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ABSTRACT

In some tokamak discharges, a number of Alfv�en eigenmodes (AEs) have been observed to cause a large-scale collapse of the high energy par-
ticle distribution, a phenomenon referred to as an avalanche. We examine the necessary conditions for an avalanche using the available
experimental information from NSTX on the equilibrium and mode properties for two cases, one with a measurable but benign AE activity
and one with an AE activity leading up to an avalanche. To produce an avalanche, the modes present in the discharge must possess resonan-
ces that can overlap with a modest increase in instability magnitude, providing a path to global particle stochastic motion. We find that the
modes present in the avalanche-free discharge do not provide such a path even at a very large amplitude. During the discharge which subse-
quently produces an avalanche, the high energy population is growing and the Alfv�en frequency is dropping due to increasing density, and
we find that both these changes, producing a small increased drive or an increased resonance width for the Alfv�en modes, can lead in this
case to uncontrolled mode growth and large-scale beam particle loss.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5136236

I. INTRODUCTION

Alfv�en modes can produce significant modification of high energy
particle distributions and even cause losses. It is thus important to develop
reliable theoretical models to describe mode evolution, saturation, and
the effect of the modes on particle distributions. Full-scale calculations of
mode evolution require extensive computational efforts. Reliable simpler
models that produce similar results are useful for a more rapid under-
standing of physical phenomena and in promoting the understanding of
which details andmechanisms are relevant for the description of events.

Avalanches are sudden and simultaneous amplitude bursts of
many Alfv�en modes accompanied by the modification of particle dis-
tribution, sometimes including induced loss. Avalanches occur fre-
quently in super-Alfv�enic neutral beam heated NSTX plasmas1 and
are observed to take place when the fast ion pressure exceeds roughly
30% of the total plasma pressure.2 They can be responsible for serious
degradation of fast ion confinement, which can reach up to 50% of the
fast ions, as inferred from the drop in the neutron rate.3,4 Similar
explosive events are frequently observed in negative-ion beam heated
JT-60U discharges and are referred to as abrupt large events (ALEs).5,6

During the avalanches, the modes attain unusually large amplitudes to
the point that MHD wave-wave nonlinearities may regulate the sys-
tem’s dynamics. Self-consistent models are able to capture explosive
growth due to multiple resonance overlaps, such as the broadening
quasilinear approach of Ref. 7, and to capture wave-particle nonlinear-
ities, but assume that linear properties of the modes, such as the

eigenstructure and resonance condition, remain unchanged. This
treatment can be sufficient to discover the necessary conditions for the
occurrence of the onset of explosive growth.

In this work, we examine weakly unstable damped Alfv�en modes
present in NSTX,1 using numerical equilibria and particle distributions,
and including the time evolution of the modes observed to be present in
the discharges. We consider two discharges, the first involving benign
saturated modes, and the second with modes producing an avalanche,
using the guiding center code ORBIT8 and a df formalism to reproduce
the evolution of the modes. The code uses numerically produced NSTX
equilibria, mode eigenfunctions produced by NOVA-K,9 and numerical
beam particle distributions produced by TRANSP’s NUBEAM mod-
ule,10 and has been described in previous publications.11,12

In Sec. II, we introduce the necessary mathematical formalism to
discuss the time evolution of Alfv�en modes in a tokamak. In Sec. III, we
simulate modes observed in a discharge to saturate quasi-steadily at
benign amplitudes and not produce significant modification of the par-
ticle distribution. In Sec. IV, we simulate the amplitude evolution of
modes in a NSTX discharge in which an avalanche occurred. In Sec. V,
the conclusions are presented.

II. ALFV�EN MODE EVOLUTION

The equilibrium magnetic field is given by

~B ¼ grfþ Irhþ drwp; (1)
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where h and f are poloidal and toroidal coordinates and wp is the
poloidal flux, and in an axisymmetric equilibrium using Boozer coor-
dinates, g and I are functions of wp only. The perturbation has the
form d~B ¼ r� a~B, and a and an electric potential U have the
Fourier expansions

a ¼
X
m;n

Anam;nðwpÞ sinðXmnÞ; U ¼
X
m;n

AnUm;nðwpÞ sinðXmnÞ;

(2)

where n refers to a single mode with a definite toroidal mode number
n and frequency xn, and the sum is over toroidal and poloidal har-
monicsm with Xmn ¼ nf�mh� xnt � /n, with /n being the mode
phase. For ideal modes, the electric potential U is chosen to cancel the
parallel electric field induced by d~B=dt, requiringX

m;n

xnBam;n cosðXmnÞ �~B � rU=B ¼ 0

giving in Boozer coordinates

ðgqþ IÞxnamn ¼ ðnq�mÞUmn:

The perturbation a is related to the ideal displacement~n, through13

amn ¼
ðm=q� nÞ
ðmg þ nIÞ n

w
mn:

The eigenfunctions produced with the code NOVA-K are normalized
with the largest harmonic nw

mnðwpÞ having the maximum amplitude 1.
Thus, the amplitude An is the magnitude of the ideal displacement
caused by this harmonic, normalized to the major radius R, which is
100 cm in this case.

