
Phys. Plasmas 27, 052108 (2020); https://doi.org/10.1063/5.0004610 27, 052108

© 2020 Author(s).

Phase-space dynamics of Alfvén mode
chirping
Cite as: Phys. Plasmas 27, 052108 (2020); https://doi.org/10.1063/5.0004610
Submitted: 14 February 2020 . Accepted: 05 May 2020 . Published Online: 28 May 2020

R. B. White , V. N. Duarte , N. N. Gorelenkov , E. D. Fredrickson , and M. Podesta 

https://images.scitation.org/redirect.spark?MID=176720&plid=1167513&setID=418178&channelID=0&CID=390544&banID=519902572&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=7cbc3062ec2aeea563275c3f77435ed16252a985&location=
https://doi.org/10.1063/5.0004610
https://doi.org/10.1063/5.0004610
https://aip.scitation.org/author/White%2C+R+B
https://orcid.org/0000-0002-4239-2685
https://aip.scitation.org/author/Duarte%2C+V+N
https://orcid.org/0000-0001-8096-7518
https://aip.scitation.org/author/Gorelenkov%2C+N+N
https://orcid.org/0000-0002-7345-8149
https://aip.scitation.org/author/Fredrickson%2C+E+D
https://orcid.org/0000-0002-2439-4089
https://aip.scitation.org/author/Podesta%2C+M
https://orcid.org/0000-0003-4975-0585
https://doi.org/10.1063/5.0004610
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0004610
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0004610&domain=aip.scitation.org&date_stamp=2020-05-28


Phase-space dynamics of Alfv�en mode chirping

Cite as: Phys. Plasmas 27, 052108 (2020); doi: 10.1063/5.0004610
Submitted: 14 February 2020 . Accepted: 5 May 2020 .
Published Online: 28 May 2020

R. B. White,a) V. N. Duarte, N. N. Gorelenkov, E. D. Fredrickson, and M. Podesta

AFFILIATIONS

Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA

a)Author to whom correspondence should be addressed: rwhite@pppl.gov

ABSTRACT

In tokamak discharges, toroidal Alfv�en eigenmodes often experience complex semi-periodic frequency modulation known as chirping. These
events modify the local high energy particle distribution and are expected to occur in many future fusion devices, which include energetic
beams or fusion products. This paper presents a study of simulations of mode chirping made in order to better understand its phase-space
properties in a realistic tokamak configuration. We find a mechanism that permits rapid repeated chirping with strong amplitude variation
in each chirp. Each chirp is associated with an amplitude crash to low magnitude and local manipulation of the density gradients through a
shift of mode phase through p. The chirping produces high density clumps, which propagate down the fast ion density gradient and low
density holes that propagate up the density gradient away from the resonance. This flow of particles across the resonance provides an energy
source and local gradients for repeated chirping.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004610

I. INTRODUCTION

Chirping is a nonlinear resonance phenomenon that involves a
complex frequency modulation of a single Alfv�en mode, causing also
local particle distribution modification, observed experimentally in
many fusion devices1–10 and in other plasmas containing an inverted
high energy particle population.11 Predictions indicate that the occur-
rence of Alfv�en chirping cannot be ruled out in ITER.12 Chirping hap-
pens on a millisecond timescale and can cause the convective ejection
of fast ions in bursts, which can damage the vessel through a concen-
trated stream of highly energized impinging particles. It has been sim-
ulated using several codes.13–22 It is a good test for analytical models
and numerical simulation because of the complexity of the behavior.

An example of continuous multiple chirping on NSTX23 in shot
113201 is shown in Fig. 1. There is a rapid chirping of the mode fre-
quency, with the production of upward and downward excursions,
sometimes almost up–down symmetric and sometimes very one
sided.

