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ABSTRACT

Conditions for net fast ion drive are derived for beam-driven, co-propagating, sub-cyclotron compressional (CAE) and global (GAE) Alfv�en
eigenmodes driven by the Landau resonance with super-Alfv�enic fast ions. Approximations applicable to realistic neutral beam distributions
and mode characteristics observed in spherical tokamaks enable the derivation of marginal stability conditions for these modes. Such
conditions successfully reproduce the stability boundaries found from numerical integration of the exact expression for local fast ion drive/
damping. Coupling between the CAE and GAE branches of the dispersion due to finite x=xci and jkk=k?j is retained and found to be
responsible for the existence of the GAE instability via this resonance. Encouraging agreement is demonstrated between the approximate
stability criterion, simulation results, and a database of NSTX observations of co-CAEs.

https://doi.org/10.1063/1.5127552

I. INTRODUCTION

High frequency co-propagating compressional Alfv�en eigenmo-
des (CAE) have been observed in the spherical tokamaks NSTX(-
U)1–3 and MAST.4–6 These instabilities are often excited in spherical
tokamaks due to their low magnetic fields and large neutral beam
power, which together generate a substantial population of super-
Alfv�enic fast ions.6 They are typically observed with frequencies of
x=xci ¼ 0:3� 1:2 and toroidal mode numbers jnj ¼ 3� 15. CAEs
are the compressional MHD wave, with approximate dispersion
x ¼ kvA in a uniform, zero beta slab, where vA ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0nimi
p

is the
Alfv�en speed. They are polarized with finite dB � k? and dBk. In toka-
mak geometry, the mode becomes confined within an effective poten-
tial well7–15 with discrete frequencies resulting from the boundary
conditions.

Global Alfv�en eigenmodes (GAEs) are a class of weakly damped
shear MHD waves that can exist just below or above16 an extremum
in the continuum of solutions for shear Alfv�en waves satisfying
x ¼ jkkðrÞjvAðrÞ. In contrast, modes within the Alfv�en continuum
are rapidly sheared apart by phase mixing; therefore, they are rarely
observed in experiments.17,18 Co-propagating GAEs were initially
modeled numerically in cylindrical plasmas19,20 in order to explain

resonant peaks in antenna loading in the TCA tokamak.21 Further
theoretical work found them to be stabilized by finite toroidicity
effects22,23 in the limit of x=xci � 1. The shear waves are polarized
such that dB � k ¼ 0 and dBk ¼ 0 in a uniform plasma. The discrete
spectrum of GAEs exists due to coupling to the magnetosonic
mode, an equilibrium current, current density gradient, and finite
x=xci effects.

20,22–26 Excitation of CAEs/GAEs requires a resonant
population of energetic particles with sufficient velocity space gra-
dients to overcome background damping sources. In this work, the
Landau (non-cyclotron) resonance is considered. Interaction via
the ordinary and anomalous cyclotron resonances was studied in
Paper I.27

The stability of CAEs driven by neutral beam injection (NBI) due
to the Landau resonance has previously been studied by Belikov
et al.28,29 in application to NSTX. In those works, a delta function dis-
tribution in pitch was assumed for the fast ions, which is an unrealistic
model for the typically broad distributions inferred from experimental
modeling. Previous works also assumed kk � k? and x� xci,
whereas experimental observations and simulations demonstrate that
kk � k? and x � xci=2 are common. Here, prior work is extended to
provide a local expression for the fast ion drive due to an anisotropic
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beam-like distribution through the Landau resonance. Terms to all
order in x=xci and jkk=k?j are kept for applicability to the entire pos-
sible spectrum of modes. In particular, finite x=xci and jkk=k?j intro-
duces coupling between the compressional and shear branches of the
dispersion which enables the GAE to be excited through this reso-
nance. Full finite Larmor radius (FLR) terms are also retained, similar
to prior studies. As in Paper I for the cyclotron resonances,27 experi-
mentally relevant regimes have been identified where approximate sta-
bility boundaries can be derived. Since other damping sources have
not been included in this work, the derived conditions for net fast ion
should be treated as necessary but insufficient conditions for instabil-
ity. The choice of specific parameter regimes has been aided by initial
value simulations of CAEs with the 3D hybrid MHD-kinetic code
HYM.30 The simulation model couples a single fluid thermal plasma
to a minority species of full orbit kinetic beam ions and also includes
the contributions of the large beam current to the equilibrium self-
consistently.31

The paper is structured as follows. The fast ion drive for
CAEs/GAEs from the Landau resonance is derived analytically in
the local approximation in Sec. II, based on the framework in
Ref. 32 and applied to a parametrized neutral beam distribution.
Approximations are made to this expression in Sec. III in order to
derive marginal stability conditions in the limits of very narrow
(Sec. III A) and realistically broad (Sec. III B) fast ion distributions.
Within Sec. III B, the limits of small and large FLR effects are
treated separately in Secs. III B 1 and III B 2, respectively, and the
dependence of the drive/damping on fast ion parameters for fixed
mode properties is discussed and compared to the approximate
analytic conditions. A complementary discussion of the fast ion
drive/damping as a function of the mode properties for fixed fast
ion parameters is presented in Sec. IV, including the role of
compressional-shear mode coupling in setting the stability bound-
aries. A comparison of the approximate stability conditions against
a database of co-CAE activity in NSTX and simulations results is
shown in Sec. V. Finally, a summary of the main results and discus-
sion of their significance is given in Sec. VI.

II. FAST ION DRIVE FOR ANISOTROPIC BEAM
DISTRIBUTION IN THE LOCAL APPROXIMATION FOR
THE LANDAU RESONANCE

As in Paper I,27 we note that due to the large frequencies of these
modes in experiments,x=xci ¼ 0:3 to 1 and jkk=k?j often order unity
in simulations, it is worthwhile to consider the dispersion relation for
the shear and compressional branches including coupling due to ther-
mal plasma two fluid effects. Additional coupling can be induced by
spatial gradients present in realistic experimental profiles, which is not
included in our analysis.

A. Starting equations

Define �x ¼ x=xci0; N ¼ kvA=x; A ¼ ð1� �x2Þ�1, and also
F2 ¼ k2k=k

2; G ¼ 1þ F2. Here, xci0 is the on-axis ion cyclotron fre-
quency. Then in uniform geometry, the local dispersion in the MHD
limits of Ek � E? andx� jxcej;xpe is

33

N2 ¼ AG
2F2

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4F2

AG2

r" #
: (1)

The “–” solution corresponds to the compressional Alfv�en
wave (CAW), while the “þ” solution corresponds to the shear
Alfv�en wave (SAW). The coupled dispersion can modify the
polarization of the two modes relative to the uncoupled approxi-
mation. In Ref. 27, it was shown that the growth rates for the
cyclotron resonance-driven cntr-CAEs and co-GAEs have local
maxima with respect to jkk=k?j, whereas they increase monotoni-
cally when this coupling is neglected. The low frequency approxi-
mation of Eq. (1) is x � kvA for CAEs and x � jkkjvA for GAEs,
which can simplify analytic results when valid. The Landau
resonance describes a wave-particle interaction satisfying the fol-
lowing relation:

x� hkkvki � hk?vDri ¼ 0: (2)

Above, h…i denotes the poloidal orbit averaging appropriate for
the “global” resonance (see further discussion in Paper I27 and also
Ref. 28). An equivalent way of writing this resonance condition is
x� nx/ � pxh ¼ 0 for integers n, p where x/ and xh are the orbit-
averaged toroidal and poloidal particle frequencies, respectively.
Satisfaction of the global resonance condition in this form has previ-
ously been demonstrated in HYM simulations.30 As in Paper I, we
consider the approximation of jk?vDrj � jkkvkj, focusing on the
primary resonance and neglecting sidebands. Hence, all modes satisfy-
ing this resonance with particles with vk;res � hvki > 0 must be
co-propagating with kk > 0. For the local calculations in this section,
we will approximate Eq. (2) as x� kkvk;res ¼ 0.

