequency
modes (for which km > k0) can also be unstable with smaller growth
rates, provided that condition: 2 < k?qb < 4 is satisfied. Since the lin-
ear growth rate peaks at small k? [Fig. 11(b)], the most unstable GAEs
will have small poloidal mode numbers, as has been seen in the 3D
simulations. A detailed and more general study of the instability con-
ditions for GAEs and CAEs will be published in a separate paper.35

The expression in Eq. (5) has been obtained neglecting p/ depen-
dence of the distribution function. Simulation results show that, for
the case considered, the contribution from @f/@p/ is destabilizing, that
is, the growth rate was decreased by 30% and a different mode (with
somewhat larger frequency x/xci �0.38) becomes unstable, when
terms proportional to @f =@p/ are turned off in the equation for the
particle weight Eq. (3).

B. Nonlinear simulations

Nonlinear simulations of the n¼�11 to �9 GAEs have been
performed separately for each toroidal harmonic, but include a full
nonlinear beam ion response. In the simulations, the instability satu-
rates due to nonlinear particle trapping, and the amplitude evolution
in the nonlinear phase (Fig. 6) exhibits characteristic oscillations con-
sistent with the particle trapping saturation mechanism. The simula-
tions for n¼�11 (Fig. 6) show the peak saturation amplitudes of
dB?=B0 � 5� 10�3 at R� 1.2 m close to the minimum of the Alfv�en
continuum, and dB/B0 � 10�3 near the edge at the midplane. For
comparison, experimental estimates of the peak mode amplitudes in
the same NSTX-U shot at t¼ 0.44 s are dB=B0 � 2:7� 10�3 for the
n¼�10 and dB=B0 � 1:8� 10�3 for the n¼�11 modes, which is
fairly close to the simulation values. Note that experimental ampli-
tudes, which are based on reflectometer reconstructions and averaged
over the time window, include a large uncertainty due to their depen-
dence on accuracy of density profile gradient data.36

In the simulations, the unstable n¼�11 mode has been identi-
fied as a counterpropagating GAE based on a dominant perpendicular
component of the perturbed magnetic field in the core (Fig. 3); how-
ever, large parallel component jdBjjj � jdB?j has been found at the
plasma edge on the low-field side (LFS) for this mode. Figure 6 shows
the time evolution of dBjj and two components of dB? at the core,
and close to the plasma edge in the equatorial plane from the same
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nonlinear simulation. It is seen that in the core, the magnetic perturba-
tions have shear Alfv�en wave polarization with dominant dB?, and
the mixed compressional/shear polarization near the plasma edge.
Strong coupling between shear Alfv�en and compressional perturba-
tions in the NSTX simulations is related to the small aspect-ratio, rela-
tively high beta, and kinetic effects due to energetic particles.
Experimental magnetic measurements at the edge also show the mixed
compressional/shear Alfv�en polarization for both CAEs and GAEs in
NSTX.15

At saturation, the GAE structure changes to a much broader one
compared to the linear growth phase, possibly due to growth of other
unstable modes with different values of poloidal and/or radial mode
number. At the same time, the width of wave-particle resonances
increases compared to that seen in Figs. 4(b) and 5. Change in the
beam ion distribution function projected into the (k, p/) phase space
is shown in contour plots in Figs. 7(a) and 7(b) at two different times,
txci¼ 630 (growth phase) and txci¼ 776 (near saturation). The
changes of df occur over a large range of the pitch parameter, k.

Redistribution of resonant particles at saturation corresponds to
reduction of their numbers near the peak of the linear instability drive,
i.e., at k�k0 ¼ 0:65, and increase in f at k > k0 (stabilizing), and at k
	 0 (which, for fixed vjj, corresponds to lower energies). Projection of
the ion distribution in parallel velocities, FðvjjÞ (dashed line), and its
change close to the saturation at txci¼ 776 (solid line) are also shown
in Fig. 7(c), where both functions, F and dF, are scaled to 1. It can be
seen that the largest change in FðvjjÞ occurs at the resonant velocity
vjj;res 	 1:4VA, and that the sign of dF corresponds to a reduction of
the slope of FðvjjÞ. The highest order terms �xci=x in the expression

for the growth rate, Eq. (5), can be rewritten as the integral of expres-
sion proportional to �@F=@vjjje; therefore, the observed change in the
beam ion distribution function corresponds to a reduction of the reso-
nant particle drive.