The purpose of this paper is to employ a guiding-center code to
elucidate the complex underlying dynamics of the phase-space struc-
tures sustaining the chirps in realistic tokamak geometry. This type of
study has been carried out before in an idealized one-dimensional
bump-on-tail setting.24 Besides the motion of self-trapped holes and
clumps, we find a rich evolution pattern in the resonance island struc-
ture of the original eigenmode. At each chirp, the mode amplitude is
found to be subject to a massive crash in amplitude. By a phase shift of
p, the mode is able to tap the free energy stored in the gradients in the

vicinity of where the hyperbolic points were previously located, i.e., at
the edge of the former islands. The amplitude rebounds due to inverse
Landau damping with the elliptic island structure having a phase shift
of nearly p (with respect to the island structure before the amplitude
crash), with the shift maximizing the energy extraction by the mode.

In Sec. II, we review the guiding center formalism and the means
of advancing in time the Alfv�en mode amplitude and phase, as well as
the density modification produced by the mode. In Sec. III, we discuss
the properties of the mode-particle resonance responsible for the
chirping; in Sec. IV, we discuss details of the chirping; in Sec. V, we
present clump-hole formation; and in Sec. VI, the conclusion.

II. GUIDING CENTER FORMALISM

Chirping is common in discharges in which toroidal Alfv�en
eigenmodes (TAE) are excited. There is no need to select particular
equilibria or particle distributions to study this phenomenon, provided
the distribution has gradients to destabilize the TAE mode, damping is
strong enough to make the mode marginal, and collisions are weak.
We thus use a generic equilibrium and do not attempt to reproduce
specific examples of chirping seen in a particular device. The equilib-
rium and q profile used in this study are shown in Fig. 2. The q profile,
the local field line helicity, is a simple quadratic function of the minor
radius. The on-axis magnetic field was B ¼ 4:9 kG.

The equilibrium magnetic field is given by

~B ¼ grfþ Irhþ drwp; (1)
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where h and f are poloidal and toroidal coordinates and wp is the
poloidal flux, and in an axisymmetric equilibrium using Boozer coor-
dinates, g and I are functions of wp only. The perturbation has the
form d~B ¼ r� a~B and a and an electric potential U have the Fourier
expansions

a¼
X
m;n

Anam;nðwpÞ sinðXmnÞ; U¼
X
m;n

AnUm;nðwpÞ sinðXmnÞ; (2)

where n refers to a single mode with definite toroidal mode number n
and frequency xn, and the sum is over toroidal and poloidal harmon-
ics m with Xmn ¼ nf�mh� xnt � /n, with /n giving the time
dependent mode phase modification. For ideal modes, the electric

potential U is chosen to cancel the parallel electric field induced by
d~B=dt, requiring

X
m;n

xnBam;n cosðXmnÞ �~B � rU=B ¼ 0

to give in Boozer coordinates

ðgqþ IÞxnamn ¼ ðnq�mÞUmn:

The perturbation a is related to the ideal displacement~n, through25

amn ¼
ðm=q� nÞ
ðmg þ nIÞ n

w
mn:

The eigenfunctions produced with the code NOVA-K26 are normal-
ized with the largest harmonic nw

mnðwpÞ having maximum amplitude
1. Thus, the amplitude An is the magnitude of the ideal displacement
caused by this harmonic, normalized to the major radius R.

The equations of motion in Hamiltonian form are25,27

_h ¼ @H
@Ph

_Ph ¼ �
@H
@h

;

_f ¼ @H
@Pf

_Pf ¼ �
@H
@f

; (3)

where canonical momenta are

Pf ¼ gqk � wp; Ph ¼ wþ qkI (4)

andw is the toroidal flux, with dw=dwp ¼ qðwpÞ, the field line helicity,
and qk ¼ vk=B, with vk ¼~v �~B=B. The Hamiltonian is

H ¼
ðqk � aÞ2B2

2
þ lBþ U: (5)

The modification of the particle distribution by the mode is
carried out using a df formalism. Write the particle distribution as

FIG. 2. Equilibrium and q profile used in the simulations.