The stability calculation will be applied to the same model fast ion
distribution as in Paper I, motivated by theory and NUBEAM model-

ing of NSTX discharges,30 written as a function of v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=mi

p
and

k ¼ lB0=E in the separable form, f0ðv; kÞ ¼ Cf nbf1ðvÞf2ðkÞ, defined
as follows:

f1ðvÞ ¼
ftailðv; v0Þ
v3 þ v3c

; (3a)

f2ðkÞ ¼ exp � k� k0ð Þ2=Dk2
� �

: (3b)

The constant Cf is for normalization. The first component f1ðvÞ
is a slowing down function in energy with a cutoff at the injection
energy v0 and a critical velocity vc, with ftailðv; v0Þ a step function. The
second component f2ðkÞ is a Gaussian distribution in k. To lowest
order in l � l0, it can be re-written as k ¼ ðv2?=v2Þðxci0=xciÞ. The
distribution in the final velocity component, p/, is neglected in this
study for simplicity as it is expected to be less relevant for the high fre-
quencies of interest for these modes. NSTX is typically operated
with v0=vA ¼ 2� 6 and k0 ¼ 0:5� 0:7 with Dk ¼ 0:3. Early opera-
tions of NSTX-U had v0=vA < 3, featuring an additional beam line
with k0 � 0. For this study, vc ¼ v0=2 is used as a characteristic value.
Comparison between the model distribution used in this study and
those calculated with the Monte Carlo code NUBEAM for NSTX and
NSTX-U can be found in Fig. 5 of Ref. 31 and Fig. 4 of Ref. 34,
respectively.

In Paper I, the fast ion drive/damping was derived perturbatively
in the local approximation for a two component plasma comprised of
a cold bulk plasma and a minority hot ion population. Restricting Eq.
(21) of Ref. 27 to the ‘ ¼ 0 Landau resonance and applying to the
model distribution gives
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c
xci
¼ � nb

ne

pCf v30g
3=2

v3c �x

ð1�g

0

xjm
0 ðnðx; fÞÞ
ð1� xÞ2

e�ðx�x0Þ
2=Dx2

1þ v30
v3c

g
1� x

� �3=2

8>><
>>:

� � xðx � x0Þ
Dx2

þ 3=4

1þ v3c
v30

1� x
g

� �3=2

2
64

3
75dx

þ g�1 � 1

2 1þ v30
v3c

 ! e�ð1�g�x0Þ2=Dx2jm
0 f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1 � 1

p� �9>>=
>>;
: (4)

All notations are the same as defined in Paper I. Briefly, the inte-
gration variable is x ¼ v2?=v

2 ¼ kh�xcii where h�xcii � hxcii=xci0 is
the orbit-averaged cyclotron frequency of the resonant particles, nor-
malized to the on-axis cyclotron frequency. Similarly, x0 ¼ k0h�xcii
and Dx ¼ Dkh�xcii. The resonant parallel energy fraction is g
¼ v2k;res=v

2
0. The beam ion density is given as nb, with the electron den-

sity as ne. The first term in square brackets is the contribution from
@f0=@k (anisotropy) while the second term in brackets and also the
term outside the integral come from @f0=@v (slowing down). Eq. (4) is
valid for arbitrary x=xci and jkk=k?j, generalizing the results pub-
lished in Refs. 28 and 29 for the co-CAE driven by the Landau reso-
nance, which were restricted to x� xci and kk � k?. This
generalization is contained mostly in the FLR effects, within the func-
tion j

m
‘ ðnÞ, defined for arbitrary ‘ in Eq. (16) of Paper I, which sim-

plifies for ‘ ¼ 0 to

j
m
0 ðnÞ ¼

N�2 N�2 � F2ð1� �x2Þ
� �

N�4 � F2
J21 ðnÞ; (5)

where n ¼ k?q?b � f

ffiffiffiffiffiffiffiffiffiffiffi
x

1� x

r
; (6)

and f ¼
k?vk;res

xci
¼ �x

a
: (7)

Above, q?b ¼ v?=xci is the Larmor radius of the fast ions, n is
the FLR parameter, and f is the modulation parameter describing how
rapidly the integrand of Eq. (4) oscillates, which depends on the mode
parameters �x ¼ x=xci and a � jkk=k?j. The m in j

m
0 ðnÞ denotes

the mode dispersion (¼ “C” for CAE and ‘G’ for GAE), as contained
within N [given in Eq. (1) for CAEs using the “�” solution and GAEs
using the “þ” solution]. As argued in Paper I,27 jm

0 ðnÞ 	 0 for both
modes. In the limit of x=xci � 1,

lim
�x!0

j
C
0 ðnÞ ¼ J21 ðnÞ CAE; (8a)

lim
�x!0

j
G
0 ðnÞ ¼ �x2a4J21 ðnÞ GAE: (8b)

Hence, GAEs may only interact with fast ions via the Landau res-
onance when finite x=xci and jkk=k?j are considered. In another
limit, where 0 < �x < 1 and a
 1, FLR function reduces to

lim
a!1

j
m
0 ðnÞ ¼

16�xð Þ2

26�x
J21 ðnÞ: (9)

In Eq. (9), the top signs are for CAEs, and the bottom signs are
for GAEs. The expression in Eq. (4) represents the local perturbative

growth rate for CAE/GAEs in application to an anisotropic beam-like
distribution of fast ions, keeping all terms from x=xci; jkk=k?j, and
k?q?b. The derivative with respect to p/ has been omitted as it is
expected to be less relevant for the high frequency modes studied here.
Moreover, the local approximation ignores spatial profile dependen-
cies, sacrificing accuracy in the magnitude of the growth/damping rate
in favor of deriving more transparent instability conditions.

B. Properties of fast ion drive

Notice that only regions of the integrand where the term in
brackets is negative are driving. For modes interacting via the Landau
resonance, this requires @f0=@k < 0, equivalent to k > k0 for a distri-
bution peaked at k0. Unlike the cyclotron resonance-driven modes
analyzed in Paper I, the damping from @f0=@v (second term in square
brackets) can be comparable to the drive/damping from velocity space
anisotropy over a nontrivial fraction of the integration region.
Consequently, an immediate stability condition can be extracted.