IV. GAE STABILIZATION BY OFF-AXIS NEUTRAL BEAM
INJECTION

In NSTX-U, an addition of new beam sources injecting fast ions
nearly parallel to the magnetic field allowed effective modification of
the fast ion distribution.11 It has been experimentally demonstrated, in
particular, that all unstable GAEs can be completely stabilized with the
injection of a relatively small amount of fast ions with vjj=v � 1.
Reliable suppression of the counterpropagating GAEs has been
observed in most shots, and the measured GAE suppression time on
the order of few milliseconds was much smaller than slowing-down

FIG. 6. Time evolution of perturbed magnetic field components from nonlinear sim-
ulations for n¼�11 GAE.

FIG. 7. Nonlinear change of the beam ion distribution function dF at different times:
(a) txci¼ 630 and (b) txci¼ 776; (c) plots of dFðvjjÞ (solid line) and FðvjjÞ
(dashed line). Lines in contour plots show stagnation/copassing orbits and trapped-
passing boundaries for e¼ e0.
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time (�50ms), suggesting that it takes relatively few high-pitch fast
ions to stabilize the GAEs.

In this section, the simulation results are described for plasma
and beam parameters corresponding to t¼ 0.47 s in NSTX-U shot
204707, after one of the new neutral beam sources was added [Figs.
2(a) and 2(b)]. Additional 1.3MW deuterium beam was injected with
tangency radii outboard of the magnetic axis at Rtan 	 1.1 m, and the
energy 76 keV (beam labeled 2c in Ref. 11). The corresponding nor-
malized parameters as used in the simulations are nb/ne¼ 0.261,
bbeam¼ 0.18, and k0	 0.

HYM simulations (Fig. 8 for n¼ 11) show that off-axis neutral
beam injection strongly suppresses all unstable GAEs even for a rela-
tively weak added beam. The off-axis beam injection has been modeled
by adding beam ions with k distribution as Fadd � exp ð�k2=Dk2aÞ,
i.e., with small pitch parameter values, k0¼ 0, and smaller width
Dka ¼ 0.2, which roughly reproduces the TRANSP data. Figure
8 shows time evolution of n¼�11 GAE magnetic energy from the
linear phase to saturation for t¼ 0.44 s NSTX-U parameters (red line),
and decay of initial perturbation for the stable case corresponding to
t¼ 0.47 with additional off-axis beam injection (blue line).

In the experiments, new beam sources injected particles with the
approximately same voltage as the old beams, increasing total beam
power by �25%–30%, with the corresponding increase in the total
population of fast ions by the same percentage. In simulations, the
fraction of the off-axis beam population of the total beam ion inven-
tory has been varied from 2% to 17%. Figure 9(b) shows the fast ion
distribution function for the same beam ion parameters as in Fig. 4(b),
but with added 5% of fast ions with Fadd distribution, corresponding
to a new beam source. Significant modification of the beam distribu-
tion function occurs only in a relatively small region of phase space,
where 0:8 < vjj=v 
 1, but this is the region responsible for the GAE
instability drive. For a case shown in Figs. 9(b) and 9(c), the modes
with n¼�7 to �10 are completely stabilized, and the n¼�11 GAE
remains unstable with a factor of 3 reduced growth rate, c/xci¼ 0.5%.
Complete stabilization of the n¼�11 GAE occurs when a fraction of
fast ions from the new source increases to 7% (Fig. 10). Therefore, the
simulations show that a complete stabilization of all unstable GAEs

(jnj ¼ 7� 11) requires an additional beam power significantly lower
than what was used in this shot in the NSTX-U (i.e., 7% instead of
experimental 25%), even though the HYM calculated GAE growth
rates were relatively large compared to the experimental estimates.

For GAEs with n¼�11 to �9, a set of simulations with varying
Nadd/Ntot parameter has been performed in order to find the stabiliza-
tion thresholds. Figure 10 shows the growth rate of the n¼�11 to
n¼�9 GAEs vs Nadd/Ntot parameter. The unstable n¼�11 GAE is
stabilized when the fraction of the additional beam ions is larger than
7%. The stabilization threshold is lower for lower jnj modes (Fig. 10),
namely, 5% and 4% for n¼�10 and n¼�9, respectively. Figure 9(b)
shows that the cyclotron resonance curves move to higher energies for
lower jnj due to the change of the corresponding resonant velocity,
vjj;res. It is also clear that the modification of total fast ion distribution
F0ðvjj=vÞ by a new beam source is stronger for larger energies for a

FIG. 8. Time evolution of n¼�11 GAE magnetic energy from linear phase to satu-
ration for t¼ 0.44 s NSTX parameters (red), and decay of initial perturbation for
stable case corresponding to t¼ 0.47 s with additional off-axis beam injection
(blue).

