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ABSTRACT

Conditions for net fast ion drive are derived for beam-driven, sub-cyclotron compressional (CAE) and global (GAE) Alfv�en eigenmodes,
such as those routinely observed in spherical tokamaks such as NSTX(-U) and MAST. Both co- and counter-propagating CAEs and GAEs
are investigated, driven by the ordinary and anomalous Doppler-shifted cyclotron resonance with fast ions. Whereas prior results were
restricted to vanishingly narrow distributions in velocity space, broad parameter regimes are identified in this work which enable an analytic
treatment for realistic fast ion distributions generated by neutral beam injection. The simple, approximate conditions derived in these
regimes for beam distributions of realistic width compare well to the numerical evaluation of the full analytic expressions for fast ion drive.
Moreover, previous results in the very narrow beam case are corrected and generalized to retain all terms in x=xci and jkk=k?j, which are
often assumed to be small parameters but can significantly modify the conditions of drive and damping when they are non-negligible.
Favorable agreement is demonstrated between the approximate stability criterion, simulation results, and a large database of NSTX
observations of cntr-GAEs.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5127551

I. INTRODUCTION

A mixture of high frequency compressional (CAE) and global
(GAE) Alfv�en eigenmodes were commonly observed on the spherical
tokamaks NSTX(-U)1–6 and MAST.7–9 These modes may propagate
either in the same direction (co-propagating) as the plasma current
and neutral beam injection (NBI) or opposing it (cntr-propagating).
They generally have frequencies in the range x=xci ¼ 0:3 to above
the ion cyclotron frequency for CAEs and x=xci ¼ 0:1� 0:5 for
GAEs with toroidal mode numbers jnj ¼ 3� 12. Dedicated experi-
ments on the large aspect ratio tokamak DIII-D have also observed
AE activity in this frequency range,10–12 allowing comparison between
their excitation properties across these different configurations.

The CAE and GAE, respectively, correspond to compressional
(fast magnetosonic) and shear branches of the MHD waves. In a cold,
uniform plasma, they have dispersion x ¼ kvA and x ¼ jkkjvA,
where vA ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0nimi
p

is the Alfv�en speed. In realistic toroidal

geometries with spatial inhomogeneities, the CAE will become local-
ized in the magnetic well in a standing wave configuration13–17 with
the spectrum of eigenmodes depending on the details of the magnetic
geometry.18–21 Likewise, the shear Alfv�en dispersion becomes spatially
dependent in a non-uniform plasma, and modes within this contin-
uum of solutions become strongly damped due to phase mixing.22 The
global Alfv�en eigenmode exists below a minimum in the Alfv�en con-
tinuum (or also possibly above a maximum in the case of nonconven-
tional GAEs23) where it can avoid the strong continuum damping that
would render its excitation more difficult. The discrete spectrum of
GAEs exists due to coupling to the CAE, an equilibrium current,
current density gradient, and finite x=xci effects.

24–29 Excitation of
CAEs/GAEs requires a resonant population of energetic particles with
sufficient velocity space gradients to overcome damping on the back-
ground plasma. The analysis of this paper focuses on fast ions interact-
ing with CAEs/GAEs through the ordinary or anomalous cyclotron
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resonances. Drive/damping due to the Landau resonance is treated in
Paper II30 of this series.

The analytic study of the conditions for excitation of CAEs and
GAEs is motivated by their experimental observations across many
devices. The presence of these modes has been linked to anomalous
electron energy transport in NSTX,31,32 which may be explained by
orbit stochastization33 and energy channeling at the Alfv�en resonance
location.34–39 During early operations of NSTX-U, robust stabilization
of GAEs by the addition of a small amount of power in the new off-
axis neutral beam source was discovered and subsequently reproduced
with numerical modeling and analytic theory.6,40–42 Further under-
standing of these processes will be aided by the new stability condi-
tions derived here.

General expressions for the growth rate of these instabilities were
originally derived for mono-energetic beam43 and bi-Maxwellian44 dis-
tributions, as well as for an arbitrary distribution45 in a uniform plasma.
These derivations were later extended and applied to NBI-driven
CAEs/GAEs in various experimental conditions dating back to the
TFTR era46,47 and continuing in more recent years with applications to
JET48 and NSTX.49,50 The recent studies on NBI-driven modes had
two key limitations. First, they did not correctly treat the cutoff at the
injection energy, an approach suitable for shifted Maxwellians gener-
ated by heating in the ion cyclotron range of frequencies (ICRF), but
not for slowing down distributions from NBI. Second, they assumed a
delta function in pitch for tractability, which is unrealistic considering
the more broad distributions present in experiments, as inferred from
Monte Carlo codes such as the NUBEAM51 module in TRANSP.52

Prior studies also assume kk � k? and x� xci as simplifying
approximations, whereas the modes excited in spherical tokamaks such
as NSTXmay have frequencies approaching x�xci and kk � k?.

Choice of parameter regimes to study has been informed by prior
and ongoing numerical modeling of CAEs/GAEs with the 3D hybrid
MHD-kinetic initial value code HYM.37,42,53 The simulation model
couples a single fluid thermal plasma to a minority species of full orbit
kinetic beam ions and also includes the contributions of the large
beam current to the equilibrium self-consistently.54

The derivation presented in this paper corrects and builds on
prior work by providing a local expression for the fast ion drive due to
an anisotropic beam-like distribution interacting via the ordinary and
anomalous cyclotron resonances. The effect of finite injection energy
of NBI distributions is included consistently, yielding a previously
overlooked instability regime. Terms to all order in x=xci and jkk=k?j
are kept for applicability to the entire possible spectrum of modes. As
in previous works, full finite Larmor radius (FLR) terms are also
retained. The analytic expression can be integrated numerically for
any chosen parameters in order to determine if the full fast ion distri-
bution is net driving or damping. More interestingly, it is found that
when the beam is sufficiently wide in velocity space, such as realistic
distributions resulting from NBI, the integral can be evaluated approx-
imately in terms of elementary functions, yielding compact conditions
for net fast ion drive/damping that depend only on a small set of
parameters describing the fast ion and mode parameters. Such expres-
sions grant new insights into the spectrum of CAEs and GAEs that
may be excited by a given fast ion distribution, as well as providing
intuition for interpreting experimental observations and simulation
results. Since damping sources such as electron Landau and contin-
uum damping are not addressed in this work, the net fast ion drive

conditions derived here should be considered as necessary but not suf-
ficient conditions for instability.

This paper is structured as follows: the dispersion relations, reso-
nance condition, and model fast ion distribution function used in this
paper are described in Sec. II. In Sec. III, the local analytic expression
for the CAE and GAE growth rates is adapted from Ref. 45 and
applied to the fast ion distribution of interest. Approximations are
applied to this expression in Sec. IV in order to derive useful instability
criteria for the cases of a very narrow beam width in velocity space
(Sec. IVA) and a beam with realistic width (Sec. IVB) when FLR
effects are small (Sec. IVB 1) and large (Sec. IVB 2). The derived con-
ditions are also compared against the numerically calculated growth
rates for realistic parameter values in Sec. IV. In Sec. V, the depen-
dence of the fast ion drive/damping on the mode properties (x=xci

and jkk=k?j) is presented and compared against conclusions drawn
from the approximate stability boundaries. A comparison of the
approximate stability conditions against a database of cntr-GAE activ-
ity in NSTX and simulation results is shown in Sec. VI. Finally, a sum-
mary of the main results and discussion of their significance is given in
Sec. VII.

II. DISPERSION, RESONANCE CONDITION, AND FAST
ION DISTRIBUTION

One goal of this paper is to extend previous derivations to include
finite x=xci and jkk=k?j effects in the stability calculation, since
experimental observations and modeling of NSTX suggests that these
quantities may not always be small. Experimental observations often
show CAEs with frequencies from x=xci ¼ 0:3 to exceeding the
cyclotron frequency. GAEs are observed with somewhat lower fre-
quencies of x=xci � 0:1� 0:5. While k? cannot be measured accu-
rately on NSTX due to limited poloidal coil resolution, it can
be calculated for the most unstable modes excited in simulations,37

which show that jkk=k?j � 1 is not uncommon and can even reach
jkk=k?j > 3 in some cases. This motivates using the full, unsimplified
dispersion relations in uniform geometry when numerically calculat-
ing the growth rate, instead of using the common x=xci � 1 and
jkk=k?j � 1 assumptions found in previous works. The more compli-
cated eigenmode equations in nonuniform toroidal systems18,24,25,46,47

have been derived in the past but are too complicated for our
purposes.