FIG. 1. Frequency spectrum of a sequence of chirps observed in NSTX in shot
113201 using Fourier integration.
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f ¼ f0 þ df , where the distribution in the absence of the modes f0 is a
function of energy E, magnetic moment l, and Pf and is independent
of time. Following particle orbits df =dt ¼ 0, and to order a,

d
dt

df ¼ �@Ef0 _E � @Pf f0 _Pf ; (6)

where we neglect changes in l since we are considering a collisionless
guiding center simulation. The numerically loaded and evolved distri-
bution function is gðwp; h; f; qk; tÞ with dg=dt ¼ 0. The distribution g
has the Klimontovich representation

gðwp; h; f;qk; tÞ ¼
X
j

dðwp � wp;jðtÞÞdðh� hjðtÞÞ

� dðf� fjðtÞÞdðqk � qk;jÞ; (7)

with j the particle index and df represented by

df ðwp; h; f;qk; tÞ ¼
X
j

wjdðwp � wp;jðtÞÞdðh� hjðtÞÞ

� dðf� fjðtÞÞdðqk � qk;jðtÞÞ: (8)

The particle weight w ¼ df =g and we find from Eq. (6),

dw=dt ¼ �ð1=gÞdf0=dt ¼ �ðf0=gÞdlnðf0Þ=dt
¼ �ðf =g � wÞdlnðf0Þ=dt (9)

and f/g is constant in time and given by the value at t¼ 0. Normally,
simulations assume that the initial perturbation of the distribution df
is zero, so initially, wð0Þ ¼ 0 for all particles.

Stepping equations for the mode amplitude and phase were pre-
viously derived,28,29

dAn

dt
¼ ��

2
A

Dnxn

X
j;m

wn;j qkB
2amnðwpÞ � UmnðwpÞ

h i
cosðXmnÞ � cdAn;

(10)

d/n

dt
¼ ��2A

DnxnAn

X
j;m

wn;j qkB
2amnðwpÞ � UmnðwpÞ

h i
sinðXmnÞ; (11)

with �A the Alfv�en frequency, Dn ¼ 4p2P
m

Ð
n2mnðwpÞdwp, j the par-

ticle index and wp; h; f the position, and qk the normalized parallel
velocity of particle j. Original derivations of these equations assumed
that the individual modes were orthogonal and normalized to one.
This is not the case with multiple poloidal harmonics, and Dn is
required. The modes are resonant with and destabilized by a high
energy injected beam or fusion alpha particles, so the particles refer to
high energy ions. The linear damping rate cd is due to the continuum,
trapped particle collisional damping, electron and thermal ion Landau
damping, and radiation, all terms in the sums are evaluated at the
coordinates of particle j, and wn;j is the df weight of particle j for
mode n. The damping is calculated by NOVA-K for simulating experi-
mentally observed chirps, but is a free input parameter for generic
cases not related to an experiment.

III. RESONANCE

For a single mode, the change in energy E and Pf due to the
mode are related, since ifH ¼ Hðnf�mh� xtÞ,

@fH ¼ �n@tH=x; ndE ¼ xdPf: (12)

Unperturbed orbits have toroidal and poloidal periodicities xf,
and xh, and the generalized resonance condition is that the mode
phase due to mode frequency x returns to the same value when a par-
ticle also repeats periodic motion,

lx ¼ pxh þ nxf; (13)

where l,m, p, and n are integers. Note that this p value is not the poloi-
dal mode number m of a perturbation—p is determined by orbital
dynamics, but for resonance with the mode, it is typically near a poloi-
dal harmonic m of the mode. For a TAE mode to be destabilized, this
frequency must match the frequency of a gap toroidal Alfv�en mode30

x ¼ VAðr0Þ
2Rqðr0Þ

; (14)

where the mode exists in the gap between modes with q ¼ m=n and
q ¼ ðmþ 1Þ=n and r¼ r0 with qðr0Þ ¼ ðmþ 1=2Þ=n, and VA ¼ B=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnimi
p

is the local Alfv�en velocity. For mode excitation, the drive
due to the local density gradient must be greater than the damping,
but for chirping to occur, the damping must also be large so the mode
is near marginal stability.