FIG. 9. (a) TRANSP beam ion distribution function including new beam source at
t¼ 0.47s; (b) and (c) HYM fast ion distribution function from n¼�11 GAE simula-
tions including 5% off-axis injected neutral beam ions.

FIG. 10. Growth rate of the n¼�11 (blue), �10 (red), and �9 (green) GAEs vs
fraction of outboard beam ion population.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 092507 (2019); doi: 10.1063/1.5116357 26, 092507-8

https://scitation.org/journal/php


fixed value of Nadd/Ntot [Fig. 9(c)], which explains the lower threshold
values for lower toroidal mode numbers.

An approximate expression for the GAE growth rate, Eq. (A3),
given in the Appendix, can be used to explain the experimental and
simulation results on GAE stabilization. Thus, the main instability
driving term includes the derivative @f =@kje, which for the new beam
with f ¼ Fadd � exp ð�k2=Dk2aÞ is always negative and, therefore,
stabilizing. The addition of a small fraction of beam ions with high
pitch changes the slope of the total beam distribution function at small
k, resulting in the net stability. In order to compare with TRANSP
plots, the expression for the growth rate can also be written in terms of
the pitch dependence of the distribution function, in which case it is
proportional to the integral of �@f =@ðvjj=vÞje. Negative sign of the
derivative is needed for instability, and for the original beam sources
this corresponds to pitch values vjj=v� 0:7 for energies over 50 keV
[Fig. 4(a)]. Addition of the beam ions from new beam sources changes
the slope of the pitch distribution at vjj=v�1 [Fig. 9(c)], resulting in
stabilization.

Thus, theoretical analysis presented here demonstrates why the
injection of high pitch, deeply passing particles has a stabilizing effect
on the counterpropagating GAEs; however, the details of the stabiliza-
tion mechanism are different from the original publication.11 The sim-
ulation and analytical results here show that both the on-axis resonant
ions (driving the mode) and the off-axis resonant ions (stabilizing)
have k?qi < 1, and the key difference in their contribution to the
mode stability is in the way they affect the sign of @f =@kje at reso-
nance. In addition, using Eq. (A2), a fraction of new beam ions
required for stabilization can be calculated. Comparison of driving
and damping contributions corresponding to old and new beam sour-
ces for GAE with x/xci¼ 0.35, vjj;res � 1:4 vA, gives an estimate for
the stabilization threshold at about 10%. This is reasonably close to
self-consistent simulation results, considering the approximations
used in the derivation of Eq. (A2), which does not account for p/

dependence of the distribution function or the continuum damping of
GAEs.

V. CONCLUSION

The excitation and stabilization of counterpropagating GAEs by
energetic beam ions have been studied using 3D nonlinear simulations
right before and shortly after the additional off-axis beam injection in
NSTX-U shot #204707. The equilibrium plasma shape, profiles, and
beam parameters have been carefully matched to those obtained by
TRANSP for this shot. Numerical results show very good agreement
with the experimentally observed unstable GAEs, reproducing the
range of unstable toroidal mode numbers, mode frequencies, and non-
linear amplitudes fairly closely.12

Simulations also confirm that neutral beam injection from the
new beam sources, depositing beam ions with large pitch, can very
effectively stabilize all unstable GAEs. It has been demonstrated both
numerically and analytically how small changes in the fast ion distri-
bution function due to the addition of a relatively small amount of fast
ions with vjj=v � 1 can suppress the GAEs. Additional off-axis beam
injection has been modeled by using a two-beam distribution and
varying the fraction of beam ions with large pitch, vjj=v. The complete
stabilization of all unstable GAEs in simulations has been found at less
than 7% of the total beam ion inventory. In NSTX-U, the fraction of
beam power from new sources vs total beam power was in the range

of 24%–30%, but the GAEs become suppressed at the point where the
fast ion population has increased by 6% (based on the neutron rate
increase by 6%) in excellent agreement with 3D simulations.11,12