Define �x ¼ x=xci0; N ¼ kvA=x; A ¼ ð1� �x2Þ�1, and also
F2 ¼ k2k=k

2; G ¼ 1þ F2. Here, xci0 is the on-axis ion cyclotron fre-
quency. Then in uniform geometry, the local dispersion in the MHD
limits of Ek � E? and x� jxcej;xpe is readily given by55

N2 ¼ AG
2F2

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4F2

AG2

r" #
: (1)

The “–” solution corresponds to the compressional Alfv�en wave
(CAW), while the “þ” solution corresponds to the shear Alfv�en wave
(SAW). The coupled dispersion in Eq. (1) will be used in the full ana-
lytic expression for fast ion drive. Notably, it can modify the polariza-
tion of the two modes, which in turn changes how the finite Larmor
radius (FLR) effects from the fast ions contribute to the growth rate
[see Eq. (16)]. Its low frequency approximations are x � kvA for
CAWs and x � jkkjvA for SAWs. Throughout the paper, CAW/CAE
and SAW/GAE will be used interchangeably, where CAW and SAW
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formally refer to the solutions in a uniform slab, while CAE and GAE
refer to their analogs in nonuniform and bounded geometries. Net
energy transfer between a mode and the fast ions requires a sub-
population of particles obeying the Doppler-shifted cyclotron
resonance

x� hkkvki � hk?vDri ¼ ‘hxcii: (2)

Here, h…i denotes poloidal orbit averaging and ‘ is an integer
cyclotron resonance coefficient. Two resonances are studied in detail
in this work for the sub-cyclotron modes: the ‘ ¼ 1 ordinary cyclotron
resonance and ‘ ¼ �1 anomalous cyclotron resonance. Orbit averag-
ing in Eq. (2) is required to satisfy the global resonance condition, as
opposed to the local resonance, which describes a net synchronization
condition between the wave and particle on average over its orbit,
even while not being in constant resonance at all points in time. This
resonance condition is applicable so long as the growth rate of the
mode is sufficiently smaller than the inverse particle transit time,
which is satisfied by these modes according to HYM simulations.56

In this paper, we will make the approximation of jk?vDrj
� jkkvkj. Consequently, when x < xci and hvki > 0 (co-injection),
Eq. (2) can only be satisfied for ‘ ¼ 1 if kk < 0 (mode propagates
counter to the fast ions). Likewise, ‘ ¼ �1 requires kk > 0, corre-
sponding to co-propagation. Due to periodicity, the drift term can be
approximated for passing particles57 as hk?vDri � shvki=qR for inte-
ger s, though this term yields relatively small corrections due to the
large values of jkkj relevant to these modes. In this approximation, the
resonance condition can be rewritten as x� kk;svk;res ¼ ‘hxcii with
kk;s ¼ kk þ s=qR. Conversely, for trapped particles the drift term can
be approximated as58 hk?vDri � sxb. Previous HYM simulations
indicate that the s ¼ 61 sidebands are usually more relevant than
larger jsj.37 For quantitatively accurate growth rates, all sidebands
should be summed over, as done in Ref. 46 in the limit of x � xci

� xb, and also in Ref. 50. Practically, these procedures require com-
plicated non-local calculations which would preclude analytic progress
except in extraordinarily special cases, contrary to the purpose of this
work, which is to derive broadly applicable instability conditions. To
this end, only the primary resonance (s¼ 0) will be kept when deriving
approximate stability boundaries in Sec. IV.

Combination of the resonance condition with approximate dis-
persion relations can yield relations that will be useful later on.
Introduce h�xcii � hxcii=xci0 as the average cyclotron frequency of
the resonant particles, normalized to the on-axis cyclotron frequency
xci0. This value is approximately 0.9, as inferred from inspection of
the resonant particles in relevant HYM simulations. Then, defining
vk;res � hvki > 0 (treating co-injected particles only) and rearranging
Eq. (2) gives

vk;res
vA
¼ x

kkvA

����
���� 1� ‘h�xcii

�x

����
���� (3)

�
1� ‘h�xcii

�x

����
���� GAEffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2?
k2k

s
1� ‘h�xcii

�x

����
���� CAE:

8>>>><
>>>>:

(4)

The stability calculation will be applied to a slowing down, beam-
like background distribution of fast ions, motivated by theory and

NUBEAM modeling of NSTX discharges.37 In order to satisfy the
steady state Vlasov equation, the distribution is written as a function
of constants of motion v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=mi

p
and k ¼ lB0=E in the separable

form: f0ðv; kÞ ¼ Cf nbf1ðvÞf2ðkÞ, defined below

f1ðvÞ ¼
ftailðv; v0Þ
v3 þ v3c

; (5a)

f2ðkÞ ¼ exp � k� k0ð Þ2=Dk2
� �

: (5b)

The constant Cf is for normalization. The first component f1ðvÞ
is a slowing down function in energy with a cutoff at the injection
energy v0 and a critical velocity vc. The cutoff at v ¼ v0 is contained
within ftailðv; v0Þ, which is, in general, a function which rapidly goes to
zero for v > v0. For ease of calculation, this is assumed to be a step
function. The second component f2ðkÞ is a Gaussian distribution cen-
tered on some central value k0 with width Dk. The variable k is a trap-
ping parameter. To lowest order in l � l0, it can be re-written as
k ¼ ðv2?=v2Þðxci0=xciÞ. Then, assuming a tokamak-like field B � B0=
ð1þ � cos hÞ for � ¼ r=R, passing particles will have 0 < k < 1� �
and trapped particles will have 1� � < k < 1þ �. Loosely, smaller k
means the particle’s velocity is more field aligned, such that k is a com-
plementary variable to a particle’s pitch vk=v. For analytic tractability,
k0 and Dk are treated as constants in this model, ignoring any velocity
dependence of these parameters which may be present, especially
broadening in k at lower energies due to pitch angle scattering. The
dependence on p/, is neglected in this study for simplicity, as it is
expected to be less relevant for the high frequencies of interest for these
modes. The model distribution does not include the two additional
energy components that are present due to molecular deuterium pro-
duction in the neutral beam source, as these have a quantitative but
not qualitative impact on the analysis. Such effects can be recovered by
summing over three beam distributions (with injection velocities v0,
v0=

ffiffiffi
2
p

, and v0=
ffiffiffi
3
p

) with appropriate weights. Comparison between
the model distribution used in this study and those calculated with the
Monte Carlo code NUBEAM for NSTX and NSTX-U can be found in
Fig. 5 of Ref. 54 and Fig. 4 of Ref. 42, respectively.

The NSTX operating space spanned a range of normalized injec-
tion velocity v0=vA ¼ 2� 6, depending on the beam voltage (typically
60� 90 keV at 2� 6 MW) and field strength (0:25� 0:50 T) for
each discharge. The central trapping parameter k0 and beam width Dk
are mostly determined by the neutral beam’s geometry and collima-
tion, yielding typical k0 ¼ 0:5� 0:7 and Dk ¼ 0:3. For this study,
vc ¼ v0=2 is used as a characteristic value. The new beam line on
NSTX-U has much more tangential injection, with k0 � 0, and also
lower v0=vA ¼ 1� 3 due to higher nominal field strength.

III. FAST ION DRIVE FOR ANISOTROPIC BEAM
DISTRIBUTION IN THE LOCAL APPROXIMATION

In this section, the fast ion drive/damping is derived perturba-
tively in the local approximation for a two component plasma com-
posed of a cold bulk plasma and a minority hot ion kinetic population,
and applied to the anisotropic beam distribution of interest. The for-
mula presented here extends the results obtained in Refs. 49 and 50,
which focused on x� xci; kk � k?, and also did not study high fre-
quency co-propagating modes (‘ ¼ �1 cyclotron resonance coeffi-
cient). In contrast, the following derivation is appropriate for all values
of x=xci and jkk=k?j, which is important since mode frequencies can
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be on the order x=xci � 0:5 or larger, and in contrast to the common
large tokamak assumption, jkk=k?j can be of order unity, as inferred
from simulations.53,56

A. Derivation

The general dispersion is given by

�ij � n2 dij �
kikj
k2

� �����
���� ¼ 0: (6)

Here, n ¼ kc=x is the index of refraction, and �ij ¼ dij þ
P

s �
s
ij

is the dielectric tensor. Without the loss of generality, assume B0

¼ B0ẑ and k ¼ kkẑ þ k?x̂ . Then, the dispersion is determined by

�11 � n2k �12

�21 �22 � n2

 !
Ex
Ey

� �
¼ 0: (7)

The rest of the components are irrelevant in the MHD regime
where Ez � Ex;Ey . For the cold bulk components,

dij þ �th;eij þ �
th;i
ij ¼

S �iD
iD S

� �
: (8)