When 1� v2k;res=v
2
0 � k0h�xcii, the integrand is non-negative

over the region of integration, such that c < 0. As a corollary, when
1� v2k;res=v

2
0 � k0h�xcii, modes interacting through the Landau reso-

nance are strictly stable. For CAEs, vk;res depends on jkk=k?j; hence,
this relation provides information about the allowed mode properties
driven by a given distribution of fast ions.

As mentioned above, the co-GAE instability due to the Landau
resonance is possible only when coupling to the compressional branch
is considered. Neglecting coupling, its FLR function j

G
0 would be

identically zero according to Eq. (5) in the limit of N�2 ¼ F2ð1� �x2Þ
exactly. However, even when considering the coupling, its growth rate
is much smaller compared to the co-CAE due to the additional factor
of �x2a4 in Eq. (8b), which is typically small for �x < 1 and a � 1.
Consequently, the co-GAE will be at most weakly unstable due to this
resonance, and perhaps stabilized entirely by electron Landau or con-
tinuum damping.22 In contrast, co-CAEs have less barriers to excita-
tion, consistent with their measurement in NSTX1,2 and MAST,4,5 and
also their appearance in HYM modeling of NSTX.30 Both instabilities
require finite k?q?b for excitation since their FLR functions are
j

m
0 / J21 ðnÞ ! 0 for n! 0.

The expression for the growth rate in Eq. (4) also demonstrates
that instability can occur for any value of k?q?b > 0, depending on
the parameters of the fast ion distribution. This extends the region of
instability found for co-CAEs driven by passing particles in Ref. 28,
which asserted that

ffiffiffiffiffi
k0
p
ðx=xciÞðv0=vAÞ < 2 was necessary for insta-

bility, due to the additional assumption of a delta function distribution
in k. Similarly, the conclusions from the same authors in Ref. 29
regarding co-CAE stabilization by trapped particles, while qualitatively
consistent with the findings here, are likewise limited to the case of a
vanishingly narrow distribution in k. For further understanding of the
relationships between the relevant parameters required for instability,
analytic approximations or numerical methods must be employed.

III. APPROXIMATE STABILITY CRITERIA

The expression in Eq. (4) cannot be integrated analytically and
has complicated parametric dependencies on properties of the specific
mode of interest, GAE vs CAE, jkk=k?j; x=xci, as well as on proper-
ties of the fast ion distribution: v0=vA, k0, and Dk. For chosen values of
these parameters, the net fast ion drive can be rapidly calculated via
numerical integration. Whenever 1� v2k;res=v

2
0 � k0h�xcii, both modes
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are damped via the Landau resonance, provided that the fast ion distri-
bution is monotonically decreasing in energy (e.g., slowing down) and
has a single peak in k at k ¼ k0, such as the beam distribution given in
Eq. (3). There are also regimes where approximations can be made in
order to gain insight into the stability properties analytically: one
where the fast ion distribution is very narrow (Dk � 0:10) and one
where it is moderately large ðDk � 0:20). The former allows compari-
son with previous calculations,28,29 while the latter includes the experi-
mental regime where the distribution width in NSTX is typically
Dk � 0:30. In this section, marginal stability criteria will be derived in
these regimes and compared to the numerical evaluation of Eq. (4),
using vc ¼ v0=2 and nb=ne ¼ 5:3%, based on the conditions in the
well-studied NSTX H-mode discharge #141398.

A. Approximation of very narrow beam

For the first regime, consider the approximation of a very narrow
beam in velocity space. The purpose of this section is to determine
when such an approximation can correctly capture the sign of the
growth rate. Hence, consider Dx� 1 such that only a small region
x0 � d < x < x0 þ d contributes to the integral, where d � 2Dx. So
long as 0 < x0 � d and x0 þ d < 1� g, two linear approximations
can be made such that to leading order in Dx, Eq. (4) is approximately

c
xci
/ CfDx

ffiffiffi
p
p

2h01ðx0Þ � 3h2ðx0Þ
	 


; (10)

where h1ðxÞ ¼
x2

ð1� xÞ2
j

m
0 ðnðx; fÞÞ

1þ v30
v3c

g
1�x
� �3=2 ; (11)

and h2ðxÞ ¼
h1ðxÞ
x

1

1þ v3c
v30

1�x
g

� �3=2 : (12)

The above expressions apply equally to CAEs and GAEs.
Whereas for the cyclotron resonances discussed in Paper I, the narrow
beam approximation yielded a growth rate with sign depending only
on the sign of a single function,27 for the Landau resonance, a second
function must be kept to include the non-negligible contribution from
@f0=@v. A comparison of the approximate narrow beam stability

criteria to the exact expression with g ¼ 0:2 is shown in Fig. 1. There,
the dashed line shows the approximate analytic result Eq. (10) plotted
as a function of x0 for Dx ¼ 0:04 and different values of f. Values of
x0 where c > 0 according to Eq. (10) indicate regions where the fast
ions are net driving according to this assumption (shaded regions).
For comparison, the full expression Eq. (4) is integrated numerically
for each value of x0 for varying Dx ¼ 0:04; 0:08; 0:16; 0:32. This fig-
ure demonstrates where the narrow beam approximation correctly
determines the sign of the fast ion drive and how it depends on f. As
in Paper I for cntr-GAEs driven by the ordinary cyclotron resonance,
it is demonstrated that Dx � 0:1 gives an acceptable (albeit strained)
agreement between the approximation and numerically integrated
expression. For any larger values (such as Dx ¼ 0:16 and Dx ¼ 0:32
shown), the approximation no longer captures the correct sign of the
growth rate as a function of x0, with more pronounced disagreement
occurring at larger values of x0. Moreover, it is clear that larger f leads
to more distinct regions of net drive and damping, leading to more
areas where the approximate formula may incorrectly predict stability
or instability.

B. Approximation of realistically wide beam

For sufficiently wide beam distributions (such as those generated
with NBI in NSTX with Dx � 0:3), one may approximate
d exp ð�ðx � x0Þ2=Dx2Þ=dx � �2ðx � x0Þ=Dx2. This linear approxi-
mation is appropriate for x0 � Dx=

ffiffiffi
2
p

< x < x0 þ Dx=
ffiffiffi
2
p

. When
this range extends over a large fraction of the integration region, it can
be used to provide very accurate marginal stability conditions.
Throughout this section, vc ¼ v0=2 will be taken as a representative
figure, and the slowing down part of the distribution will be approxi-
mated as constant since it makes a small quantitative difference.
However, this approximation alone is insufficient to evaluate Eq. (4) in
terms of elementary functions as the Bessel functions with complicated
arguments remain intractable.