Numerical results have been compared with analytical studies,2,23

and it has been found that the previously derived and widely cited insta-
bility condition for GAEs: 2 < k?qb < 4 has limited validity. In partic-
ular, the most unstable modes in the simulations have k?v?=xci � 1
for the resonant particles driving the instability. The local dispersion
relation derived for two-component plasma (thermal plasma plus the
energetic beam ions) also shows that the linear growth rate is largest for
small values of k? ðk?qb < 1Þ, as long as the slope of the distribution
function is positive, i.e., @f =@kje > 0. For a specific form of beam ion
distribution function: f ðv; kÞ � exp ½�ðk� k0Þ2=Dk2�, the sufficient
condition for the instability km < k0, where km ¼ 1� v2jj;res=v

2
0 has

been obtained. The growth rate is largest in cases with narrow k distri-
bution, when jkm � k0j < Dk is satisfied. It is shown that, when k0 is
not too small, the most unstable counter-GAEs have frequencies in the
range ð1þ v0=vAÞ�1 < x=xci < ð1þ v0=vA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0
p

Þ�1, and their
growth rate depends very weakly on jk?=kjjj and k?qb parameters [up
to jk?=kjjj � 3 and k?qb�2, Fig. 11(b)]. For NSTX-U parameters, the
predicted unstable range of frequencies, 0.33 < x/xci < 0.46, is in
agreement with experimental and simulation results. The higher fre-
quency modes with x=xci > ð1þ v0=vA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0
p

Þ�1 can also be
unstable with smaller growth rates, when the approximate condition
2 < k?qi < 4 is satisfied (Fig. 11).

New analytical results also show the difference in stability proper-
ties of counterpropagating GAEs and CAEs. It is shown, in particular,
that for the same beam parameters, the unstable compressional modes
will have smaller growth rates for finite values of jk?=kjjj parameter,
and the instability drive will be greatly reduced for jk?=kjjj� 2 [Fig.
11(c)]. These findings might explain why most of the modes seen in a
subcyclotron frequency range in the NSTX-U were the GAEs.

Results, presented in the Appendix, might also explain some of
the published DIII-D observations. In particular, for high-frequency
modes with x=xci � 0:6 (identified as CAEs in Ref. 6), values of the
k?qb parameter (k?qb � 0.8) were smaller than those previously sug-
gested for the unstable CAEs or GAEs,2 but consistent with results of
this paper. In addition, the observed frequency range of most unstable
modes (GAEs, or CAEs with jk?=kjjj�1) for v0=vA � 1, and its scal-
ing6 with B0, ne, and k0 are consistent with the presented theory.

For NSTX-U relevant beam parameters, theory predicts the peak
of the linear growth rate at small k?, so that the most unstable GAEs
have small poloidal mode numbers, as has been seen in the 3D simula-
tions. Based on analytical results, a new interpretation for the GAE sta-
bilization mechanism by new beams in the NSTX-U has been
suggested. Namely, the stabilization occurs as a result of a change of
slope of the beam ion distribution function in the resonant region,
rather than due to small k?qb values of ions from new beam sources,
as has been suggested initially.12

Analysis of the energy exchange between the resonant particles
and the GAE in the nonlinear simulations shows that lower energy,
high pitch particles (green dots in Fig. 4) contribute to the instability
drive, while the higher energy particles with vjj=v � 0:5 (orange-red
dots) are stabilizing, and are taking energy from the mode. These find-
ings are also consistent with the analytical study. Since lower energy
(e � 1=2e0) particles are losing energy, while particles with energies
near the injection energy are getting more energetic, the large
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amplitude GAE can cause significant changes in beam ion distribution,
creating an energetic tail and reducing the population of midrange
particles. Unstable GAEs will also cause redistribution of resonant
beam ions along the resonant curve in the (k, p/) plane, as shown in
Fig. 7, which might result in the net beam ion transport in the configu-
ration space; however, this is beyond the scope of this paper.
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APPENDIX: DERIVATION OF LINEAR GROWTH RATE

Several analytical studies related to NSTX,2,23,24 as well as
much earlier works on beam ion driven Alfv�en modes of shear
polarization,37 predicted the instability for sufficiently large fast ion
Larmor radius, qb. The approximate condition: 2 < k?qb < 4 had
been obtained for counter-GAEs, based on the growth rate depen-
dence on derivative of the Bessel function in the integral of the
form2

c � �
ð
dvjjdv?