Above, S ¼ 1�
P

s x
2
ps=ðx2 � x2

csÞ and D ¼
P

s xcsx2
ps=

ðxðx2 � x2
csÞÞ, where xps ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsq2s =ðms�0Þ

p
and xcs ¼ qsB0=ms are

the plasma frequency and signed cyclotron frequency for each
species s. When x� xpe; jxcej, we can approximate S � Ac2=v2A and
D � ��xAc2=v2A, where as earlier A ¼ 1=ð1� �x2Þ and �x ¼ x=xci0.
Setting Kij ¼ v2A�

b
ij=c

2 and also defining y ¼ x2=ðk2v2AÞ ¼ N�2, the
full dispersion is given by

y � F2A�1 � yA�1K11

� �
y � A�1 � yA�1K22

� �
�y2 �x þ A�1K12

� �2 ¼ 0: (9)

Neglecting the fast ion component (setting Kij ¼ 0) recovers the
MHD dispersion in Eq. (1). Letting x ¼ x0 þ x1 with x1 � x0 and
solving perturbatively to first order in Kij � nb=ne � 1 yields the
growth rate as

x1

x0
¼�

y0 K11ðy0 �A�10 Þ � 2�x0y0jK12j þ ðy0 � F2A�10 ÞK22

� 	
2 y20 � F2
� � : (10)

As defined in Sec. II, F2 ¼ k2k=k
2. All quantities with subscript 0

are understood to be evaluated using x ¼ x0, i.e., the unperturbed
frequency given by Eq. (1). The tensor elements Kij can be calculated
from Eq. (A24) in Ref. 45

Kij ¼
nb
ne

x2
ci

x

ð
v?dv?dvk

X1
‘¼�1

v2?g
‘
ijðnÞ

x� kkvk � ‘xci
p̂f0

; (11)

where

p̂ ¼ 1
v?

@

@v?
þ
kk
x

@

@vk
�

vk
v?

@

@v?

 !
(12)

g‘ijðnÞ ¼
‘2J2‘ =n

2 i‘J 0‘J‘=n
�i‘J 0‘J‘=n ðJ 0‘Þ

2

 !
; n ¼ k?q?b: (13)

Here, q?b ¼ v?=xci is the Larmor radius of the fast ions, and the
distribution is normalized such that

Ð
v?f0dv?dvk ¼ 1. The finite

Larmor radius (FLR) effects from the fast ions are contained in g‘ijðnÞ,
with J‘ðnÞ denoting the ‘� th order Bessel function of the first kind.
In order to keep only the resonant contribution to the growth rate, we
make the formal transformation ðx� kkvk � ‘xciÞ�1 !�ipdðvk
�vk;res;‘Þ=jkkj with vk;res;‘ ¼ ðx� ‘xciÞ=kk the parallel velocity of the
resonant fast ions. Then, substituting Eq. (11) into Eq. (10) and identi-
fying the growth rate c ¼ Imðx1Þ

c
xci
¼ p

2
nb
ne

X
‘

vk;res;‘
�x � ‘

��� ��� ð dv?dvkv3?dðvk � vk;res;‘Þp̂‘f0Jm
‘ ðnÞ; (14)

where

p̂‘ ¼
2
v2

‘

�x
� x

� �
@

@x
þ v

2
@

@v


 �
: (15)

The variable x ¼ v2?=v
2 ¼ kh�xcii was introduced so that the gra-

dients p̂f0 can be re-written in the natural coordinates of the distribu-
tion. Note thatJm

‘ ðnÞ is the “FLR function” for cyclotron resonance ‘
and modem (¼ “C” for CAE and “G” for GAE), defined as

j
m
‘ ðnÞ �

y0
y20 � F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0 � A�10

q
‘J‘
n

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0 � F2A�10

q dJ‘
dn


 �2
: (16)

Here, the “�” corresponds to CAEs and the “þ” for GAEs.
Defining a ¼ jkk=k?j, the FLR parameter n may also be re-written in
the following form:

n ¼ k?q?b � f

ffiffiffiffiffiffiffiffiffiffiffi
x

1� x

r
; (17)

f ¼
k?vk;res

xci
¼ j�x � ‘h�xciij

a
: (18)

The modulation parameter f contains information about the
mode characteristics and is a measure of how rapidly the integrand in
Eq. (14) is oscillating. The expression in Eq. (18) follows from the reso-
nance condition in Eq. (4). The complicated form of jm

‘ ðnÞ is due to
coupling between the pure compressional and shear branches of the
dispersion resulting from finite x=xci and also modified by finite
jkk=k?j, and so it is worthwhile to highlight some of its properties.
The FLR function j

m
‘ ðnÞ is non-negative for both modes when

x=xci < 1. For CAEs, y0 � 1 � A�10 ; F; F2A�10 according to Eq. (1),
so the square root arguments and leading factors are all positive. In
contrast, for GAEs, y0 	 A�10 ; F; F2A�10 , so the arguments of the
square roots as well as the leading factors are all negative, with signs
canceling out.

As a useful example, consider the limit of x=xci � 1. In that
case, y0 ¼ 1þ �x2a2 þ Oð�x4Þ for CAEs and y0 ¼ F2 � �x2a2

þOð�x4Þ for GAEs. Then,Jm
‘ ðnÞ simplifies substantially to

lim
�x!0

JC
‘ ðnÞ ¼

dJ‘
dn

� �2

CAE ; (19a)

lim
�x!0

JG
‘ ðnÞ ¼

‘J‘=nð Þ2 ‘ 6¼ 0

�xa2J1ð Þ2 ‘ ¼ 0
GAE:

(
(19b)
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In another limit, where 0 < �x < 1 and a� 1, the dispersion
from Eq. (1) reduces to y0 ¼ 1þ �x for CAEs and y0 ¼ 1� �x for
GAEs, simplifying the FLR function to

lim
a!1

Jm
‘ ðnÞ ¼

16�xð Þ2

26�x
dJ‘
dn

7
‘J‘
n

� �2

; (20a)

lim
a!1

JC
‘ ðnÞ ¼

1þ �xð Þ2

2þ �x
J2‘þ1 CAE; (20b)

lim
a!1

JG
‘ ðnÞ ¼

1� �xð Þ2

2� �x
J2‘�1 GAE: (20c)

In Eq. (20a), the top signs are for CAEs, and the bottom signs
for GAEs. The forms in Eq. (19) match those used in Refs. 49 and
50 in the same limit, and the limit of a! 0 in Eq. (16) reproduces
the FLR function used in Refs. 57 and 58. Since the distribution is
written in terms of the variables x instead of v?, it is useful to
change variables after performing the trivial integration over vk in
Eq. (14). Using the definition x ¼ v2?=v

2 with the differential rela-
tion dx ¼ 2v?ð1� xÞdv?=v2 gives

c
xci
¼ p

2
nb
ne

X
‘

���� v
3
k;res;‘

�x � ‘

����
ð
xJm

‘ ðnÞ
ð1� xÞ2

‘

�x
� x

� �
@f0
@x
þ v

2
@f0
@v


 �
dx (21)

Lastly, Eq. (14) to the anisotropic beam distribution in Eq. (5).
Defining g‘ ¼ v2k;res;‘=v

2
0 yields

c
xci
¼�nb

ne

pCf v30
v3c

X
‘

g3=2‘

j�x� ‘j

ð1�g‘

0

xJm
‘ ðnðx;fÞÞ
ð1� xÞ2

e�ðx�x0Þ
2=Dx2

1þ v30
v3c

g‘
1� x

� �3=2

8>><
>>:


 1
Dx2

‘

�x
� x

� �
ðx� x0Þþ

3=4

1þ v3c
v30

1� x
g‘

� �3=2

2
64

3
75dx

þ g�1‘ � 1

2 1þ v30
v3c

 ! e�ð1�g‘�x0Þ2=Dx2Jm
‘ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1‘ � 1

q� �9>>=
>>;
: (22)

The upper integration bound is a consequence of the finite injec-
tion energy since jvk;resj ¼ v

ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

< v0
ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

! x < 1� v2k;res=

v20. All quantitative calculations in this paper assume vc ¼ v0=2 and
nb=ne ¼ 5:3%, based on the conditions in the well-studied NSTX H-
mode discharge #141398. The normalization constant is given by

C�1f ¼
1
3
ln 1þ v30

v3c

 !ð1
0

e�ðx�x0Þ
2=Dx2ffiffiffiffiffiffiffiffiffiffiffi

1� x
p dx: (23)

This approach required two large assumptions in order to make
the problem tractable. First, a local assumption was made in order to
eliminate the spatial integrals, which require knowledge or detailed
assumptions about the equilibrium profiles and mode structures,
whereas we seek a simple criteria depending only on a few parameters
(v0=vA; k0;x=xci; jkk=k?j; ‘) for broad comparison with experimen-
tal or simulation results. Hence, all equilibrium quantities in Eq. (22)
are understood to be taken at the peak of the mode structure, generally
between the magnetic axis and mid-radius on the low-field side, where

CAEs are localized due to a magnetic well and GAEs are localized due
to a minimum in the Alfv�en continuum. As a consequence, the accu-
racy of the drive/damping magnitude may be limited; however, this
approximation should not affect the sign of the expression, and so it
can still be used to distinguish net fast ion drive vs damping, which is
the primary goal of this work. Second, the derivative with respect to p/

has been neglected in this derivation, which would be important for
modes at lower frequencies (e.g., for TAEs where it is the main source
of drive) or fast ion distributions with very sharp spatial gradients,
which is atypical for NBI.