To find the form of the resonance, we examine a Poincar�e section
produced by this Hamiltonian. Set nf� xt ¼ 2pk with k integer to
produce the Poincar�e points and introduce a simple perturbation,
HI ¼ �Vcosðnf�mh� xt � /Þ. Since the Hamiltonian is quadratic
in the canonical momentum Pf, expand it around the value of Pf for
which the resonance holds, P0. We then have

H ’ c
ðPf � P0Þ2

2
� V cos ðmhþ /Þ; (15)

with c a constant depending on local equilibrium parameters.
In Fig. 3 are shown the resulting Poincare surfaces of particle

trajectories in the plane of Pf and Q ¼ phþ /, where we take P0 ¼ 0

FIG. 3. Poincar�e surfaces of a resonance in a tokamak produced by a mode depend-
ing on nf� mh� xt with Q ¼ phþ /, where p is an integer and / is a phase.
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for simplicity. Note that the Hamiltonian is time dependent, so E is
not conserved, and in fact through Eq. (12) the trajectories in the
energy variable have the same form as these in Pf. Thus, H in Eq. (15)
is no longer the Hamiltonian, which is time dependent, setting
H¼ const only defines the trajectories in the Poincar�e section.
Expanding near Q¼ 0, we have H ’ cP2

f=2� Vð1� Q2=2Þ and we
find this to be an elliptic point (the origin is H¼�V). Expanding
about Q ¼ p with dQ ¼ Q� p, we find H ’ cP2

f=2þ Vð1� dQ2Þ, a
hyperbolic point (the X point) and thus, the separatrix is given by the
linesH¼V. The width of the resonance is

dPf ¼ 4
ffiffiffiffiffiffiffiffi
V=c

p
: (16)

All particles within the separatrix are trapped in the resonance and cir-
culate around the elliptic point. As they do this, both the energy and
the canonical momentum Pf change periodically. Particles outside the
separatrix are not trapped, but they still experience change of Pf and
E, which is periodic and adiabatic. These particles stream to the right
for Pf > 0 and to the left for Pf < 0. All particles trapped in the reso-
nance have mean motion df=dh ¼ n=p.

To find the rate of rotation about the O-point and the streaming
velocity, use the fact that H¼ constant defines the Poincare surfaces,
so use dH=dt ¼ 0, giving

cðPf � P0Þ _Pf ¼ V sin ðQÞ _Q: (17)

However, _Pf ¼ �@fH ¼ nVsinðQÞ, giving for a particle trapped
within the resonance

_Q ’ n
ffiffiffiffiffiffiffiffi
V=c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðQÞ � cosðQ0Þ

p
; (18)

with Q0 the initial point of the trajectory. The time to complete an
orbit around the elliptic point is T ¼ 4

ÐQ0

0 dQ= _Q, giving

T ¼ 4

n
ffiffiffiffi
V
p

ðQ0

0

dQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðQÞ � cosðQ0Þ

p : (19)

For small Q0, this is T ¼ 4= n
ffiffiffiffiffiffi
2V
p� �

, and for Q0 ¼ p, the integral
diverges. The frequency about the elliptic point is proportional to the
island width, or the square root of the perturbation amplitude, and it
goes to zero as the separatrix is approached.

The dependence of the rotation rate on the distance from the
elliptic point means that if there exists an initial density gradient com-
plex mixing of the density occurs in the resonance interior, with the
mixing bringing domains of very different density in close proximity
and producing locally very strong gradients. Consider a point at the
high density side of the elliptic point at distance r from it and another
point on the low density side at distance r þ d from it. At these points,
the densities are very different, but in a few bounce times they will be
adjacent. Density gradients within the resonance approach infinity
everywhere. This leads to an irreversible flattening of the distribution
and an increase in entropy within the resonance within a few periods,
even with a low collision rate.

For a particle outside the separatrix, we have

_Q ¼ ncðPf � P0Þ ¼ 6n
ffiffiffiffiffi
2c
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H þ V cosðQÞ
p

: (20)

The streaming velocity is zero at the separatrix, H¼V, and increases
away from it, positive for P > P0 and negative for P < P0. Also, out-
side the resonance, the sheared rotation moves neighboring domains

past one another, but they differ only infinitesimally in density, so no
mixing is produced.