@ðv2?gÞ
@v?

� �
fbdðx� kjjvjj � xciÞ; (A1)

where g ¼ J21=n
2; J1 ¼ J1ðnÞ is the Bessel function of first order

with argument n ¼ k?v?=xci, l¼ 1 cyclotron resonance for the
counterpropagating GAE has been assumed, fb ¼ fbðv; kÞ is the
beam ion distribution function, and k ¼ lB0=e is the pitch parame-
ter. Similar expressions have been obtained for compressional (fast
magnetosonic) waves with the instability condition being:2

1 < k?qb < 2.
In this appendix, the stability condition for counter-GAEs is

reconsidered. Thus, analysis of simulation results, for example, for
n¼�11 GAE, shows that for this mode k?v?=xci�1 for the reso-
nant beam ions with energies near injection energy and larger k.
For lower energy resonant particles, with small k and e � 1=2e0,
condition k?v?=xci � 1 is satisfied. Moreover, calculation of the
energy exchange between the resonant particles and the mode
shows that lower energy, high pitch particles (green dots in Fig. 4)
contribute to the instability drive, while the higher energy particles
with vjj=v � 0:5 (orange-red dots) are stabilizing, and are taking
energy from the mode, whereas the opposite might be expected
from the expression in Eq. (A1), which is positive only for large
arguments of Bessel function, i.e., large v?.

In order to understand numerical results, a dispersion relation
for shear Alfv�en type mode can be derived using the same physical
model as in the HYM code. In local approximation and neglecting
coupling to compressional modes, the dispersion relation becomes38

x2 � k2jjv
2
A þ x2 v

2
A

c2
�11 ¼ 0;
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, fl ¼ 1=ðx� kjjvjj � lxciÞ.

Keeping only the nonadiabatic contribution of the beam ions, for
l¼ 1 the growth rate can be written as

c
xci
¼ p

2
xci

nb
ni

ð
@f
@e?
þ
kjj
x

@f
@vjj
� vjj

@f
@e?

 !" #
v2?J

2
1=n

2

� dðx� kjjvjj � xciÞde?dvjj; (A2)

where kjj < 0 for the counter-rotating mode, and f is the beam ion dis-
tribution function normalized so that

Ð
fde?dvjj ¼ 1. In the limit

k?qb � 1; J21=n
2 	 1=4, and for x=xci � 1, this expression for c is

the same as derived in Ref. 38 for shear Alfv�en wave in k? ¼ 0 case.
Using the resonant condition and keeping only the highest order
terms in xci/x in the integrand, for the beam ion distribution
f ¼ f ðv; kÞHðv0 � vÞ, the growth rate can be written approximately as

c
xci
¼ p

nb
ni

xci

2x
Av3jj;res

ðkm

0

@f
@k

J21
n2

kdk

ð1� kÞ2
����
vjj¼vjj;res

; (A3)

where vjj;res ¼ ðxci � xÞ=jkjjj, H(x) is a step function, and A is nor-
malization, which, for f ¼ A exp ½�ðk� k0Þ2=Dk2�=ðv3 þ v3�Þ, can
be approximated by A�1 ¼

ffiffiffi
p
p

=3 ln ½ðv0=v�Þ3 þ 1�Dkð1� k0Þ�1=2
with good accuracy when k0 < 1. The integrand in Eq. (A3) is
expressed in terms of k using the resonant condition and k 	 e?=e,
so that 2e ¼ v2 ¼ v2jj;res=ð1� kÞ, etc. The integration limit is
km ¼ 1� v2jj;res=v

2
0, where v0 is the injection velocity. Numerical

integration of c from the complete expression in Eq. (A2) including
the energy dependencies of k0 and Dk described in Sec. II gives:
c=xci 	 0.05 for the beam parameters used in the 3D simulations:
k00 ¼ 0:65; Dk0 ¼ 0:3; v0 ¼ 2vA; v� ¼ v0=2, and for x=xci ¼ 0:35,
and vjj;res � 1:4 vA. This value is higher than the 3D simulation
result: c=xci 	 0.02, obtained assuming the same distribution func-
tion dependence on v and k, however including in addition the
dependence on fast ion canonical angular momentum p/,

32 which
was neglected in the derivations of Eq. (A2). The overestimated
growth rate can also be attributed to the use of local approximation
and continuum damping present in the self-consistent simulations.