B. Properties of fast ion drive

The expression in Eq. (22) represents the local perturbative
growth rate for CAE/GAEs in application to an anisotropic beam-like
distribution of fast ions, keeping all terms from x=xci; jkk=k?j, and
k?q?b. The derivation presented in this section has some additional
consequences worth highlighting. Observe that only the term in square
brackets can change sign since the coefficient in front of the integral
will always be negative, and the portions of the integrand not enclosed
in square brackets are strictly non-negative. Hence, regions of the inte-
grand where the term in brackets is negative are driving, and regions
where these terms are positive are damping.

Examining further, the second term in brackets and the term on
the second line are due to @f0=@v, which is always damping for
the slowing down function. Both of these terms are negligible for
‘ 6¼ 0; x=xci < 1 and Dk < 1, which is the case considered here. The
first term in brackets is the fast ion drive/damping due to anisotropy
ð@f0=@kÞ, which usually dominates the @f0=@v terms except in a very
narrow region where k � k0. Considering only fast ions with
vk;res > 0, modes driven by the ‘ ¼ �1 resonance are destabilized by
resonant particles with @f0=@k < 0 (equivalent to k > k0 for our
model distribution), whereas those interacting via the ‘ ¼ 1 resonance
are driven by @f0=@k > 0 (k < k0). This leads to a useful corollary to
this expression without any further simplification: when
1� v2k;res=v

2
0 	 k0h�xcii, the integrand does not change sign over the

region of integration. Therefore

1� v2k;res=v
2
0 	 k0h�xcii !

c < 0 ‘ ¼ �1;
c > 0 ‘ ¼ 1:

(
(24)

For the single beam distribution in Eq. (5), if 1� v2k;res=v
2
0

	 k0h�xcii, then modes driven by the ‘ ¼ �1 resonance (co-propagat-
ing) will be strictly damped by fast ions, while those driven by ‘ ¼ 1
(cntr-propagating) will exclusively be driven by fast ions. This repre-
sents a simple sufficient condition for net fast ion drive or damping
when this relation between the mode properties (jkk=k?j and x=xci,
which determine vk;res through the resonance condition) and fast ion
distribution parameters (v0 and k0) is satisfied.

Moreover, this condition reveals an instability regime unique to
slowing down distributions generated by NBI with finite injection
energy. This regime was not addressed in the initial studies, which
considered either mono-energetic43 or bi-Maxwellian44 distributions
for beam ions. Previous studies related to NBI-driven CAEs/GAEs49,50

also overlooked this regime by implicitly assuming vk;res � v0.
Consequently, their results were used to interpret experimental obser-
vations in NSTX(-U)2,6,40 and DIII-D10 in cases where they may not
have been valid. In contrast, this new instability regime can more
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consistently explain the excitation and suppression of cntr-GAEs
observed in NSTX-U40,42 and also suggests that the properties of high
frequency modes previously identified as CAEs in DIII-D10 would in
fact be more consistent with those of GAEs.

Finally, it is clear from the derivation and discussion in this sec-
tion that ‘ ¼ 61 instabilities can occur for any value of k?q?b,
depending on the parameters of the distribution ðk0; v0=vAÞ and the
given mode properties ðx=xci; jkk=k?jÞ. In contrast, in the previously
studied regime where vk;res � v0 and Dk� 1, net fast ion drive only
occurs for specific ranges of k?q?b when x=xci � 1.49 For further
understanding of the relationships between the relevant parameters
required for instability, analytic approximations or numerical methods
must be employed.

IV. APPROXIMATE STABILITY CRITERIA

The expression derived in Eq. (22) cannot be integrated analyti-
cally and has complicated parametric dependencies on properties of
the specific mode of interest: GAE vs CAE, jkk=k?j; x=xci, and the
cyclotron coefficient ‘ as well as on the properties of the fast ion distri-
bution: v0=vA, k0, and Dk. For chosen values of these parameters, the
net fast ion drive can be rapidly calculated via numerical integration.
Whenever 1� v2k;res=v

2
0 	 k0h�xcii, Eq. (24) provides the sign of the

drive/damping. When this inequality is not satisfied, there are also
regimes where approximations can be made in order to gain insight
into the stability properties analytically: one where the fast ion distri-
bution is very narrow (Dk � 0:10) and one where it is moderately
large ðDk � 0:20). The former allows comparison with previous calcu-
lations,49,50 while the latter includes the experimental regime where
the distribution width in NSTX is typically Dk � 0:30. In this section,
marginal stability criteria will be derived in these regimes.

A. Approximation of very narrow beam

For the first regime, consider the approximation of a very narrow
beam in velocity space. The purpose of this section is to determine
when such an approximation can correctly capture the sign of the
growth rate. For simplicity, also consider x=xci � 1 so that the
anisotropy term dominates and also ‘=�x � x. Then, Eq. (22) can be
re-written as

c
xci
/
ð1�g

0
hðxÞðx � x0Þe�ðx�x0Þ

2=Dx2dx; (25)

where

hðxÞ ¼ � ‘Cf

Dx2
x

ð1� xÞ2
Jm
‘ ðnðx; fÞÞ

1þ v30
v3c

g
1� x

� �3=2
: (26)

If Dx is very small, then the integral is dominated by a contribu-
tion in a narrow region x0 � d < x < x0 þ d, where d � 2Dx. In this
region, h(x) can be approximated as a linear function,
hðxÞ � hðx0Þ þ ðx � x0Þh0ðx0Þ þ OðDx2Þ. So long as 0 < x0 � d and
x0 þ d < 1� g, this approximation can be applied

c
xci
/
�
h0ðx0Þ

ðx0þd

x0�d
ðx � x0Þ2e�ðx�x0Þ

2=Dx2dx: (27)

The integral is positive, and so the sign of the growth rate is
equal to the sign of h0ðx0Þ. Note that this is the same instability
regime as studied in previous papers on sub-cyclotron mode stabil-
ity.49,50 A comparison of the approximate narrow beam stability
criteria to the unapproximated expression for cntr-GAEs with
g ¼ 0:2 is shown in Fig. 1. There, the dashed line shows the approx-
imate analytic result Eq. (27) plotted as a function of x0 for
Dx ¼ 0:04 and different values of f. Values of x0 where h0ðx0Þ > 0
indicate regions where the fast ions are net driving according to this
assumption (shaded regions). For comparison, the full expression
Eq. (25) is integrated numerically for each value of x0 for varying
Dx ¼ 0:04; 0:08; 0:16; 0:32. This figure demonstrates where the nar-
row beam approximation correctly determines the sign of the fast
ion drive, and how it depends on f. The curves for Dx ¼ 0:04 and
Dx ¼ 0:08 have essentially the same roots as the analytic expres-
sion, whereas the zeros of Dx ¼ 0:16 and Dx ¼ 0:32 begin to drift
away from the approximation or miss regions of instability entirely.
The differences are most pronounced for larger values of f, since
this causes the integrand to oscillate more rapidly. Hence, the
approximate criteria in Eq. (27) is only reliable for Dx� 0:10, espe-
cially when f� 1, which is much more narrow than experimental

FIG. 1. Comparison of numerically integrated growth rate to narrow beam approximation for cntr-GAE with g ¼ 0:2 as a function of the central trapping parameter of the beam
distribution. The black dashed line shows the analytic approximation made in Eq. (27) for Dx ¼ 0:04 and (a) f ¼ 0:7, (b) f ¼ 3:5, and (c) f ¼ 7:0. Colored curves show
numerical integration of Eq. (25) for different values of Dx: blue, Dx ¼ 0:04; orange, Dx ¼ 0:08; gold, Dx ¼ 0:16; and purple, Dx ¼ 0:32. Shaded regions correspond to
regions of drive according to the narrow beam approximation.
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fast ion distributions due to neutral beam injection which have
Dx � 0:30 in NSTX.