For the cyclotron resonances analyzed in Paper I, the fast ion
damping due to @f0=@v could be neglected since it was smaller than
the drive/damping due to @f0=@k in that case by a factor of �xDx2

� 1 except in a very small region near x ¼ x0. For modes driven by
the Landau resonance, it can compete with the drive/damping from

FIG. 1. Comparison of numerically integrated growth rate to narrow beam approximation for co-CAEs/GAEs with g ¼ 0:2 as a function of the central trapping parameter of the
beam distribution. Black dashed line shows the analytic approximation made in Eq. (10) for Dx ¼ 0:04 and (a) f ¼ 0:7, (b) f ¼ 3:5, and (c) f ¼ 7:0. Colored curves show
numerical integration of Eq. (4) for different values of Dx: blue Dx ¼ 0:04, orange Dx ¼ 0:08, gold Dx ¼ 0:16, and purple Dx ¼ 0:32. Shaded regions correspond to regions
of drive according to the narrow beam approximation.
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anisotropy over a wider range of the integration region. Hence, the
contributions from @f0=@v must be kept in this section, leading to
somewhat more complicated instability boundaries than those derived
in Sec. IV B of Paper I.

Substituting the values of x=xci and jkk=k?j from the most
unstable modes in HYM simulations into Eq. (7) shows that the
majority of these modes have f � Oð1Þ. Since this parameter controls
how rapidly jm

‘ ðnÞ oscillates, we are motivated to consider two cases
separately: f� 1 (small FLR, more common) and f
 1 (large FLR,
uncommon for x < xci).

1. Small FLR regime ðf� 1Þ

Consider first the case of small FLR effects. For small argument,
j

m
‘ ðnÞ / J21 ðnÞ � n2=4þOðn4Þ. Then the simplified integral to con-

sider is

c/
�

ð1�g

0

x3ðx � x0Þ
ð1� xÞ3

dx � 3Dx2

4

ð1�g

0

x2

ð1� xÞ3
dx

1þ 1� x
4g

� �3=2

�Dx2

2
g�1 � 1
� �2

e�ð1�g�x0Þ2=Dx2 : (13)

As a reminder, g ¼ v2k;res=v
2
0 such that the upper bound of the

integration describes a cutoff in the distribution function at the finite
injection velocity v0. The integrals can be evaluated exactly and well-
approximated. Solving for the marginal stability condition c ¼ 0,
neglecting the third term for now, yields

x0 ¼ g0ðgÞ � Dx2g1ðgÞ; (14)

�1� g4=5 � 2Dx2

3ð1� g4=5Þ ; (15)

) v0 ¼
vk;res

1� 1
2

x0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ

8Dx2

3

r !" #5=8 : (16)

The exact forms of g0ðgÞ and g1ðgÞ are given in the Appendix.
The first function can be excellently approximated by g0ðgÞ � 1
�g4=5, with a maximum relative error of less than 1%. The second
function, g1ðgÞ, is substantially more complicated. Noting its singular-
ity as g! 1, and considering that the goal is to find a closed form for
g as a function of x0, an ansatz of the form c=ð1� g4=5Þ is chosen,
with c¼ 2/3 giving a maximum relative error of 15%, and usually half
that. With this approximation, the marginal stability condition could
be derived.

When Dx is small, Eq. (16) would reduce to v0 ¼ vk;res=
ð1� x0Þ5=8, similar in form to the marginal stability condition found
in Paper I for cyclotron resonance-driven modes with f� 1, except
with a power of 5/8 instead of 3/4 due to the different jm

‘ ðnÞ func-
tions. Note that c < 0 for all values of x0, v0 when Dx2 > 5=3 accord-
ing to Eq. (15). This condition represents the beam width necessary to
balance the maximum anisotropy drive with the slowing down damp-
ing. While it indicates a theoretical avenue for stabilizing all CAEs/
GAEs driven by the Landau resonance, it is unlikely to be useful in
practice since it requires a nearly uniform distribution in k, which
would not allow sufficient flexibility in the current profile that is desir-
able for other plasma performance objectives.

The third term in Eq. (13) was neglected because its inclusion
would prevent an algebraic solution for x0 at marginal stability.
However, it can be comparable in magnitude to the second term in the
integration and can be included in an ad hoc fashion by solving for its
effect at x0 ¼ 0, and multiplying the full result by this factor. We will
also apply a rational function approximation to the Gaussian depen-
dence, so that at x0 ¼ 0, the marginal stability condition for g isð1�g

0

x4

ð1� xÞ3
dx � 3Dx2

4

ð1�g

0

x2

ð1� xÞ3
dx

1þ 1� x
4g

� �3=2

�Dx4

2
g�1 � 1ð Þ2

Dx2 þ ð1� gÞ2
¼ 0: (17)

This expression yields a quadratic formula for Dx2, given in the
Appendix, which can be approximated to within 10% globally and
inverted to yield

g � ð1� Dx4=5Þ5=4: (18)

Hence, the instability condition resulting from matching the cor-
rection due to the third term in Eq. (13) at x0 ¼ 0 is

v0 >
vk;res

1� 1
2

x0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ

8Dx2

3

r !" #5=8 1� Dx
ffiffiffiffiffiffiffi
2=3

p
1� Dx4=5

� �5=8

: (19)

This marginal stability condition encompasses both the CAEs
and GAEs since the only difference is that the GAE drive/damping has
a reduced magnitude as described by Eqs. 8 and (9) when �x � 1 and
a
 1, respectively. The condition derived in Eq. (19) can also be
compared against the full numerically integrated expression in the 2D
beam parameter space for a typical case, shown in Fig. 2(a). There, an
n¼ 9 co-CAE driven by the Landau resonance in HYM simulations
has been chosen, using mode parameters of �x � x=xci ¼ 0:5 and
a � jkk=k?j ¼ 1, implying f ¼ 0:5 and a distribution with
Dx ¼ 0:30. There, the solid curve includes the contribution from the
tail of the distribution [Eq. (19)], while the dashed curve neglects this
contribution [Eq. (16)]. The former better tracks the numerically com-
puted stability boundary. Note also that the boundary is shifted
upwards due to the damping from including the velocity derivative
terms.

Compared to the cntr-propagating modes driven by the ordinary
cyclotron resonance (analyzed in Paper I27), co-CAEs driven by the
Landau resonance require relatively large v0=vA for excitation. To see
this, consider Eq. (19) and substitute vk;res � k=jkkj, which follows
from the approximate dispersion x � kvA for CAEs. Then the mini-
mum v0=vA for instability occurs at x0 ¼ 0, such that v0=vA
> jk=kkj=ð1� Dx4=5Þ5=8. This expression in turn is minimized for
jk=kkj ! 1, which for Dx ¼ 0:3 yields v0=vA > 1:3 as a strict lower
bound for this instability. With more realistic perpendicular beam
injection, such as the original NSTX beam with k0 � 0:7, the require-
ment increases to v0=vA > 2:9 in the same limit of jk=kkj ! 1, and
even larger at v0=vA > 4:1 for common values of kk=k? � 1.