The equations of motion in the Hamiltonian form are8,13

_h ¼ @H
@Ph

_Ph ¼ �
@H
@h

;

_f ¼ @H
@Pf

_Pf ¼ �
@H
@f

;
(3)

where canonical momenta are

Pf ¼ gqk � wp; Ph ¼ wþ qkI; (4)

and w is the toroidal flux, with dw=dwp ¼ qðwpÞ, the field line helicity,
and qk ¼ vk=B.

Stepping equations for the mode amplitude and phase were pre-
viously derived.11,14

dAn

dt
¼ ��2A

DnxnAn

X
j;m

wn;j qkB
2amnðwpÞ � UmnðwpÞ

h i
cosðXmnÞ

� cdAn; (5)

d/n

dt
¼ ��2A

DnxnA2
n

X
j;m

wn;j qkB
2amnðwpÞ � UmnðwpÞ

h i
sinðXmnÞ; (6)

with Dn ¼ 4p2P
m

Ð
n2mnðwpÞdwp, j the particle index, and wp; h; f

the position and qk the normalized parallel velocity of particle j. The
modes are resonant with and destabilized by the high energy injected
beam, so the particles refer to beam ions. The linear damping rate cd is
due to the continuum, trapped particle collisional damping, electron

and thermal ion Landau damping, and radiation, all terms in the sums
are evaluated at the coordinates of particle j, and wn;j is the df weight
of particle j for mode n.

The perturbed distribution df is represented by

df ðwp; h; f; qk; tÞ ¼
X
j

wn;jdðwp � wp;jðtÞÞdðh� hjðtÞÞdðf

� fjðtÞÞdðqk � qk;jðtÞÞ (7)

and the particle weights are stepped by

dwn;j

dt
¼ wn;j � f =g

f0
@Ef0 _E þ @Pf f0 _Pf

h i
(8)

with f being the time dependent beam distribution, g the marker distri-
bution given by wp;j, hj, fj, and qk;j, and f0 the unperturbed initial
beam distribution. The particle energy E and Pf are both conserved in
time in the absence of the modes. The changes in the time of the parti-
cle energy and canonical momentum due to the modes are given by

dE
dt
¼ �qkB

2@taþ @tU;
dPf

dt
¼ qkB

2@fa� @fU: (9)

The necessary theoretical input to be able to predict Alfv�en mode
saturation amplitudes consists of a numerical representation of the
high energy particle distribution producing the unstable modes, the
plasma equilibrium, the mode eigenfunction structure, the values for
mode damping, and the rate of particle collisions, which are responsi-
ble for the replenishment of the particle density gradient in a reso-
nance. The mode damping is taken to be constant in time. The
evolution of the mode can then be followed up to saturation, giving a
clear idea of the effect of the mode on the particle distribution.

It is not necessary to use the full beam particle distribution given
by TRANSP in these simulations for the calculation of the partial deriva-
tives required for Eq. (8). Doing so is in fact difficult, because of errors
introduced in the necessary smoothing. But all energy exchange between
modes and particles occurs at the resonances. Particles on good
Kolmogorov-Arnold-Moser (KAM)15 surfaces only exhibit adiabatic
oscillations of energy and canonical momentum, and cannot contribute
to mode growth. Thus, simulating modes agreeing with theoretical or
experimental growth rates require only the numerical imposition of the
correct energy and momentum gradients at the locations of the resonan-
ces, and not the use of the full particle distribution. The full distribution
is however useful as an input for the marker distribution g.

III. QUASI-STEADY STABLE MODE SATURATION

Stable saturated modes were observed in NSTX shot 141655.
Other modes are present at a lower frequency, but the two modes
selected for analysis are the most stable and best diagnosed. The
plasma current was 720 kA, the toroidal field was 3.89 kG, the on axis
density was 7� 1013=cm3, the beam power was 4.85MW, and the
temperature was 0.9 keV.

Theoretical knowledge of the mode growth rates and damping is
unfortunately imprecise, but we can study the possible mode evolution
within the boundaries of uncertainty for these values.

The equilibrium and q profile for this shot are shown in Fig. 1.
There were two primary modes present, as shown in Fig. 2. Other
modes are present at a lower frequency m but they are not very stable
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and were poorly diagnosed. An interesting feature of this shot is that
two quasi-steady toroidal Alfv�en eigenmodes are observed with a
nearly constant frequency, in contrast to the more frequent chirping
phase in less turbulent scenarios.16,17 They were a very steady state
and isolated saturated modes, well represented by NOVA-K9 The
mode amplitudes are shown in Fig. 3, giving ideal displacements of
0.19mm for n¼ 2 and 0.17mm for n¼ 3. The amplitudes fluctuate by
up to a factor of 2 on sub-millisecond time scales.