It is unsurprising that this type of approximation fails for realisti-
cally large values of Dx since the width of the Gaussian spans nearly
the entire integration region. Even for smaller Dx, the conclusion from
Eq. (27) is restricted to situations when both 0 < x0 � d and x0 þ d
< 1� g are satisfied. For instance, when g ¼ 0:2 and Dx ¼ 0:1, this
expression is only strictly valid for 0:2 < x0 < 0:6.

B. Approximation of realistically wide beam

When the beam distribution instead has a non-negligible width
in the trapping parameter k, a complementary approach can be taken.
For Dx sufficiently large, one may approximate d exp ð�ðx � x0Þ2=
Dx2Þ=dx � �2ðx � x0Þ=Dx2. This is reasonable for x0 � Dx=

ffiffiffi
2
p

< x < x0 þ Dx=
ffiffiffi
2
p

since this linear approximation is accurate up to
the local extrema in this function. When Dx is large, this approxima-
tion region may cover nearly the entire region of integration.
Throughout this section, vc ¼ v0=2 will be taken as a representative
figure, and the slowing down part of the distribution will be approxi-
mated as constant since it makes a small quantitative difference. Then,
Eq. (22) may be well-approximated by

c/
�
�
ð1�g

0

x

ð1� xÞ2
Jm
‘ ðnÞ

‘

�x
� x

� �
x � x0ð Þdx: (28)

This is still not possible to integrate directly because of the Bessel
functions with complicated arguments in Jm

‘ ðnÞ since
n ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=ð1� xÞ

p
. Substituting the values of x=xci and jkk=k?j from

the most unstable modes in HYM simulations into Eq. (18) shows that
the majority of these modes have f � 0:5 to 1, with the largest values
being f � 3. Since this parameter controls how rapidly Jm

‘ ðnÞ oscil-
lates, we are motivated to consider two cases separately: the small
(f� 1) and large (f� 1) FLR regimes.

1. Small FLR regime ðf� 1Þ

For small f, the argument of the Bessel function will be small for
most of the domain. For instance, x ¼ 1=ð1þ f2=n2Þ, so when
f ¼ 0:5, the small argument condition n� 1 is true for x� 0:8,
which is the majority of the domain for g not too small. The leading
order approximation to Jm

‘ ðnÞ for ‘ ¼ 61 and n� 1 is cþ Oðn2Þ
with c constant. For demonstration purposes, it will also be assumed
that �x � 1. This small correction is addressed in Appendix A. With
this approximation, Eq. (28) can be simplified and then integrated
exactly as

c/
�
�‘
ð1�g

0

xðx � x0Þ
ð1� xÞ2

dx: (29)

Solving for the marginal stability condition c¼ 0 yields

x0 ¼
1� g2 þ 2g log g
1� gþ g log g

� 1� g2=3 (30)

) v0 ¼
vk;res

1� x0ð Þ3=4
: (31)

The serendipitous approximation is better than 1% accurate
everywhere. It is arrived at by noticing that Eq. (30) is a smooth,

convex, monotonically decreasing function on ð0; 1Þ ! ð0; 1Þ, which
suggests an ansatz of the form f ðxÞ ¼ 1� xp for 0 < p < 1. The
choice of p¼ 2/3 is made in order to match the value of the derivative
at the x¼ 1 boundary, which coincidentally also matches the second
derivative there. At the x¼ 0 boundary, the limit of the derivatives of
both the function and approximation is �1 for odd derivatives and
þ1 for even derivatives. The success of this approximation technique
for inverting the marginal stability condition motivates its repeated
use in other cases studied in this paper.

This stability condition depends implicitly on the mode parame-
ters �x � x=xci and a � jkk=k?j through the dependence of vk;res, as
in Eq. (4). The cases of ‘ ¼ 61 have the same stability boundary, with
an overall sign difference. Hence, when f� 1, the cntr-propagating
‘ ¼ þ1 CAEs/GAEs are destabilized by fast ion distributions with

v0 < vk;res=ð1� x0Þ3=4 and the co-propagating ‘ ¼ �1 CAEs/GAEs

have net fast ion drive when v0 > vk;res=ð1� x0Þ3=4.
It is prudent to compare this approximate analytic condition

against the numerical evaluation of Eq. (22) for a characteristic mode.
This is done in Fig. 2, where the full expression for fast ion drive of
‘ ¼ þ1 GAE is integrated numerically for a beam distribution with
Dk ¼ 0:30 (estimated experimental value) and a range of values of k0
and v0=vA. A representative n¼ 8 cntr-GAE is chosen from HYM
simulations which had x=xci ¼ 0:20 and jkk=k?j ¼ 1:50, implying a
value of f ¼ 0:47. The color indicates the sign of the growth rate: red
is positive (net fast ion drive), blue is negative (net fast ion damping),
while gray is used for beam parameters with insufficient energy to sat-
isfy the resonance condition. The analytic instability condition derived
in Eq. (31) is shown as the black curve, demonstrating a remarkably
good approximation to the full numerical calculation.

FIG. 2. Numerical integration of full growth rate expression Eq. (22) as a function of
fast ion distribution parameters v0=vA and k0 with Dx ¼ 0:30 for a cntr-GAE with
properties inferred from HYM simulations: x=xci ¼ 0:20 and jkk=k?j ¼ 1:50,
implying f ¼ 0:47. Red indicates net fast ion drive, blue indicates net fast ion
damping, and gray indicates beam parameters with insufficient energy to satisfy the
resonance condition. The black curve shows approximate stability condition derived
in Eq. (31).
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Similarly good agreement between the approximation and
numerical calculation shown in Fig. 2 holds even up to f � 2 since
n ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=ð1� xÞ

p
� 1 is typically still obeyed for most of the integra-

tion region in that case, so long as g is not too small. Since
f ¼ j�x � ‘j=a [Eq. (18)], typically values of a � 0:5 lead to validity of
this regime. When f becomes too large, the lowest order Bessel func-
tion expansion of Jm

‘ ðnÞ employed in this section is no longer valid
over enough of the integration domain for the result to be accurate.
For values of �x and a which lead to f� 2, the asymptotic form of
the Bessel functions must be used instead to find different stability
boundaries, which are derived in Sec. IVB2. The “wide beam”
approximate stability conditions remain a good approximation to the
numerical calculation for about 0:20 < Dx < 0:80. If Dx is smaller
than this minimum value, the wide beam approximation begins to
break down, while Dx larger than the maximum value is where the
damping due to the neglected @f0=@v term begins to become more
important and lead to a nontrivial correction.

2. Large FLR regime ðf� 1Þ

Another limit can be explored, that is of the wide beam and rap-
idly oscillating integrand regime, namely f� 1. This limit is applica-
ble when very large FLR effects dominate most of the region of
integration. Based on the most unstable modes found in the HYM
simulations, this is not the most common regime for NSTX-like plas-
mas, but it can occur and is treated for completeness and comparison
to the slowly oscillating results.

This approximation allows the use of the asymptotic form of the

Bessel functions: JnðnÞ �
ffiffiffiffiffiffiffiffiffiffi
2=pn

p
cos ðn� ð2nþ 1Þp=4Þ þ Oðn�3=2Þ,

which is very accurate for n > 2. Note also that f� 1 implies a� 1
since f ¼ j‘� �xj=a < 2=a for j‘j 	 1. Since a� 1, the FLR func-
tions for ‘ ¼ 61 are well-approximated by JG

61 � J21 ðnÞ=n2
� ð1� sin ð2nÞÞ=n3 for GAEs andJC

61ðnÞ � J20 ðnÞ � ð1� sin ð2nÞÞ=
n for CAEs. Considering first the case of the ‘¼61 GAEs, the rele-
vant integral is

c/
�
�‘
ð1�g

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p 1� sin 2f

ffiffiffiffiffiffiffiffiffiffiffi
x

1� x

r !" #
ðx � x0Þ (32)

¼ �‘
ð1�g

0

ðx � x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p dx (33)

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1� gÞ

p
þ ð1� 2x0Þarccos

ffiffiffi
g
p

: (34)

The first line is Eq. (28) using the asymptotic expansion of the
Bessel functions, then the second line is obtained using the stationary
phase approximation for rapidly oscillating integrands.59 Specifically,

the Riemann-Lebesgue lemma59 guarantees that
Ð b
a f ðtÞeixtdt ! 0 for

x !1 with integrable jf ðtÞj, which is clear with the substitution of
t ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=ð1� xÞ

p
in Eq. (32). Then as before, the marginal stability

condition can be found and inverted after an approximation
procedure,

x0 ¼
1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1� gÞ

p
arccos

ffiffiffi
g
p

 !
� 1

2
1� g2=3
� �

; (35)

) v0 ¼
vk;res

1� 2x0ð Þ3=4
: (36)

The approximation above is found with the same procedure as
described for Eq. (30) and has a maximum relative error of 3%.
Interestingly, this condition is similar to the one derived for f� 1
except that ð1� x0Þ has been replaced by ð1� 2x0Þ. This condition
describes the boundary for ‘ ¼ 61 GAEs, with v0 > vk;res=
ð1� 2x0Þ3=4 indicating net fast ion drive for ‘ ¼ �1 co-GAEs and net
fast ion damping for ‘ ¼ þ1 cntr-GAEs.