In contrast, cyclotron resonance-driven cntr-GAE excitation fea-
tures no such constraints as modes can in principle be excited even for
v0=vA < 1 so long as the frequency is sufficiently large to satisfy the
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resonance condition in Eq. (2). The same is true for cntr-CAEs, with
the caveat that jkk=k?j must be sufficiently large as well (jkk=k?j � 1
usually sufficient). These considerations can explain both simulation
results and experimental observations. In HYM simulations of NSTX
for a given set of plasma profiles,35 co-CAEs are found to require
v0=vA � 4:5, whereas cntr-GAEs are excited for a wider range of
v0=vA. In NSTX experiments, counterpropagating modes were more

commonly observed than co-CAEs, with the latter appearing only
very rarely in NSTX-U experiments which typically operated at much
lower v0=vA � 2 due to the increased toroidal field strength relative to
NSTX.

A similar comparison can be made for co-GAEs, using the same
mode parameters of x=xci ¼ 0:5 and jkk=k?j ¼ 1, shown in
Fig. 2(b). Due to the difference in dispersion relation, the co-GAE can
sustain a resonant interaction with a fast ion distribution with smaller
v0=vA than the co-CAE can. The peak growth rate for co-GAEs
with these parameters is reduced by an order of magnitude relative
to the co-CAE, as expected based on the factor �x2a4 in front of its
FLR function in Eq. (8b). Although the co-GAE growth rate peaks
at lower v0=vA in this example, even at its absolute peak, the co-
CAE growth rate is larger. This may explain why co-GAEs driven
via the Landau resonance were not observed in NSTX experiments.
Furthermore, such modes would have been even more difficult to
excite in HYM simulations as their drive is strongly enhanced by
coupling to the compressional mode, and this coupling is under-
estimated in the HYM model due to the absence of thermal plasma
two-fluid effects (see Ref. 30 for a detailed description of the simu-
lation model).

2. Large FLR regime ðf
 1Þ

The complementary limit, of large FLR effects, or rapidly oscillat-
ing integrand regime due to f
 1 can also be explored. Based on the
most unstable modes found in the HYM simulations, this is not the
most common regime for NSTX-like plasmas, but it can occur and is
treated for completeness and comparison to the slowly oscillating
(small FLR) results.

This approximation allows the use of the asymptotic form of the

Bessel functions: JnðnÞ �
ffiffiffiffiffiffiffiffiffiffi
2=pn

p
cos ðn� ð2nþ 1Þp=4Þ þ Oðn�3=2Þ,

which is very accurate for n > 2. Note also that f
 1 implies a� 1
since f ¼ �x=a < 1=a. For both CAEs and GAEs, the FLR function
has asymptotic behavior jm

0 ðnÞ � J20 ðnÞ � ð1� sin ð2nÞÞ=n, where
the rapidly varying sin ð2nÞ component will average out in the inte-
grand by the Riemann–Lebesgue Lemma36 (see Paper I27 for fur-
ther description of this procedure). Then the simplified integral to
consider is

c/
�

ð1�g

0

x3=2ðx � x0Þ
ð1� xÞ3=2

dx � 3Dx2

4

ð1�g

0

ffiffiffi
x
p

ð1� xÞ3=2
dx

1þ 1� x
4g

� �3=2

�Dx2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1 � 1

p
e�ð1�g�x0Þ2=Dx2 : (20)

Following the same method as in the small FLR regime, first
find the marginal stability condition c ¼ 0 while neglecting the third
term

x0 ¼
h0ðgÞ þ Dx2h1ðgÞ

h2ðgÞ
; (21)

h0ðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1 � 1

p
ð8þ gð9� 2gÞÞ � 15arccos

ffiffiffi
g
p

; (22)

h1ðgÞ ¼ 6 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1 � 1

p
þ arccos

ffiffiffi
g
p� �

; (23)

FIG. 2. Numerical integration of full growth rate expression Eq. (4) as a function of
fast ion distribution parameters v0=vA and k0 with Dx ¼ 0:30 for a Landau-
resonance driven (a) co-CAE and (b) co-GAE in the small FLR regime (f� 1)
with properties inferred from HYM simulations: x=xci ¼ 0:5 and jkk=k?j ¼ 1,
implying f ¼ 0:5. Red indicates net fast ion drive, blue indicates net fast ion damp-
ing, and gray indicates beam parameters with insufficient energy to satisfy the reso-
nance condition. Dashed curve shows approximate stability condition excluding
damping from the tail, derived in Eq. (16). Solid curve shows approximate stability
condition including damping from the tail, derived in Eq. (19).
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h2ðgÞ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1 � 1

p
ð2þ gÞ � 3arccos

ffiffiffi
g
p� �

; (24)

) x0 � 1� g5=7 � 8
9

Dx2

1� g5=7
; (25)

) v0 ¼
vk;res

1� 1
2

x0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ

32Dx2

9

r !" #7=10 : (26)

The first part of the approximation [h0ðgÞ=h2ðgÞ] is accurate to
within 4%, while the second part [h1ðgÞ=h2ðgÞ] has a maximum rela-
tive error of 15%, with the error reducing to less than 5% for g > 0:15.
Comparing Eq. (26) to the analogous instability condition for the
same resonance when f� 1, when Dx ¼ 0, the f
 1 condition is
somewhat more restrictive due to the different exponents, and for
finite Dx, the correction due to the slowing down part of the @f0=@v
term is also larger than it is when f� 1, as in Sec. III B 1.

The contribution from the third term in Eq. (20) will be treated
in the same fashion as in the previous section. Hence, consider solving
Eq. (20) for marginal stability setting x0 ¼ 0 and approximating
exp ð�x2Þ � 1=ð1þ x2Þ. Then Dx2 can be isolated from a quadratic
formula, giving

Dx2 ¼ �B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
; (27a)

where A ¼ � h1ðgÞ=4þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�1 � 1

ph i
=4; (27b)

B ¼ � h0ðgÞ þ ð1� gÞ2h1ðgÞ
	 


=4; (27c)

C ¼ �ð1� gÞ2h0ðgÞ=4: (27d)

Approximating and inverting this expression gives the following
condition for marginal stability at x0 ¼ 0, accurate to within 15%:

g � ð1� Dx5=6Þ7=5: (28)

This can be combined with Eq. (26) to determine the modifica-
tion to the instability condition required to match the solution at
x0 ¼ 0

v0>
vk;res

1�1
2

x0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20þ

32Dx2

9

r !" #7=10 1�Dx
ffiffiffiffiffiffiffi
8=9

p
1�Dx5=6

� �7=10

: (29)

This f
 1 marginal stability bound is compared to the numeri-
cally evaluated fast ion drive/damping in Fig. 3 for a co-CAE and
co-GAE with �x � x=xci ¼ 0:5 and a � jkk=k?j ¼ 0:25 such that f
¼ 2. While f ¼ 2 is only marginally within the f
 1 regime, the
agreement is still acceptable. Note that in the figures, a maximum
value of v0=vA ¼ 10 is shown, which far exceeds the NSTX range of
v0=vA < 6. This is because the CAE dispersion combined with the res-
onance condition yields f � �xvk;res=vA for f
 1, which cannot be
very large for v0=vA < 6 considering vk;res � v0=2 is common, as is
x=xci � 0:5. The case is different for GAEs since their dispersion
yields a parallel resonant velocity that is independent of a, such that f
can be made arbitrarily large by choosing a sufficiently small without

constraining the size of vk;res=vA. This explains why the co-CAE in the
figure has no wave particle interaction when v0=vA < 4, while an
interaction with the co-GAE becomes possible near v0=vA � 1.
Although the co-GAE can in principle be driven by fast ions for more
accessible values of v0=vA, note that the growth rate is vastly reduced
due to the factor of jkk=k?j4n1. Thus, one would expect that the
minuscule magnitude of fast ion drive for the co-GAE shown in
Fig. 3(b) would be far outweighed by damping on the background
plasma. For these reasons, the f
 1 regime is less relevant to modern
experimental conditions than the f� 1 regime, except possibly for