In Sec. III, A we introduce the particle distribution given by
TRANSP’s NUBEAMmodule10 and used in NOVA-K for the calcula-
tion of the growth rates and the Alfv�en eigenmodes used in the analy-
sis. In Sec. III B, we carry out mode evolution using the df procedure

and compare with the analytical models for mode saturation and with
the experiment.

A. Particle distribution and resonance structure

The energetic particle (EP) distribution function is taken as a
product of several factor functions as described recently.18 They corre-
spond to energy, pitch angle, and canonical momentum dependences
shown in Fig. 4 there. The factorized form of the distribution was veri-
fied against NUBEAM simulations19 ORBIT uses variables E, Pf, and
l, but the distribution in NOVA-K is given in v, k, and x, with v being
the velocity, k ¼ vk=v the pitch, and x ¼ hw=wwi, where w is the

FIG. 1. Equilibrium and q profile for NSTX shot 141655. X and Z are given in cm.

FIG. 2. Observed spectrum and mode evolution in NSTX shot 141655 and growth rate determination for n¼ 3.
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toroidal flux, the sub-index w refers to the wall, and the brackets indi-
cate averaging. The distribution is

Fðv; k; xÞ ¼ e�ðk�k0Þ2=DÞ

ðv3 þ v3c ðxÞÞ
X6
0

anx
n (10)

with a0 ¼ 0:101754; a1 ¼ 0:0629612; a2 ¼�2:94924, a3 ¼ 9:95964;
a4¼�14:5232; a5¼10:0517; a6¼�2:70352, and k0¼0:6;D¼0:04.

vcðxÞ ¼ 0:07127

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2TeðxÞ
me

s
(11)

and the electron temperature profile is

TeðxÞ ¼ 0:8788þ 0:0466x � 5:871x2 þ 45:60x3 � 168:6x4

þ 279:3x5 � 212:1x6 þ 60:87x7 (12)

in keV. Beam injection is along the midplane, so ion birth is near h¼ 0.
The primary drive for Alfv�en modes is due to the gradient in the

momentum Pf, approximately equivalent to a gradient in the minor
radius. From Fig. 4, this gradient is approximately ð1=f Þ@Pf=ww

f ’ 30

(dimensionless) in the outer plasma near Pf=ww ’ �0:4. Near the
plasma edge, where the resonances are located, it is approximately half
this value. The gradient in the energy variable is weakly stabilizing.
Note that the distribution is strongly peaked in the magnetic moment,
with lB near 17 keV. The radial displacement of the mode harmonics
is shown in Fig. 5, with 3 � m � 17, for n¼ 2 and with 5 � m � 34
for n¼ 3. Both modes are located near the plasma edge.

In Fig. 6 are shown kinetic Poincar�e plots for amplitudes of
A ¼ 10�3, for lB¼ 17 keV, where the distribution is strongly peaked.
“Kinetic” is used to emphasize that these are particle orbits, and not
plots of the magnetic field. The plot is only weakly dependent on the
value of l near this value. The primary resonance for the n¼ 2 mode
is very near the plasma edge, with a smaller resonance at Pf=ww ¼ 0:2
with three elliptic points. The resonance near the plasma edge is
formed by the contribution of a large number of highmmodes, so the
distribution of the elliptic points is very irregular. Instead, the internal
resonance with 3 elliptic points is dominated by only a few m values,
and is more regular. The primary resonance for the n¼ 3 mode is at
Pf=ww ¼ 0:08 with five elliptic points. There is a smaller resonance
near the plasma edge.

FIG. 3. Experimental determination of mode amplitudes in NSTX shot 141655, n¼ 2 (left) and n¼ 3 (right), using reflectometer measurements. Simulation of the trial radial
displacement profile used to fit reflectometer data. The relative mode phase, within uncertainty, approximately constant with the radius. Simulated reflectometer response pro-
file (solid line) and reflectometer data (points).
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The 90� pitch-angle scattering collision rate for the dominant res-
onant particles in this discharge was �? ¼ 2:5=s, and somewhat
smaller near the plasma edge, where the density was lower, the mode
frequencies were f ¼ 45:16 kHz for n¼ 2, and f ¼ 62:45 kHz for
n¼ 3 in the plasma frame at the radial location at the mode maxi-
mum, wp=ww ¼ 0:72. Strong relative plasma rotation necessitates a
transformation from the lab frame to the local plasma frame. The
mode is fairly localized, so a single radius for this determination suffi-
ces. The ion cyclotron frequency was about 3MHz, about 50 times the
toroidal Alfv�en eigenmode (TAE) frequency.