When compared to the exact numerical calculation in this
regime, Eq. (36) captures the qualitative feature that the stability
boundary occurs at much lower x0 than in the low f regime. However,
the quantitative agreement is not as good unless Dx � 0:6. For smaller
values of Dx, the approximations become poor for large x� x0
þDx

ffiffiffi
2
p

where the Gaussian decay would tend to dominate the
diverging term 1=

ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

at x! 1. This can be seen in Fig. 3 where
the marginal stability boundary approaches a vertical asymptote. To
capture this behavior, the wide beam approximation can still be used,
but with the integration running from x ¼ 0 to a ¼ x0 þ Dx

ffiffiffi
2
p

instead of x ¼ 0 to 1� g to replicate the decay expected beyond this
region. Then, the fast ion drive is approximately

c/
�
‘

ða
0

ðx � x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p dx (37)

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

p
þ ð1� 2x0Þarcsin

ffiffiffi
a
p

; (38)

FIG. 3. Comparison of approximations for marginal fast ion drive for cntr-GAEs with
f� 1 and Dx�

ffiffiffi
2
p
=3 vs Dx �

ffiffiffi
2
p
=3. Left is the former (with Dx ¼ 0:20), and

right is the latter (with Dx ¼ 0:80). Both use x=xci ¼ 0:3 and jkk=k?j ¼ 0:07 so
that f ¼ 8:6, and also h�xcii ¼ 0:9. Red indicates net fast ion drive, while blue
indicates net fast ion damping, and gray indicates beam parameters with insufficient
energy to satisfy the resonance condition. The vertical line is the approximate mar-
ginal stability boundary of x0 ¼ Dx=

ffiffiffi
2
p

, valid when Dx�
ffiffiffi
2
p
=3 for f� 1. The

dashed curve is the approximate marginal stability boundary of v0=vA ¼ vk;res=
ð1� 2k0h�xciiÞ3=4, valid when Dx �

ffiffiffi
2
p
=3 for f� 1.
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) x0 ¼
1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

p
arcsin

ffiffiffi
a
p

" #
(39)

� 1
2

1� ð1� x0 � Dx
ffiffiffi
2
p
Þ2=3

h i
: (40)

The approximation in the last line has a maximum global error of
3%. If x0 þ Dx

ffiffiffi
2
p

is close to 1, then the term in round braces is small,
and the limit of x0 ! 1=2 is recovered from Eq. (36). Hence, the other
case of interest is small, when x0 þ Dx

ffiffiffi
2
p

, in which case a linear
approximation admits a solution for Eq. (40) of x0 ¼ Dx=

ffiffiffi
2
p

, which
gives much better agreement with the numerically calculated boundary
shown in Fig. 3. Hence, Eq. (36) is applicable for Dx�

ffiffiffi
2
p

=3, whereas
x0 ¼ Dx=

ffiffiffi
2
p

gives the limiting boundary for smaller Dx.
A similar procedure can be used to approximate the marginal sta-

bility boundaries for CAEs; however, it is rare for CAEs to be excited
with f� 1 for the parameters studied here. This is because the
CAE dispersion combined with the resonance condition yields
f � �xvk;res=vA for f� 1, which cannot be very large for v0=vA < 6
considering vk;res � v0=2 is common, as is x=xci � 1=2. The case is
different for GAEs since their dispersion yields a parallel resonant veloc-
ity that is independent of a, such that f can be made arbitrary large by
choosing a sufficiently small without constraining the size of vk;res=vA.
The case of f� 1 for CAEs with ‘ ¼ 61 is treated in Appendix B.

C. Summary of necessary conditions for net fast ion
drive

For clarity, it is worthwhile to summarize all of the conditions for
net fast ion drive derived in this section and remind the reader of their
respective ranges of validity. When 1� v2k;res=v

2
0 	 k0h�xcii is satisfied,

‘ ¼ �1 modes will be net damped by fast ions, while those interacting
via the ‘ ¼ 1 resonance will be net driven. All other results address the
scenarios when this inequality is not satisfied, which is the parameter
regime considered by previous authors.49,50 When Dk is sufficiently
small ðDk � 0:10Þ, the narrow beam approximation can be made,
which yields Eq. (27) and implies that net drive vs damping depends
on the sign of h0ðx0Þ. When Dk is sufficiently large ð0:20� Dk
�0:80Þ, the wide beam approximation is justified. This includes the
nominal NSTX case of Dk � 0:3. For most of the unstable modes in
HYM simulations, f � 2 is also valid, which facilitates the results
obtained in the case of a wide beam with small FLR effects. The com-
plementary limit of f� 2 is also tractable when the beam is

sufficiently wide, though this is not the typical case in NSTX condi-
tions, except for some low n cntr-GAEs. All conditions for the cases
involving wide beams are organized in Table I.

V. PREFERENTIAL EXCITATION AS A FUNCTION OF
MODE PARAMETERS

For fixed beam parameters, the theory can determine which parts
of the spectrum may be excited—complementary to the previous fig-
ures which addressed how the excitation conditions depend on the two
beam parameters for given mode properties. Such an examination can
also illustrate the importance of coupling between the compressional
and shear branches due to finite frequency effects on the most unstable
parts of the spectra. All fast ion distributions in this section will be
assumed to have Dk ¼ 0:3 and h�xcii ¼ 0:9 for the resonant ions.

A. GAE stability

Consider first the GAEs. As a consequence of the approximate
dispersionx � jkkjvA, the necessary condition vk;res < v0 for resonant
interaction, and the net fast ion drive condition derived in Eq. (31),
the region in ð�x; aÞ space corresponding to net fast ion drive in the
typical case of f � 1 is nearly independent of a. For counter-
propagating modes with ‘ ¼ 1,

h�xcii
v0=vA þ 1

<
x
xci

� �GAE

‘¼1
<

h�xcii
ðv0=vAÞ 1� k0h�xciið Þ3=4 þ 1

: (41)

Hence, the theory predicts a relatively small band of unstable fre-
quencies. Larger v0=vA decreases both boundaries, leading to a range
of unstable frequencies of about ðxmax � xminÞ=xci � 10� 20%.

For co-propagating GAEs driven by ‘ ¼ �1, there is instead a
lower bound on the unstable frequencies

h�xcii
ðv0=vAÞð1� k0h�xciiÞ3=4 � 1

<
x
xci

� �GAE

‘¼�1
< 1: (42)

These conditions can be compared against the net fast ion
drive calculated from Eq. (22) as a function of x=xci and jkk=k?j
for a distribution with v0=vA ¼ 4. Central trapping parameters
k0 ¼ 0:7 and k0 ¼ 0:3 are used for cntr- and co-GAEs, respec-
tively. The calculation is shown in Fig. 4. The simple analytic con-
ditions are reasonably close to the true marginal stability on these
figures. Further improved agreement could be achieved by
substituting the full coupled dispersions from Eq. (1) into the

TABLE I. Approximate net fast ion drive conditions for GAEs and CAEs driven by ‘ ¼ 61 resonances in the wide beam approximation, valid for 0:2 < Dx < 0:8, where
Dx ¼ Dkh�xcii characterizes the velocity anisotropy of the beam. The quantity f ¼ k?vk;res=xci is the “modulation parameter” [see Eq. (18)] and x0 ¼ k0h�xcii ¼ v2?;0=v

2
0.

GAE fast ion drive conditions CAE fast ion drive conditions

‘ ¼ þ1 (cntr) ‘ ¼ �1 (co) ‘ ¼ þ1 (cntr) ‘ ¼ �1 (co)

f�2 v0 <
vk;res

ð1� x0Þ3=4
v0 >

vk;res

ð1� x0Þ3=4
f � 2 v0 <

vk;res

ð1� x0Þ3=4
v0 >

vk;res

ð1� x0Þ3=4
f� 2 Dx�

ffiffiffi
2
p

=3 x0 > Dx=
ffiffiffi
2
p

x0 < Dx=
ffiffiffi
2
p

f� 2 v0 <
vk;res

ð1� x0Þ5=6
v0 >

vk;res

ð1� x0Þ5=6
Dx�

ffiffiffi
2
p

=3 v0 <
vk;res

ð1� 2x0Þ3=4
v0 >

vk;res

ð1� 2x0Þ3=4
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formula for vk;res in Eq. (4), though the resulting boundaries would
be implicit. The deviation from the analytic line on the figure at
very low a is due to the inapplicability of the assumption f� 1
which was used to derive the approximate boundary, since very
low a implies very large f according to Eq. (18), which has a differ-
ent instability conditions, as discussed in Sec. IV B 2.