FIG. 3. Numerical integration of full growth rate expression Eq. (4) as a function
of fast ion distribution parameters v0=vA and k0 with Dx ¼ 0:30 for a Landau
resonance-driven (a) co-CAE and (b) co-GAE in the large FLR regime (f
 1):
x=xci ¼ 0:5 and jkk=k?j ¼ 0:25, implying f ¼ 2. Red indicates net fast ion
drive, blue indicates net fast ion damping, and gray indicates beam parameters
with insufficient energy to satisfy the resonance condition. Solid curve
shows the approximate stability condition including damping from the tail,
derived in Eq. (29).
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CAEs with x > xci which can be excited at more reasonable values of
v0=vA (to be addressed in a future work).

C. Summary of necessary conditions for net fast ion
drive

Here, we briefly summarize the different stability boundaries
derived up to this point, along with their ranges of validity. When 1�
v2k;res=v

2
0 � k0h�xcii is satisfied, Landau resonance-driven co-propagat-

ing CAEs/GAEs will be net damped by fast ions. All other results
address the scenarios when this inequality is not satisfied. When Dk is
sufficiently small ðDk � 0:10Þ, the narrow beam approximation can
be made, which yields Eq. (10), where the sign of the growth rate
depends on x0 and can be evaluated without further integration.
When Dk is sufficiently large ð0:20� Dk � 0:80Þ, the wide beam
approximation is justified. This includes the nominal NSTX case of
Dk � 0:30. For most of the unstable modes in HYM simulations,
f � 2 is also valid, which enables the results contained in the case of a
wide beam and slowly oscillating integrand. The complementary limit
of f
 2 is also tractable when the beam is sufficiently wide although
this is not the typical case for CAEs and GAEs interacting with fast
ions through the Landau resonance. All the conditions for the cases
involving wide beams are organized in Table I.

IV. PREFERENTIAL EXCITATION AS A FUNCTION OF
MODE PARAMETERS

For fixed beam parameters, the theory can determine which parts
of the spectrum may be excited—complementary to the previous fig-
ures which addressed how the excitation conditions depend on the
two beam parameters for given mode properties. Such an examination
can also illustrate the importance of coupling between the compres-
sional and shear branches due to finite frequency effects on the most
unstable parts of the spectra. All fast ion distributions in this section
will be assumed to have Dk ¼ 0:3 and h�xcii ¼ 0:9 for the resonant
ions. For the modes driven by the Landau resonance studied here in
the small FLR regime, the instability conditions can be written gener-
ally as

d2 > v2k;resðx=xci; jkk=k?jÞ; (30)

d ¼ v0
vA

1� 1
2

x0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ

8Dx2

3

r !" #5=8
1� Dx4=5

1� Dx
ffiffiffiffiffiffiffi
2=3

p
 !5=8

:

(31)

In the large FLR regime, d can be replaced by the analogous
quantity from Eq. (29) although analysis in this section will focus on
the more experimentally relevant small FLR regime. Determining the
unstable regions of the spectrum as a function of �x � x=xci and
a � jkk=k?j, therefore, relies on the dependence of vk;res on these
quantities. This dependence can be well approximated as

vCAEk;res �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a2
þ 1þ �x

r
; (32)

vGAEk;res �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �x

2þa2

1þa2

q
: (33)

These expressions have a maximum relative error of 3% and 6%,
respectively, for 0 < x=xci < 1 and all values of jkk=k?j. Using these
expressions, the approximate stability conditions become

0 <
x
xci

� �CAE

< d2 � 1þ 1
a2

� �
; (34)

1� d2ð Þ
1þa2

2þa2 <
x
xci

� �GAE

< 1: (35)

A comparison between these boundaries and the numerically
integrated expression for growth rate is shown in Fig. 4. There, a fast
ion distribution with k0 ¼ 0:7 is assumed, similar to NSTX conditions,
and the calculation is shown for different values of v0=vA. Consider
first the case of the CAEs. Note that there is a minimum value of a
below which all frequencies are stable. This follows from Eq. (34)
when d2 < 1þ 1=a2. For small values of v0=vA, only small values of
x=xci can be driven by the fast ions, even though the resonance con-
dition is satisfied for all frequencies. For larger values of v0=vA, the fre-
quency dependence of this boundary becomes very weak, with the
boundary converging simply to a > amin. Note that if coupling to the
shear mode were neglected, vk;res for the CAEs would be independent
of a, which would remove the frequency dependence of the marginal
stability boundary even in the case of small v0=vA. The dashed gray
curves plot Eq. (34), demonstrating qualitative agreement with the
numerically evaluated expression. The quantitative disagreement is
mostly inherited from the inaccuracy of the ad hoc correction for the
damping coming from the tail of the distribution, which used a factor
to match the solution at k0 ¼ 0, leading to larger errors at larger k0
such as k0 ¼ 0:7 used for these plots.

Considering now the GAEs, not only is their drive only made
possible due to coupling to the compressional branch, as discussed in
Sec. II, but the unstable spectrum can also only be described when
considering the coupled dispersion relation. Suppose instead that the
simplified dispersion were used. Then vk;res � 1 would be true for the
GAEs, implying d2 > 1 for instability, which is completely indepen-
dent of x=xci and jkk=k?j. However, Fig. 4 clearly shows a minimum
frequency for instability when v0=vA is not too large. This results from
coupling to the compressional branch, which results in the modifica-
tion to vk;res included in Eq. (33). The dashed curves on Fig. 4 compare
the approximate instability conditions to the numerically integrated
growth rate, showing that this correction is qualitatively captured.

TABLE I. Approximate net fast ion drive conditions for GAEs and CAEs driven by
the Landau resonance in the wide beam approximation, valid for 0:2 < Dx < 0:8
where Dx ¼ Dkh�xcii characterizes the velocity anisotropy of the beam. The quan-
tity f ¼ k?vk;res=xci is the “modulation parameter” [see Eq. (7)] and
x0 ¼ k0h�xcii ¼ v2?;0=v

2
0.

CAE/GAE fast ion drive conditions (Landau resonance)

f�2 v0>
vk;res

1�1
2

x0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20þ8Dx2=3

q� �� �5=8 1�Dx
ffiffiffiffiffiffiffi
2=3

p
1�Dx4=5

� �5=8

f
 2 v0>
vk;res

1�1
2

x0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20þ32Dx2=9

q� �� �7=10 1�Dx
ffiffiffiffiffiffiffi
8=9

p
1�Dx5=6

� �7=10
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Again, there is some quantitative mismatch between the analytic con-
dition and the true marginal stability boundary due to the less accurate
treatment of damping from the tail. Moreover, it is worth pointing out
that unlike the co-CAEs, as v0=vA is increased for the co-GAEs, it
becomes possible to destabilize modes with smaller frequencies.