B. Mode evolution

Now, we examine the mode evolution using a df formalism.
We used 100 000 particles, loaded according to the distribution of Sec.

IIIA. Although the imprecise knowledge of the mode drive and damp-
ing values does not allow a precise determination of the saturation val-
ues, we find that a large range of drive magnitudes and collision rates
produce stable saturation of the two modes. There is no tendency for
unlimited mode growth with an induced loss of particles. This is sim-
ply understandable due to the fact that the resonances associated with
these two modes do not present a path for stochastic particle loss, even
when the amplitudes are large.

In Fig. 7 are shown examples of mode evolution from the linear
phase up to saturation. The evolution is fit by the analytic expression20

valid near marginal stability

AðtÞ ¼ Að0Þectffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2ð1� e2ctÞ

p ; (13)

FIG. 4. Particle distribution in E, Pf, and lB. Only co-passing particles interact with the resonances.
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with c ¼ cL � cd , and b ¼ Að0Þ=Asat . cL and cd are the initial linear
growth rate in the absence of damping and the background damping
rate of a given mode. Að0Þ ¼ 10�5 was the amplitude at the start of
the simulation and Asat is the amplitude saturation level. This fit allows
the best determination of the net growth rate, c, and the saturation
level. Even using levels of drive of ð1=f Þ@Pf=ww

f ¼ 40, stronger than
those present in the experiment, gives simple saturation with no parti-
cle loss.

The growth rate and the saturation amplitude vs drive are shown
in Fig. 8. The growth rate for each mode is approximately linear in the
drive, as expected. The saturation level, linearly proportional to the
growth rate for small amplitudes, scales as the square root of the drive

providing the damping is negligible. The transition between the two
regimes might resemble the limitations on the strength of the reso-
nance interaction imposed by radial decoupling and resonance detun-
ing,21 but in the present simulation, the effect of collisions does not
allow for a simple interpretation in terms of that described by Ref. 21.
Damping was cd=x ¼ 0:003. Experimental values are a displacement
of 0.02 cm and 0.017 cm from Fig. 3, or A ¼ 2� 10�4; 1:7� 10�4.
This is the best fit with a drive of ð1=f Þ@Pf=ww

f ’ 14, reasonable for
the resonances near the plasma edge. For this small drive, the damping
is not negligible and the system is near the instability threshold, a nec-
essary condition for the derivation of Eq. (13). We thus find consistent
values of A, ð1=f Þ@Pf=ww

f , and c for the modes.

FIG. 5. Mode harmonics nw ¼~n � rw, for n¼ 2 and n¼ 3, amplitude A ¼ 10�5. The largest and next largest harmonics for n¼ 2 are m¼ 5 and m¼ 6. The largest and
next largest harmonics for n¼ 3 are m¼ 8 and m ¼ 9:

FIG. 6. Kinetic Poincar�e plots for the resonances of mode harmonics for n¼ 2 and n¼ 3, with amplitude A ¼ 10�3.
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IV. AVALANCHE SIMULATION

In this section, we consider NSTX shot 141711 at t¼ 472 msec,
shortly before the observation of a major avalanche (see spectrogram
in Fig. 11). The plasma current was 915 kA, the toroidal field was
4.64 kG, the on axis density was 4:2� 1013=cm3, the beam power was
1.9MW, and the temperature was 1.4 keV. Even though the beam
power is significantly less than in the stable case of Sec. III, the Alfv�en
activity is much stronger. We will see that it is the location and strength
of the resonances which are the determining features of the discharge.

The equilibrium and q profile are shown in Fig. 9. The beam par-
ticle distribution is shown in Fig. 10, and the distribution in the pitch
was strongly peaked near lB ¼ 20keV. The modes are destabilized by
the gradient in the distribution in Pf, approximately equivalent to a

gradient in the minor radius. The gradient in energy E is negative and
mildly stabilizing.

There were four primary Alfv�en modes present in the discharge
before the observed avalanche, with n ¼ 2; 3; 4; 5 as well as smaller
modes at n¼ 1 and n¼ 6. In Fig. 11 is shown the time history of the
mode frequencies leading up to an avalanche crash at around 485
msec. In Fig. 12 is shown the experimental determination of the mode
amplitudes for n¼ 3, 4, 5 at t¼ 472 msec, shortly before the avalanche.
The n¼ 2 mode was too weak at that time to allow for an accurate
determination of amplitude.