The variation of the growth rate as a function of a is due to cou-
pling between the shear and compressional branches, as well as FLR
effects, contained within Eqs. (1) and (16). For large a� 1, the FLR
functions in Eq. (20c) are valid, and as discussed previously, a!1 is
equivalent to n! 0. For the cntr-GAEs, JG

1 / J20 , which peaks at
n¼ 0, thus explaining why the growth rate in Fig. 4(a) increases
monotonically with a for the cntr-GAE, and eventually saturating. In
contrast, the co-GAEs haveJG

�1 / J22 in this limit, which vanishes for
n! 0. When coupling with the compressional branch is not taken
into account, the co-GAE would also have its growth rate strictly
increasing with a since it would have the same FLR function as the
cntr-GAE.

Conversely, a! 0 implies n!1, where all Bessel functions of
the first kind J‘ðnÞ decay to zero, such that the net drive vanishes for
small a. For the co-GAE, the growth rate decreasing at both large and
small a results in a local maximum in the growth rate at a � 1. When
the coupling is neglected, the maximum co-GAE growth rate is
increased by a factor of 4 relative to when coupling is included (in
addition to being shifted from a � 1 to a!1), whereas the cntr-
GAE growth rate is hardly affected.

B. CAE stability

The cntr-CAEs also have a band of unstable frequencies, though
this band also depends on a. The analogous inequalities using the
approximatex � kvA are

h�xcii
jkkjv0
kvA

þ 1
<

x
xci

� �CAE

‘¼1
<

h�xcii
jkkjv0
kvA

1� k0h�xciið Þ3=4 þ 1
: (43)

The comparison between the full numerical calculation of fast
ion drive as a function of �x; a for cntr-CAEs against this approximate
boundary is shown in Fig. 5, both when coupling to the shear branch
is (a) included and (b) neglected. The agreement between the approxi-
mate condition and the numerical marginal stability is quite reason-
able in both cases. These two calculations are shown in order to
highlight the importance of including this coupling, which comes
from finite x=xci and FLR effects. Consider first the simpler case
when no coupling is present. Then, the growth rate increases mono-
tonically with a like it did for the cntr-GAE. The difference between
Eq. (43) for the cntr-CAEs and Eq. (41) for the cntr-GAEs is the addi-
tional factor of jkkj=k ¼ a=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

for the CAEs, which tends to one
for large a, where Figs. 5(b) and 4(a) agree with similar growth rates.

As was the case with the co-GAEs, the effect of coupling between
the two branches is also significant for the cntr-CAEs, and for similar
reasons. When coupling is included, Eq. (20b) shows that when a� 1
for cntr-CAEs, JC

1 / J22 , which goes to zero for small n. In the
approximation of no coupling, instead JC

1 / J20 , which is maximized
at n ¼ 0, just as JG

1 is, explaining the agreement between Figs. 5(b)
and 4(a) at large a. As with the GAEs, the CAE growth rates go to zero
for a! 0 since this is the n!1 limit of the Bessel functions, where
they decay. Hence, the cntr-CAE has a maximum in its growth rate
near a � 1 just as the co-GAE did in the Sec. VA. Likewise, the inclu-
sion of coupling reduces the maximum cntr-CAE growth rate by
almost an order of magnitude for the beam parameters used in Fig. 5.
It is worth pointing out that the cntr-GAE growth rates are larger than
those for the cntr-CAEs at nearly every set of mode and beam parame-
ters, possibly explaining why the GAEs were more frequently observed

FIG. 4. Numerically calculated fast ion drive/damping for GAEs as a function of �x ¼ x=xci and a ¼ jkk=k?j, when driven by a beam distribution with (a) k0 ¼ 0:7 for cntr-
GAEs and (b) k0 ¼ 0:3 for co-GAEs. Also, v0=vA ¼ 4:0; Dk ¼ 0:3, and assuming h�xcii � 0:9. Red corresponds to net fast ion drive, blue to damping, and gray to regions
excluded by the resonance condition. The black line is the marginal frequency for fast ion drive predicted by the approximate analytic conditions in Eqs. (41) and (42).
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in NSTX experiments. This may also explain why initial value simula-
tions of NSTX with the HYM code finds unstable cntr-GAEs but not
cntr-CAEs.37,56

The analysis of this section shows that coupling between the two
branches (due to two-fluid effects in this model) is important in deter-
mining the growth rate of the cntr-CAEs and co-GAEs via their influ-
ence on the FLR effects from the fast ions. Hence, a two fluid
description of the thermal plasma (such as Hall-MHD) may be impor-
tant in order to accurately model cntr-CAEs and co-GAEs.

VI. EXPERIMENTAL COMPARISON

An experimental database of CAE and GAE activity in NSTX has
previously been compiled and analyzed.60 This database includes
approximately 200 NSTX discharges, separated into over 1000 individ-
ual 50ms analysis windows. For each time slice, fluctuation power-
weighted averages of mode quantities were calculated. The simplified
instability conditions derived here relating the beam injection parame-
ters to the mode parameters depends only on k0; v0=vA; �x for GAEs,
which are relatively well-known and measured quantities. Hence, a
comparison can be made between the marginal fast ion drive condi-
tions and the experimental observations, shown in Fig. 6. This com-
parison assumes that the f � 1 regime (which described the most
unstable modes in HYM simulations) is valid for the experimental
modes.

The blue circles are amplitude-weighted observations in dis-
charges with Alfv�enic activity determined to be predominantly
GAE-like. Specifically, the selected time slices satisfy �10 	 hni
	 �4; hf i > 200 kHz, Te > 500 eV, and Pb > 1 MW. These proper-
ties were found to correlate with GAE-like modes dominating the
spectrum from inspection of the database.

The red triangles represent unstable cntr-GAEs from 3D hybrid
MHD-kinetic HYM simulations with k0 ¼ 0:5� 0:9, covering the
typical range for NSTX NBI distributions. The theory developed in

this paper predicts net fast ion drive in the shaded region between the
two curves. Further analysis of the linear simulation results shown in
Fig. 6 will be described in detail in future work. The simulation setup
and properties of the modes can be found in Ref. 53. The simulations
used equilibrium profiles from the well-studied H-mode discharge
#141398,3–5,37 and fast ion distributions with the same ðk; vÞ depen-
dence studied in this work, and given in Eq. (5). The peak fast ion den-
sity in all cases is nb=ne ¼ 5:3%, matching its experimental value in
the model discharge.

The theoretically predicted unstable region according to Eq. (41)
lies in the shaded region between the two curves, which was calculated
with h�xcii ¼ 0:9, motivated by the mean value of the resonant fast
ions in HYM simulations across a wide range of simulation parame-
ters, and also k0 � 0:7 as a characteristic value of the NSTX beam
geometry. There is strong agreement, especially considering the variety
of assumptions required to derive the simplified stability boundaries.
When evaluating the instability bounds for the specific values of k0,
v0=vA, and x=xci for each data point shown in the figure, 82% of the
experimental points are calculated to be theoretically unstable, and
94% of the simulation points.

An analogous comparison would be more difficult to perform for
the other modes discussed in this paper. First, co-propagating GAEs
have not yet been observed in experiments since their excitation
requires much smaller k0 than was possible on NSTX. If they are
observed in future NSTX-U experiments, as they could be in low field
scenarios with the new, more tangential beam sources, a comparison
could be made. Moreover, there appear to be fewer discharges domi-
nated by cntr-CAEs than cntr-GAEs, hence requiring time-intensive
inspection of many discharges in order to confidently identify cntr-
CAE modes for comparison. The cntr-CAE instability boundaries
[given in Eq. (43)] also depend on both x=xci and jkk=k?j, increasing
the parameter space of the comparison. Nonetheless, these would be
interesting avenues for further cross-validation.