Note that for sufficiently large values of v0=vA (determined by
d2 > 1), the GAEs can be strictly driven for all values of x=xci and
jkk=k?j. Such an example is shown in Fig. 4(f). However, the drive can
become extremely small for regions of this parameter space far from
the most favorable parameters, where modes will be stabilized by any
damping mechanisms (thermal plasma, continuum) not considered
here. The peak growth rate occurs near a � 1:5 and x=xci � 0:6 in
this case. This can be qualitatively understood from the form of the
FLR function. For very small a, the coefficient a4 in Eq. (8b) substan-
tially decreases the growth rate. In contrast, at large a, the coefficient
in front of the Bessel function can be order unity; however, the argu-
ment n ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=ð1� xÞ

p
becomes small since f ¼ �x=a; hence,

J21 ð�x=aÞ / 1=a2 for a
 1. The local maximum in frequency can be
understood similarly as at a low frequency there is a coefficient �x2 in
front of the Bessel function and also the Bessel function will expand as
�x2. For the limit of x=xci ! 1, the coefficient in Eq. (8b) vanishes for
the GAEs.

No special weight should be assigned to the values of v0=vA used
in Fig. 4 in relation to the shapes of the stability boundaries in general
since these conditions also depend on k0. They are relevant to NSTX
since the value used in the figure, k0 ¼ 0:7, is the characteristic of the

neutral beam geometry used for that experiment. For instance, for a
different value of k0, the co-GAEs would become unstable for all fre-
quencies [e.g., Fig. 4(f)] at some other value of v0=vA. Likewise, the co-
CAE boundary will also converge to a > amin for a value of v0=vA
depending on k0.

V. EXPERIMENTAL COMPARISON

Co-CAEs were studied in depth in NSTX in many discharges in
Ref. 2 and manually analyzed to determine the toroidal mode number
and frequency of each observed eigenmode (in contrast to the database
of cntr-GAEs discussed in Paper I, which was more massive and there-
fore relied on spectrum-averaged quantities calculated via automated
analysis). Co-CAEs can be unambiguously distinguished2,4,5 from
cntr-GAEs due to the direction of propagation and the absence of
other modes in the high frequency range studied (x=xci � 0:5). From
a simplified 2D dispersion solver, these high jnjð> 10Þ modes were
inferred to be localized in a potential well near the low field side edge,
typically with low jmj�2. It is worth noting that these high frequency
co-CAEs were mostly observed when a low frequency n¼ 1 kink
mode was present although the source of their nonlinear interaction is
not precisely known.2

Whereas the cntr-GAE stability condition27 yielded lower and
upper bounds on the unstable range of frequencies for a given ðk0; v0=
vAÞ, the marginal stability condition for co-CAEs [given in Eq. (34)]
instead yields a lower bound on the allowed value of a � jkk= k?j in
the low coupling limit of x=xci � 1, which is usually more restrictive

FIG. 4. Numerically calculated fast ion drive/damping for Landau resonance-driven (a)–(c) co-CAEs for v0=vA ¼ 3:0� 4:0 and (d)–(f) co-GAEs for v0=vA ¼ 1:5� 2:5 as a
function of �x ¼ x=xci and a ¼ jkk=k?j, when driven by a beam distribution with k0 ¼ 0:7; Dk ¼ 0:3, and assuming h�xcii � 0:9. Red corresponds to net fast ion drive,
blue to damping, and gray to regions excluded by the resonance condition. Gray curves indicate approximate marginal stability conditions.
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than the lower bound on jkk=k?j resulting from the requirement
vk;res < v0. Hence, one of these lower bounds will always be redun-
dant. An upper bound on jkk=k?j can be derived heuristically, consid-
ering that the CAEs are trapped in a local effective potential
well8,9,12,14,15 of characteristic width DR � R0=2. To satisfy this con-
straint, an integer number of half wavelengths must fit within the
potential well, such that kR;min ¼ p=DR. Similarly, poloidal symmetry
requires kh;min ¼ m=a for integer m. Hence, k?;min � ð2p=R0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðR0=2paÞ2

q
� 2p=R0. Moreover, kk � k/ ¼ n=R0 is a reason-

able approximation for the observed high jnj, low jmj modes. Hence,
jkk=k?jmax ¼ kk=k?;min � n=2p.

Although k? is not a reliably measured experimental quantity, it
can be inferred from the measured frequency and toroidal mode num-
ber using the approximate dispersion x � kvA, such that jkk=k?j
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2R2

0=n2v
2
A � 1

p
. Within this local framework, vA is evaluated

near the plasma edge, where the mode exists, to calculate jkk=k?j.
The comparison of these bounds with the experimental observa-

tions (blue circles) and simulation results (red triangles) is shown in
Fig. 5. The curve is calculated from Eq. (34) using k0 ¼ 0:65, which
was the average value for the studied discharges. Also, N¼ 1 was cho-
sen for consistency with the formula used to calculate the wavenumber
from the measured frequency. The straight line represents the heuristic
upper bound on jkk=k?j using n¼ 15, which was the maximum value
in the experimental database. Hence, our theory predicts net fast ion
drive in the shaded region between the curve and vertical line. Only
simulations with k0 ¼ 0:7 are shown in order to remain close to the
average value of k0 ¼ 0:65 for the experimental conditions shown. All
points have jkk=k?j > amin, in agreement with Eq. (34), and most of
the points are also consistent with jkk=k?j < amax. When calculating
these boundaries for the specific properties of each mode, it is found
that all of the simulation points fall within the allowed range, while
82% of the experimental co-CAEs agree with theory. The outliers with

jkk=k?j > amax could be due to either a wider potential well width in
those discharges or slight errors in the n number identification due to
limited toroidal resolution. Such an experimental comparison cannot
be made with co-GAEs at this time as none were identified in NSTX,
likely due to their reduced growth rate relative to the co-CAEs.

Further analysis of the linear simulation results shown on Fig. 5
will be described in detail in a forthcoming paper. The simulation
setup and properties of the modes can be found in Ref. 37. The simula-
tions used equilibrium profiles from the well-studied H-mode dis-
charge #141398,2,30,38,39 and fast ion distributions with the same ðk; vÞ
dependence studied in this work, and given in Eq. (3). The p/ depen-
dence was fit from TRANSP to a power law, as described in Ref. 30.
The peak fast ion density in all cases is nb=ne ¼ 5:3%, matching its
experimental value in the model discharge.