Expressions (A2) and (A3) clearly show that beam ions will
drive the instability provided @f =@k > 0, i.e., when k < k0 for the
resonant particles, and will have a stabilizing effect otherwise.
Stabilizing contribution from @f =@e is weaker for most cases of
interest, i.e., for x=xci � 1 and Dk� 1. It is also clear from Eq.
(A3) that this instability condition does not depend on the value of
k? in the argument of the Bessel function, and, in fact, the largest
growth rate will be obtained for small k? (such that k?qb � 1),
because function J21=n

2 peaks at small values of n (effectiveness of
wave-particle interaction is reduced for large values of k?qb).

For the case of slowing-down distribution f � 1=v3 (setting
v�¼ 0), most of explicit pitch parameter dependence in expression
Eq. (A3) will cancel, leaving

c �
ðkm

0

@f2
@k

J21
ffiffiffiffiffiffiffiffiffiffiffi
1� k
p

dk; (A4)
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where km ¼ 1� ðxci � xÞ2=ðkjjv0Þ2 is the limit of the integration
which depends on mode parameters and the injection velocity.
Assuming small k and integrating by parts, one can obtain the expres-
sion for the growth rate including the derivative of J21 , similar to Eq.
(A1). However, in addition, there will be a positive term from the inte-
gral of a complete derivative proportional to f ðv0; kmÞ � exp ½�ðkm
�k0Þ2=Dk2�=v30, which had been neglected in previous studies. This
term can be neglected only for very narrow k distribution and pro-
vided that jkm � k0j � Dk is satisfied, in which case it is exponen-
tially small. However, since the most unstable modes have jkm
�k0j�Dk, this is not a reasonable assumption. Therefore, expression
(A1) is valid only in the case of delta-function distribution dðk� k0Þ
(when km > k0), as derived in the original publication.37

In order to further illustrate this point, Eq. (A2) has been inte-
grated numerically for the beam parameters used in 3D simulations:
k00 ¼ 0:65; v0 ¼ 2vA; v� ¼ v0=2 and for different values of x and
k?, assuming a simple relation between mode frequency and reso-
nant velocity: vjj;res ¼ ðxci=x� 1ÞvA (no sideband resonances).
Figure 11(a) shows the contour plot of normalized growth rate and
plot of c=xci vs k?qi for very narrow pitch parameter distribution
with Dk¼ 0.03; blue-green contours correspond to negative c val-
ues, and red-orange to positive. The peak value of c=xci 	 2:0
occurs at x=xci 	 0:446 for small jk?=kjjj � 1. At higher frequen-
cies, the growth rate is strongly reduced and positive only for
jk?=kjjj � 2:5. Figure 11(a) also shows normalized growth rate vs
k?qi for two frequencies x/xci¼ 0.446 and 0.50, where k?qi is cal-
culated approximately as k?=jkjjjð1� x=xciÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0=ð1� k0Þ

p
using

the relation v? ¼ vjj;res
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð1� kÞ

p
. It can be seen that for larger

frequencies, for example, for x/xci¼ 0.5, the growth rate does show
the oscillatory behavior related to derivative of the Bessel function
as in Eq. (A1), and the approximate instability range 1:7 < k?qi
< 3:9 is similar to that given in Ref. 2. Sharp transition between the
strongly unstable low k? regime and the “Bessel” regime occurs at
frequency x=xci ¼ ð1þ v0=vA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0
p

Þ�1 	 0:46, corresponding
to the km¼ k0 condition. These calculations demonstrate that even
in the limit of very narrow pitch distribution, the strongest instabil-
ity occurs at small k?, and it cannot be described by Eq. (A1). For
narrow k distribution, the peak instability growth rate is very large
due to the large gradient of f, and because most of the beam ions
are resonant. In practice, the band of strongly unstable frequencies
around 0.446 will be wider than that shown in Fig. 11(a), because of
the possibility of sideband resonances.