Each mode consists of ten or more poloidal harmonics, but only
a few of them are large enough to significantly affect the particle distri-
bution through resonance formation. A Poincar�e plot showing the

FIG. 7. Mode evolution to saturation, ð1=f Þ@Pf=ww
f ¼ 12, 20, 25, � ¼ 2=s, n¼ 3, (black), and n¼ 2, (red), fit with the theoretical expression given in Eq. (13). The values of

c and A as a function of the drive are shown in Fig. 8. For all cases, cd=x ¼ 0:003 and Að0Þ ¼ 10�5.
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location of resonances can only be performed for a fixed value of
mode frequency and toroidal mode number n, and only gives a limited
range of energy. Thus, it is impossible to show the resonances of all
modes together over a large energy range using this method. However,
one can show the location of the destroyed KAM surfaces15,22,23 for all
modes together, giving the location of all resonances over a large range
of energy. In Fig. 13 is shown the domain of destroyed KAM surfaces
for all modes, with the amplitudes fixed at A ¼ 3� 10�4. The domain
in energy E and canonical momentum Pf is that of co-passing ions.
The right boundary is the magnetic axis and the left boundary is the
plasma edge. All resonances are in the outer half of the plasma, and

extend from 40 keV up to the maximum energy in the beam, about
90 keV. The resonances are far from overlapping at this amplitude,
and only produce local flattening of the particle distribution.

The method of destroyed KAM surfaces shows the location of
the resonances, but we also wish to associate each individual resonance
with the mode responsible for it. For this, we perform kinetic Poincar�e
plots for each mode separately, showing also the location and number
of elliptic points in the poloidal plane.

Kinetic Poincar�e plots can be made only with fixed x and lB. In
Figs. 14 and 15 are shown the poloidal harmonics and the resonances
for each of the four modes. The resonances are shown for a value of

FIG. 8. Growth rate c=x with c ¼ cL � cd and saturation amplitude, n¼ 3 (black) and n¼ 2 (red), vs drive ð1=f Þ@Pf=ww
f . The resultant growth rate c is approximately linear

in the value of the drive. The saturation amplitude scales as the square root of the drive provided cL is large compared to the damping, and this data is fit with the square root
dependence. The n¼ 3 mode has c=x ’ 0:0; 02860:0; 007.

FIG. 9. NSTX shot 141711 at t¼ 472 msec, showing the equilibrium flux surfaces and the q profile. The field on axis was 5.1 kG.
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lB ¼ 20keV, characteristic of the high energy particle distribution.
The location and nature of the resonances is only weakly dependent
on this value. For clarity, the resonances are shown in the variable Pf,
the toroidal canonical momentum, for a large mode amplitude, of
A ¼ 1:5� 10�3. It is interesting that the number of poloidal elliptic
points for the major resonance in each case is equal to the n value.
Modes with n¼ 2, 3, 4 display mostly good KAM surfaces except for
the one significant resonance near Pf=ww ¼ �0:05. The n¼ 2 mode
has a smaller resonance at Pf=ww ¼ �0:37. The n¼ 3 mode has two
small resonances at Pf=ww ¼ �0:3 and �0.4. The n¼ 4 mode has
two small resonances at Pf=ww ¼ �0:24 and �0.35. The mode with
n¼ 5, in addition to the major resonance at Pf=ww ¼ �0:05 has other
significant resonances at lower values of Pf=ww. The primary

resonance has five elliptic points in the poloidal plane, but there are
also resonances with six, seven, and eight elliptic points, and one can
also see higher order Fibonacci resonances, one in between the five
and six with 11 elliptic points, one in between the six and seven with
13 elliptic points, and one in between the seven and eight with 15 ellip-
tic points. In addition to these higher-order resonances, the coupling
of the modes with different n values will produce more. Hence with
larger mode amplitude, these resonances can possibly provide a loss
channel to the plasma edge, to the left in these plots, at about
Pf=ww ¼ �0:5.

For a mode of a given toroidal mode number n and frequency x,
the particle energy E and momentum Pf are related in the presence of
the mode through

FIG. 10. NSTX shot 141711 beam particle distribution at t¼ 472 msec, energy, magnetic moment, and canonical momentum distributions. Only co-passing particles interact
with the resonances.
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xPf � nE ¼ K; (14)

with K being a constant depending on the initial particle conditions.
The energy range for the data in Figs. 14 and 15 is from 70 to 80 keV.

The domain of the numerical particle distribution in the simula-
tions is chosen to well include all resonances at a large mode ampli-
tude, as well as a full radial distribution, in order to be able to describe
to the full extent the discharge conditions leading to an avalanche.

In Table I are shown the growth rates obtained for the mode
from the kick model (cK).

24 Also shown are the theoretically calculated
values of the damping for each mode, (cd). Although the n¼ 2 mode
is stable, the resonances for the modes with n¼ 3, 4, 5 are located
directly above the n¼ 2 resonance in Pf, and thus they naturally
steepen the density gradient for the n¼ 2 mode, destabilizing it pro-
vided they become large enough.