FIG. 5. Numerically calculated fast ion drive/damping for cntr-CAEs as a function of �x ¼ x=xci and a ¼ jkk=k?j when the shear branch coupling is (a) included and (b)
neglected. In both calculations, the modes are driven by a beam distribution with k0 ¼ 0:7; v0=vA ¼ 4:0; Dk ¼ 0:3, and assuming h�xcii � 0:9. Red corresponds to net fast
ion drive, blue to damping, and gray to regions excluded by the resonance condition. The black line is the marginal frequency for fast ion drive predicted by the approximate
analytic condition in Eq. (43).
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VII. SUMMARY AND DISCUSSION

The fast ion drive/damping for compressional (CAE) and global
(GAE) Alfv�en eigenmodes has been investigated analytically for a
model slowing down, beam-like fast ion distribution in 2D velocity
space, such as distributions generated by neutral beam injection in
NSTX. Growth rate expressions previously derived by Gorelenkov
et al.49 and Kolesnichenko et al.50 were generalized to retain all terms
in n ¼ k?q?b; a ¼ jkk=k?j and �x ¼ x=xci for sub-cyclotron modes
in the local approximation driven by the Doppler-shifted ordinary
ð‘ ¼ 1Þ and anomalous ð‘ ¼ �1Þ cyclotron resonances. This general
expression for fast ion drive was evaluated numerically to determine
the dependence of the fast ion drive/damping on key distribution
parameters (injection velocity v0=vA and central trapping parameter
k0 ¼ lB0=E) and mode parameters (normalized frequency x=xci

and direction of propagation jkk=k?j) for each mode type and reso-
nance. Retaining finite x=xci and jkk=k?j, a source of coupling
between the shear and compressional branches, was found to be
responsible for significantly modifying the cntr-CAE and co-GAE
growth rate dependence on jkk=k?j.

The derived growth rate led to an immediate corollary: when
1� v2k;res=v

2
0 	 k0h�xcii, cntr-propagating modes are strictly driven by

fast ions, while co-propagating modes are strictly damped. This condi-
tion occurs due to finite beam injection energy, and it uncovers a new
instability regime that was not considered in previous studies except
recently in Ref. 42, which was valid only in the vk;res � v0 limit. Recall
that h�xcii � hxcii=xci0 is the orbit-averaged cyclotron frequency of
the resonant particles, normalized to the on-axis cyclotron frequency.

For cases where 1� v2k;res=v
2
0 	 k0h�xcii is not satisfied, approxi-

mate methods were employed to derive conditions necessary for net
fast ion drive. Previous analytic conditions were also limited to delta
functions in k, which are a poor approximation for fast ions generated
by NBI. In this work, broad parameter regimes were identified which
allow for tractable integration, leading to the first compact net fast ion

drive conditions as a function of fast ion and mode parameters which
properly integrate over the full beam-like distribution. For the narrow
beam case discussed in Sec. IVA, the sign of the growth rate depends
on the function of k0 only, similar to the instability regime studied pre-
viously.49,50 Numerical integration showed that this result was only
reliable for beams much more narrow ðDk � 0:1Þ than those in
experiments ðDk � 0:3Þ, underscoring the limitations of past results.
In particular, those previous studies identified k?q?b > 1 and
k?q?b > 2 as the most unstable parameters for cntr-CAE and cntr-
GAE instabilities, respectively, whereas this work demonstrates that
these instabilities may be excited for any value of k?q?b, with
k?q?b � 1 instabilities perhaps more common for NSTX conditions.

The approximation of a sufficiently wide beam ðDk � 0:2Þ in
conjunction with a small or large FLR assumption allowed the deriva-
tion of very simple conditions for net fast ion drive, summarized in
Table I. These expressions depend on the fast ion injection velocity
v0=vA, central trapping parameter k0, and mode properties
x=xci; jkk=k?j which determine vk;res along with the cyclotron reso-
nance coefficient ‘. It is found that the wide beam, small FLR assump-
tion is valid over a wide enough range of parameters (f ¼ k?vk;res=
xci � 2) that it encompasses the typical conditions for NSTX fast ions
and properties of the most unstable CAEs/GAEs inferred from experi-
ments and simulations.

Comparison between full numerical evaluation of the exact ana-
lytic expression and the approximate stability boundaries demonstrate
excellent agreement within the ranges of applicability. These regimes
include fast ion parameters motivated by TRANSP/NUBEAM model-
ing of NSTX beam profiles, as well as properties ðx=xci; jkk=k?jÞ of
the most unstable modes excited in hybrid simulations with the HYM
code. In addition to providing insight into an individual mode’s
growth rate as a function of fast ion parameters, the new instability
conditions also yield information about the properties of the unstable
modes for a fixed beam distribution. Namely, cntr-propagating GAEs
are unstable for a specific range of frequencies (as a function of beam
parameters) nearly independent of jkk=k?j, whereas cntr-CAEs are
more sensitive to jkk=k?j. This condition for cntr-GAEs compares
well against NSTX data across many discharges, providing support for
the theoretical underpinnings of the growth rate calculation, as well as
the series of mathematical approximations made to arrive at these
compact marginal stability conditions.

The approximate conditions for net fast ion drive were only
made possible by a series of simplifications, which should be kept in
mind when applying these results. Integration over space and p/ were
neglected, restricting the analysis to 2D phase space. Moreover, the
derived stability boundaries do not include damping on the back-
ground plasma, such that net fast ion drive as calculated in this paper
is a necessary but not sufficient condition for overall instability.
Including the electron Landau damping rate and the continuum/radia-
tive damping due to interaction with the Alfv�en continuum is an area
for future work.

The results derived here can be applied in the future to help inter-
pret experimental results and improve physics understanding of first
principles simulations. Ideally, they can be used to guide expectations
about the spectrum of unstable modes that will be generated by a spe-
cific neutral beam configuration. For instance, if a specific mode is
driven unstable by an initial beam distribution, these expressions show
where additional neutral beam power may be added that would act to

FIG. 6. Comparison between theory, simulations, and experiment. (a) Blue circles
represent amplitude-weighted quantities from 50ms time windows of NSTX dis-
charges identified as having mostly cntr-GAE activity. Red triangles show cntr-
GAEs excited in HYM simulations. Theory predicts net fast ion drive in the shaded
region between the two curves, as in Eq. (41).
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stabilize this mode, or drive it further unstable, if desired. This enables
systematic analysis and prediction of scenarios like those of the cntr-
GAE stabilization observed in NSTX-U.6,40,42
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APPENDIX A: CORRECTION FOR FINITE
FREQUENCY IN SMALL FLR REGIME (f� 1)

Here, the correction due to finite �x for the wide beam, low f
approximation is addressed. This term was neglected in Sec. IV B.
Including this term, the integral of interest is

c/
�
�
ð1�g

0

xðx � x0Þ
ð1� xÞ2

‘

�x
� x

� �
dx ¼ 0; (A1)

) x0 ¼
‘f ðgÞ þ �xgðgÞ=2
‘hðgÞ � �xf ðgÞ ; (A2)

f ðgÞ ¼ 1� g2 þ 2g log g; (A3)

gðgÞ ¼ �2� 3gþ 6g2 � g3 � 6g log g; (A4)

hðgÞ ¼ 1� gþ g log g: (A5)

This function can be approximated to leading order in �x < 1
and will take advantage of the known approximation from earlier
f ðgÞ=hðgÞ � 1� g2=3

x0 ¼
f ðgÞ
hðgÞ þ

�x
‘

f ðgÞ
hðgÞ

� �2

þ gðgÞ
2hðgÞ

" #
; (A6)

�1� g2=3 � �x
8‘

g2=3 1� g2=3
� �2

: (A7)

The second term in the second line is the approximation to the
function in brackets. Again using �x as a small parameter, assume a
solution of the form g ¼ g0 þ �xg1, where g0 ¼ ð1� x0Þ3=2. Then,
the leading order correction in �x to the �x ! 0 solution found in
Sec. IV B is

v0 ¼
vk;res

1� x0ð Þ3=4
1þ 3�xx20

32‘

� �
: (A8)

APPENDIX B: LARGE FLR REGIME FOR CAES ðf� 1Þ
Using the large f� 1 (equivalently small a� 1) expansion

for CAEs with ‘ ¼ 61 gives JC
61ðnÞ � J20 ðnÞ � ð1� sin ð2nÞÞ=n.

As in Sec. IV B 2, the rapidly varying sin ð2nÞ will average to zero in
the integral, leaving

c/
�
�‘
ð1�g

0

ffiffiffi
x
p
ðx � x0Þ

ð1� xÞ3=2
dx: (B1)

Integrating and finding the marginal stability condition c ¼ 0
result in

x0 ¼
8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1 � 1

p
þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1� gÞ

p
� 3p� 6arctan 1�2g

2
ffiffiffiffiffiffiffiffiffiffiffi
gð1�gÞ
p

� 
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1 � 1

p
� arccos

ffiffiffi
g
p�  (B2)

�1� g3=5 ) v0 ¼
vk;res

ð1� x0Þ5=6
: (B3)

The approximation in Eq. (B3) has a maximum global error of
3%. The instability condition for cntr-propagating modes ð‘ ¼ 1Þ is
v0 < vk;res=ð1� x0Þ5=6, while the co-propagating modes ð‘ ¼ �1Þ
are driven for v0 > vk;res=ð1� x0Þ5=6.
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