For comparison, Fig. 11(b) also shows growth rates calculated for
a realistic width of pitch parameter distribution [including k0(v) depen-
dence and the widening of DkðvÞ at lower energies, as described in Sec.
II], i.e., for Dk0 ¼ 0:3. In this case, calculated c values are smaller, with
the peak value of c ¼ 0:036xci at x=xci 	 0.40 and small k?=kjj.
Transition to the “Bessel-like” regime occurs at x=xci � 0.45 with
smaller growth rates and k?qi > 2. Note that there is no instability at
x=xci� 0.33, because for lower frequencies the cyclotron resonant
condition cannot be satisfied for a given v0=vA ¼ 2, unless sideband
resonances are allowed. Calculations based on Eq. (A2) also show the
importance of including Dk(v) dependence for growth rate calculations
(and in 3D simulation), because resonant particles can have energies as
low as 1/2 of the injection energy, where Dk is wider than at the injec-
tion energy. Larger width of pitch parameter distribution reduces the
instability drive, and therefore, results in smaller growth rates.

Figure 11(b) shows that even for a realistically wide
pitch parameter distribution, the most unstable modes have
small k?=jkjjj and a relatively narrow range of frequencies given
approximately by condition: ð1þ v0=vAÞ�1 < x=xci < ð1þ v0=
vA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0
p

Þ�1. When the value of k0 is reduced, the upper limit of
this range and the most unstable mode frequency will reduce as
well, and this scaling holds as long as the value of k0 is not too

FIG. 11. Contour plots of growth rate and plots of c/xci vs k?qi for very narrow
and for wide pitch parameter distributions; blue-green contours correspond to nega-
tive values, and orange-red to positive. (a) Dk0¼ 0.03, c/xci values are between
�0.7 and 2.0; (b) Dk0¼ 0.3, c/xci values are between �0.22 and 0.036; (c) CAE,
Dk0¼ 0.3, range of c/xci values is the same as in (b).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 092507 (2019); doi: 10.1063/1.5116357 26, 092507-11

https://scitation.org/journal/php


small. In the cases of a very weak drive, that is, for smaller k0,
modes with k?=jkjjj < 1 will remain unstable, but the peak of the
growth rate may shift to shorter perpendicular wavelengths with
k?=jkjjj > 4. For v0/vA¼ 2 and Dk0 ¼ 0:3, this transition happens
at k0 
 0.45. For larger injection velocities (v0/vA > 3) or for nar-
row k-distributions (Dk0�0:2), the peak instability still occurs at
small k?=jkjjj � 1 for a larger range of pitch distributions, i.e., for
k0 � 0:25.

The dispersion relation for compressional modes (CAEs) can be
derived in the same way as that for the GAEs. Using the same assump-
tions as those used for the derivation of Eq. (A2), and neglecting cou-
pling between compressional and shear waves, the expression for the
counterpropagating CAE growth rate can be shown to be identical to
that of GAEs, except that the Bessel function J21=n

2 in Eq. (A2) should
be replaced with 1=4ðJ0 � J2Þ2. Therefore, in the limit k? ! 0 the
CAE has the same growth rate (and same instability condition) as the
GAE. However, for finite values of k?, the instability condition and
the range of unstable frequencies change significantly mostly due to a
different relation between the resonant velocity and the mode fre-
quency: vjj;res ¼ k=jkjjjðxci=x� 1ÞvA (no sideband resonances).
Figure 11(c) shows the contour plot of the normalized growth rate
and plot of c=xci vs k?qi for the same beam parameters as for GAEs
in Fig. 11(b) with Dk0 ¼ 0.3. The main difference from GAEs is that
both the growth rate and most unstable mode frequency of CAEs
depend strongly on the k?=jkjjj parameter, and the instability becomes
very weak for k?=jkjjj� 2. Since the smallest value of k? is limited by
the width of the CAE’s potential “well,”21 DR: k? � kr � p=DR, and
jkjjj 
 x=vA, it can be estimated that k?=jkjjj � pvA=DRx. For
NSTX-U parameters, this implies that k?=jkjjj � 1, and weaker insta-
bility drive for CAEs is predicted compared to GAEs. From condition
km < k0 follows the range of unstable CAE frequencies: ð1þ jkjj=
kjv0=vAÞ�1 < x=xci < ð1þ jkjj=kjv0=vA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0
p

Þ�1. Interestingly,
since the CAE instability is mostly limited to the k?qi�1 range [Fig.
11(c)], the growth rates and unstable frequencies of counter-CAEs cor-
respond to those of counter-GAEs with reduced effective “injection
velocity” v0 ! v0jkjj=kj.
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