VI. SUMMARY AND DISCUSSION

The fast ion drive/damping for compressional (CAE) and global
(GAE) Alfv�en eigenmodes due to the Landau resonance has been
investigated analytically for a model slowing down, beam-like fast ion
distribution, such as those generated by neutral beam injection in
NSTX. The local growth rate includes contributions to all orders in
a ¼ jkk=k?j and �x ¼ x=xci, addressing parameter regimes that were
not treated by previous work studying this instability.28,29 Retaining
finite x=xci and jkk=k?j was demonstrated to be important for cap-
turing the coupling between the shear and compressional branches
(present due to two-fluid effects in our model), which was in turn vital
to the existence of the co-GAE instability. The full FLR dependence
was also kept in this derivation as in previous work. The dependence
of the fast ion drive was studied as a function of four key parameters:
the beam injection velocity v0=vA, the beam injection geometry
k0 ¼ lB0=E, the mode frequency x=xci, and the direction of the
wave vector jkk=k?j. It was shown that CAEs require relatively large
v0=vA in order to have an appreciable growth rate, explaining why
they were observed much less frequently in NSTX-U than NSTX.
Moreover, the growth rate of the GAE carries an additional small
coefficient of ðx=xciÞ2jkk=k?j4 relative to the CAE, suggesting why
these are rarely observed.

Without further approximation, the derived growth rate led to an
immediate corollary: when 1� v2k;res=v

2
0 � k0h�xcii, only damping

occurs from the Landau resonance. For cases where this condition is
not satisfied, approximate conditions for net fast ion drive were
derived by making experimentally relevant approximations. Previous
analytic conditions28,29 for net fast ion drive of CAEs driven by the
Landau resonance were limited to delta functions in k, which are a
poor approximation for fast ions generated by NBI. In contrast, the
instability conditions derived here result from integrating over the full
beam-like distribution with finite width in velocity space. It was found
in Sec. IIIA that the approximation of a narrow beam was only valid
when Dk � 0:1, much smaller than the experimental value of
Dk � 0:3. Consequently, our more general derivation allows for insta-
bility at any value of n ¼ k?q?b, whereas prior work concluded a lim-
ited range.

The approximation of a sufficiently wide beam in conjunction
with a small or large FLR assumption yielded an integral in the growth
rate expression which could be evaluated exactly and led to useful
conditions for net fast ion drive, listed in Table I. In particular, the con-
dition for a wide beam and small FLR effects (f ¼ k?vk;res=xci � 2) is

FIG. 5. Comparison between theory, simulations, and experiment. Blue circles rep-
resent individual co-CAE modes from NSTX discharges. Red triangles show co-
CAEs excited in HYM simulations with k0 ¼ 0:7. Theory predicts net fast ion drive
in the shaded region between the two curves.
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typically applicable to NSTX conditions, as determined from observa-
tions and simulations of these modes.

Comparison between the numerical integration of the analytic
expression for growth rate and the approximate stability boundaries
indicates strong agreement within the broad parameter regimes that
they apply. Since these stability conditions depend on both fast ion
parameters (k0; v0=vA) and mode parameters ðx=xci; jkk=k?jÞ, they
can provide information both about how a specific mode’s stability
depends on the properties of the fast ions as well as the properties of
the modes that may be driven unstable by a specific beam distribution.
Namely, co-propagating CAEs are unstable for sufficiently large
jkk=k?j, nearly independent of frequency when v0=vA is sufficiently
large. In contrast, when v0=vA is not too large, GAEs can only be
excited at high frequencies. The approximate condition for CAE stabil-
ity was compared against NSTX data from many discharges, yielding
greater than 80% agreement, demonstrating the utility of these results
in interpreting observations and guiding future experiments. One area
of ongoing work is the application of this theory to predict ways to sta-
bilize co-propagating modes with the addition of a second beam
source, complementary to the cntr-GAE suppression observed in
NSTX-U40 and reproduced numerically34,41 with small amounts of
power in the new, off-axis beam sources.

It is worth reminding one final time of the simplifications used in
deriving these results. Contributions from the gradient in p/ were not
analyzed although this is not expected to be a substantial correction
based on past simulations.30 The calculation was also local, not
accounting for spatial profiles or mode structures. Consequently, the
magnitude of the drive/damping shown in figures should not be con-
sidered absolute, but rather relative. Finally, the net drive conditions
do not include sources of damping coming from the background
plasma, so they should be interpreted as necessary but not sufficient
conditions for instability. Careful analysis of these damping sources
and their dependence on all of the parameters studied here (including
kinetic contributions from the large fast ion current) is left for future
work.
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APPENDIX: CALCULATIONS FOR SEC. III B 1

Details from the calculations in Sec. III B 1 are listed here for
reference. The full form of Eq. (14) is

x0 ¼ g0ðgÞ � Dx2g1ðgÞ; (A1a)

where g0ðgÞ ¼
1� 8gþ 8g3 � g4 � 12g2 log g
1� 6gþ 3g2 þ 2g3 � 6g2 log g

; (A1b)

and g1ðgÞ ¼
Aþ Bþ C þ D

32 1� 6gþ 3g2 þ 2g3 � 6g2 log gð Þ ; (A1c)

A ¼ 12 1þ ffiffiffi
g
p � 8gþ 6g2

� �
; (A1d)

B ¼ 2
ffiffiffi
3
p
ð1þ 8gÞarctan g�1 � 1ffiffiffi

3
p

 !
; (A1e)

C ¼ log 3
ð1� 2

ffiffiffi
b
p
Þ2 þ 2

ffiffiffi
b
p

ð1þ 2
ffiffiffi
b
p
Þ2

 !" #
; (A1f)

D ¼ 2g log
81

g3ð8þ g3=2Þ2
� �

þlog 1
3
þ

2
ffiffiffi
g
p

ð1� 2
ffiffiffi
g
p Þ2 þ 2

ffiffiffi
g
p

" #
: (A1g)

The solution of Eq. (17) is a quadratic formula for Dx2, given by

Dx2 ¼ �B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
; (A2a)

where A ¼ Idamp � ðg�1 � 1Þ2=2; (A2b)

B ¼ Idrive þ ð1� gÞ2Idamp; (A2c)

C ¼ ð1� gÞ2Idrive: (A2d)

And the integrals are evaluated as

Idrive ¼
ð1�g

0

x4

ð1� xÞ3
dx; (A3a)

¼ 1� gð8� g2ð8� gÞÞ
2g2

� 6 log g; (A3b)

Idamp ¼ �
3
4

ð1�g

0

x2

ð1� xÞ3
dx

1þ 1� x
4g

� �3=2
; (A3c)

¼ � 1
64g2

2
ffiffiffi
3
p
ð1þ 8gÞarctan �1þ g�1=2ffiffiffi

3
p

 !(

� 2 6 �1� ffiffiffi
g
p þ 8g

� �
� 4g2ð9þ 8 log 3Þ

2
4

þ log 1þ 2
ffiffiffi
g
p� �
þ4g log 3

1þ ð4gÞ3=2

g3=2

 !4g
8<
:

�
ð1� 2

ffiffiffi
g
p Þ2 þ 2

ffiffiffi
g
p� �

1þ 2
ffiffiffi
g
p� �2

g2

0
@

1
A
9=
;
3
75

þ log 3� 6
ffiffiffi
g
p þ 12g

� �)
: (A3d)
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