It is not practical to use the full high energy particle distribution
to find the drive for modes because of the numerical difficulty involved
in taking partial derivatives in energy and canonical momentum.
Instead, we adjust the drive to produce the growth rates determined
from the kick model, which does not require derivatives of the distri-
bution for its determination.

FIG. 11. NSTX shot 141711 modes with n¼ 2, 3, 4, and 5 leading to an avalanche
at t ¼ 0:485s.

FIG. 12. NSTX shot 141711. Determination of mode displacements at t¼ 472 msec, shortly before the avalanche. (a) Shows the trial sin/cos components of the radial dis-
placement profiles used to fit the reflectometer data. (b) Shows the reflectometer data converted to an effective displacement, which includes interferometer contributions,
(circles), and the simulated reflectometer response using the trial functions in (a), solid lines. n¼ 3, 0.07 cm, n¼ 4, 0.12 cm, and n¼ 5, 0.14 cm.
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The primary input for the kick model is a set of transport proba-
bility matrices that condense the effects of instabilities on energetic
particle (EP) dynamics. Matrices are defined over the constant of
motion variables E, Pf, and l, which represent the energetic particle
energy, canonical toroidal angular momentum, and magnetic
moment.13,22 For each ðE;Pf; lÞ region in phase space, the matrix
contains a probability pðDE;DPfÞ of correlated fast ion energy and Pf

changes (or kicks) caused by the instabilities.
The transport matrix is computed via particle-following codes

such as the Hamiltonian guiding-center code ORBIT.8 For Alfv�enic
modes that can feature a large number of poloidal harmonics and a
complex radial mode structure, mode structures are computed
through MHD codes such as NOVA/NOVA-K.9,25 To compute a kick
probability matrix in ORBIT, the EP phase space is divided into dis-
crete bins to group particles with similar phase space coordinates.
Typical numbers of bins for the E, Pf, and l are nE � 10� 15; nPf

� 30� 40, and nl � 14� 20, respectively. The evolution of
ðE; Pf; lÞ of each particle is recorded in ORBIT during the simulation
at sampling intervals dtsamp. The value of dtsamp is chosen to be larger
than the period of the instability to filter out fast oscillations and
mostly retain changes over the longer time scales associated with par-
ticles being trapped in a resonance. For a mode interacting with a fast
particle population, the time evolution of the mode energy, Ew, can be
expressed as

FIG. 14. Eigenstructures and kinetic
Poincar�e plots for the resonances. Above:
Mode n¼ 2, m ¼ 1� 10, lB¼ 20 keV,
and f¼ 88.362 kHz. Below: Mode n¼ 3,
m ¼ 1� 10, lB¼ 20 keV, and
f¼ 109.507 kHz. The amplitude (fluid dis-
placement normalized by the major
radius) is A ¼ 2� 10�3 to clearly show
the resonance. The largest and next larg-
est harmonics for n¼ 2 are m¼ 2 and
m¼ 3. The largest and next largest har-
monics for n¼ 3 are m¼ 3 and m¼ 4.

FIG. 13. Resonance location for all modes, lB ¼ 20keV and A ¼ 3� 10�4. The
large domain in the upper right of the diagram is that of co-passing particles. The
right edge of this domain is the magnetic axis (A), and the left edge is the plasma
boundary (W).
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@Ew
@t
¼ PEP � 2cdamp Ew: (15)

Here, PEP ¼ PEPðEwÞ is the power flowing from the fast ions to the
mode and cdamp is the mode’s damping rate computed through the
NOVA-K code. A growth rate, cgr, can be introduced in Eq. (15)

cgrðEwÞ¼
: PEPðEwÞ

2Ew
) @Ew

@t
¼ 2 cgr � cdamp½ �Ew: (16)

Because of its dependence on the power exchanged between fast
ions and the mode(s), the growth rate cgr is, in general, a function of
the instantaneous mode amplitude Amode (proportional to

ffiffiffiffiffiffi
Ew
p

).

FIG. 15. Eigenstructures and kinetic Poincar�e plots for the resonances. Above: Mode n¼ 4, m ¼ 1� 10, lB¼ 20 keV, and f¼ 126.758 kHz. Below: Mode n¼ 5,
m ¼ 1� 10, lB¼ 20 keV, and f¼ 161.635 kHz. The amplitude (fluid displacement normalized by the major radius) is A ¼ 2� 10�3 to clearly show the resonance. The larg-
est and next largest harmonics for n¼ 4 are m¼ 4 and m¼ 5. The largest and next largest harmonics for n¼ 5 are m¼ 6 and m¼ 7.

TABLE I. Frequency, growth rate, and damping rate corresponding to several toroi-
dal mode numbers.

n f/kHz cK=x cd=x

2 88.4 1.8� 10�3 2.85� 10�3

3 109.5 8.9� 10�3 3.36� 10�3

4 126.8 14.5� 10�3 1.91� 10�3

5 161.6 9.4� 10�3 7.5� 10�4
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However, at a sufficiently small mode amplitude, the effect of the
mode(s) on the fast ion distribution is negligible. This low-amplitude
regime is here referred to as the linear phase of mode growth, and can
be characterized by a linear growth rate

clin¼
:
limEw!0

PEPðEwÞ
2Ew

: (17)

Assuming the damping rate and the wave energy Ew are known,
for example based on the NOVA/NOVA-K results, Eq. (17) can be
used to estimate the linear growth rate from a TRANSP/kick model
run that provides PEP.

Directly using Eqs. (5) and (6) for a given value of ð1=f Þ@Pf=ww
f

also produces a value for c, which is compared with the kick model
results of Table I. The results of the simulation are shown in Fig. 16
giving the growth rates for the modes. This plot was obtained by keep-
ing the mode amplitude fixed at A ¼ 10�5, but allowing the particle
weights to generate the growth rates. The plot shows the modes with
n¼ 2 (black), n¼ 3 (red), n¼ 4 (blue), and n¼ 5 (green), with c=x
less than 0.02 for all modes. The pitch angle scattering rate for the sim-
ulations was fixed at the theoretical value of 2=s for the observed
plasma density. Growth rates are approximately the values given by
the kick model.

In Fig. 17 is shown the time evolution of these modes for a period
of 50 msec, with a characteristic edge value collision frequency of 2=s,
at the normal drive magnitude and in the simulation in which the
drive is made 10% higher at t¼ 12 msec. Both simulations included
the theoretical damping values. The plots show the modes with n¼ 2
(black), n¼ 3 (red), n¼ 4 (blue), and n¼ 5 (green). For the normal
drive, the modes exhibit significant fluctuations but the amplitudes
remain mostly below A ¼ 10�3. The n¼ 2 mode, although initially
stable, is slowly destabilized by the other modes, but the amplitude
remains below A ¼ 10�3. Note that the n¼ 5 mode, the only one with
resonances extending toward the plasma edge, remains at a low ampli-
tude. In terms of ideal displacement the mode amplitudes are approxi-
mately (averaging between 20 and 30 msec) (n¼ 2) 0.04 cm, (n¼ 3)
0.06 cm, (n¼ 4) 0.11 cm, and (n¼ 5) 0.03 cm. These agree well with
the experimental values shown in Fig. 12 except for n¼ 5, for which

FIG. 16. Numerically determined growth rates from Eq. (5), modes with n¼ 2
(black), n¼ 3 (red), n¼ 4 (blue), and n¼ 5 (green).

FIG. 17. Mode evolution, modes with n¼ 2 (black), n¼ 3 (red), n¼ 4 (blue), and n¼ 5 (green), with a collision frequency of � ¼ 2=s, for 50 msec. Evolution with normal drive
(left) and a 10% increase in drive at 12 msec (right). With the growth rates shown in Fig. 16, the modes fluctuate with amplitudes mostly below 10�3, but with a 10% increase
in the drive, there is an explosive growth of all modes, indicating that a df approach fails to describe the system’s dynamics at that point and that wave-wave nonlinearities are
likely important.
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the simulation result is too small. However, this mode is strongly mod-
ified by the n¼ 3 and n¼ 4 modes, which have stronger growth rates
and have resonances intersecting the n¼ 5 resonance, strongly
influencing its evolution. The n¼ 2 mode was too small for an accu-
rate experimental determination. As seen, this mode is initially stable,
and only destabilized by the action of the other modes.

The explosive solutions in Fig. 17 signal that the df approach
breaks down. They, however, indicate that the increased drive leads to
a route of a harder nonlinear scenario in which amplitudes are so large
that MHD nonlinearities become relevant and the modes can no lon-
ger be treated independently. This observation is somewhat analogous
to the breakdown of the nonlinear theory of a discrete mode driven
just above the instability threshold developed by Berk et al.26 In that
case, the occurrence of solutions of a delay integrodifferential equation
for mode amplitude blowing up in a finite time were observed to cor-
relate with the formation of phase space structures and the onset of
frequency chirping, when compared to full Vlasov simulations.16,27 In
the Berk-Breizman model, the explosion of solutions indicate that the
assumption of a small parameter in the perturbation theory fails to be
met, while signaling the tendency for the system evolution to a more
pronounced nonlinear phase. The nonlinear chirping has also been
numerically simulated28 but a full theoretical understanding of the late
nonlinear development of a chirp is still not available. In the present
work, we do not attempt to model the amplitude crash. We note, how-
ever, that this sort of nonlinear simulation, including the coupling
with resistive modes, has been carried out using the code MEGA.29–31

The simplest example of an avalanche is given by the sandpile
model.32,33 Addition of sand to one part of the sandpile can lead to
a cascade of particles in that region, causing an increase in the den-
sity gradient in the nearby domains, both above and below this
point, and stimulating additional particle flow down the gradient,
the effect being thus nonlocal. A similar phenomonon is observed
in the present case. Growth of the n¼ 3, 4, 5 modes causes a

change in the gradient of the particle density in the vicinity of the
n¼ 2 mode resonance, which was initially stable due to the large
damping rate. If the drive is not too large, the modes all stabilize
and fluctuate with the amplitudes below the critical values produc-
ing a large scale resonance overlap. Experimentally, there is a
marked threshold in the large-scale excitation since the onset of
avalanches has only been observed to occur when the pressure of
fast ions is at least 30% of the total pressure.2

With a 10% increase in drive, these modes grow to a magnitude
allowing strong destabilization of the n¼ 2 mode. Additional destabili-
zation of the n¼ 5 mode, the only one with resonances located closer
to the plasma boundary and the appearance of significant higher-
order Fibonacci sequence resonances (see Fig. 15), leads to a path for
particle flux to the plasma edge. The particle evolution cannot be fol-
lowed during the whole event in these simulations because the modifi-
cation of the distribution quickly exceeds the limits of the df
formalism, but it is clear that large scale particle loss is likely involved.
It is also possible that the particle loss lowers the gradients driving the
modes, stabilizing them and halting the flow of particles to the plasma
edge before total loss occurs. It is not possible to distinguish these two
cases with a df simulation. In the experiment, the high energy distribu-
tion underwent a 20% loss in neutron emission, partly due to particles
transferring energy to the modes, decreasing reactivity, and also indi-
cating density profile nodification, stabilizing the modes, and then the
discharge being recovered.

In Fig. 18 are shown the stochastic domains produced for the
final mode amplitudes in the simulations in the two cases. With the
drive set to produce the nominal growth rates, only isolated domains
of broken KAM surfaces are present, corresponding to the resonances
of the modes. The modes do not overlap; there are large domains of
good KAM surfaces preventing significant particle loss. If the drive is
increased by 10%, the resonances overlap, producing a continuous sto-
chastic domain leading to global particle loss.

FIG. 18. Domain with broken KAM surfaces for the mode amplitudes observed with the drive producing baseline growth rates, (left) and with the drive multiplied by 1.1 (right).
With the normal drive, there are good KAM surfaces preventing significant loss, allowing only local flattening of the distribution, but a 10% increase in the drive leads to global
stochastic loss.
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The avalanche can be avoided by stabilization of the n¼ 5 mode.
In Fig. 19 is shown the evolution of the modes with a small increase in
the damping of the mode n¼ 5 at t¼ 25 msec, just as the avalanche is
about to take place.

An alternative way of inducing the mode explosion is by lowering
the mode frequency. In Fig. 20 is shown a kinetic Poincar�e plot of the
n¼ 5 mode resonance, with the amplitude being the same as in Fig.
15, but with the mode frequency reduced by 30%, to 115 kHz. The res-
onances are significantly larger and there are more chaotic domains.
The same is true of the other resonances. Thus, a decrease in the mode
frequency, such as that seen occurring in Fig. 11, can also lead to an
avalanche.

V. CONCLUSION

Two NSTX shots are considered, one with saturated Alfv�en
modes producing a small local modification of the high energy particle
distribution and another producing an avalanche. Values of the mode
growth rate and damping for the modes given by theoretical analysis
are used. In the first case, an inspection of the resonances produced by
the two modes present in the discharge shows them to be too few and
too distant, not providing a path for significant particle stochastic loss,
even at a large amplitude.

In the second case, the four modes observed are shown to pro-
duce resonances that can provide a path for large scale stochastic loss
of particles with only a small increase in the high energy particle gra-
dients producing the mode drive, or a decrease in the mode frequency.
One particular mode is critical in providing a path for particle loss. If
the mode drive is below this critical value, the mode amplitudes oscil-
late around saturation levels, which do not produce a significant modi-
fication of the high energy particle distribution away from the linear
resonances. When the mode drive is increased or the frequency is
reduced, the modes mutually destabilize one another, producing a
strong avalanche and significant loss of fast ions. The analysis of the
density and the nature of resonances connected with the unstable
modes in the equilibrium provide an insight concerning the possibility
of the avalanche, and can be used in a predictive manner. The ava-
lanche can be avoided by stabilization of the n¼ 5 mode, principally
responsible for providing a path for stochastic particle loss. We note,
however, that the late stages of the avalanche crash MHD nonlinear-
ities, not captured by the present study, likely play a principal role in
the system dynamics.
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