Additional small perturbations due to the presence of other
modes produce a narrow chaotic domain about the separatrix and the
hyperbolic point. Even if the resonance is large, this small broadening
of the separatrix is not easily visible in a Poincar�e section. It becomes
readily apparent when multiple resonances approach overlap.

IV. CHIRP SIMULATION

To carry out chirp simulations, the fast ion particle distribution is
constructed using a single value of the magnetic moment l, since it is
conserved in collisionless guiding center simulations, with a density
gradient, and with particles deposited along the line nE � xPf

¼ const, with the constant and the range of variables chosen to ensure
that the distribution covers the resonance. A small random spread of
particles around this line is allowed, since with mode frequency modu-
lation particles not exactly on the line are involved in mode resonance.
The density of the initial distribution f0 is large at small minor radius
(large Pf) and zero at the plasma edge (small Pf) so the initial gradient
is df0=dPf > 0. We choose a deuterium co-passing particle distribu-
tion with energy between 80 and 100 keV with lB ¼ 2 keV, and in the
following, density refers always to the high energy particle density, the
thermal plasma population only establishing the background
equilibrium.

The perturbation used was an ideal mode with poloidal and
toroidal mode numbers m=n ¼ 6=5 and the resulting resonance has
four poloidal elliptic points. Following an orbit at the resonance loca-
tion Pf ¼ 0:76, we find _h ’ 1:08� 106 and _f ’ 9:9� 105=s. The
mode has a frequency of 100 kHz giving x ¼ 6:28� 105=s, so we find
x ¼ p _h þ n_f with p ¼ �4; n ¼ 5.

The resonance is found using a kinetic Poincar�e plot, plotting
points only when a particle reaches a point with nf� xt ¼ 2kp with
k integer. The resonance is shown in Fig. 4 for A ¼ 10�4 (the ampli-
tude normalization is with respect to the major radius). Also shown is
the modification of the fast ion density df produced, where here the
variation df is given by the time evolution of the particle weights, and
this distribution is constructed with respect to the variable Pf, a con-
stant of the motion in the absence of the mode. The mode amplitude
and phase are held constant and the simulation advanced for 100
toroidal transits, to allow the weights to adjust to the perturbation. The
toroidal transit time of a characteristic particle in the distribution is a
convenient unit of time; in this case, the particle energy was 85 keV
and the transit time 4.7ls. We will refer to the resulting modification
of the fast ion density profile with the terms cavity and peak, to distin-
guish them from the clumps and holes produced outside the resonance
by the chirping process. The change in fast ion density results in a net
motion of particles downward in Pf, toward the plasma edge.

To study the time evolution of a chirp, we examine the ampli-
tude, growth rate, and mode phase as a function of time, and also find
detailed time evolution of the frequency spectrum and df. A chirp
occurs when an Alfv�en mode encounters low collisions and strong
damping. Initially, the mode grows, but with weak collisions unable to
reestablish the fast ion density gradient within the resonance, the
mode flattens the profile and the drive drops to zero. The damping
then ensures a collapse to a small amplitude (see, for example, Fig. 6).

Analysis of the mode frequency spectrum is done using the
Wigner distribution of quasi-probability22,31,32
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Wðt;xkÞ ¼
ðT
�T

U�ðt þ qÞUðt � qÞe�2ixkqdq; (21)

where we consider a single mode with frequency x and UðtÞ ¼ AðtÞ
½cosðxt þ /ðtÞÞ þ isinðxt þ /ðtÞ�. The spectrum given by xk is cho-
sen to span the mode frequency with a range large enough to include
the frequency modulation due to the chirps. We used 51 values of xk.
The frequency modulation consists primarily of the development of
sidebands, which depart from the main frequency. This nonlinear
analysis provides a more detailed picture of the spectrum than a sim-
ple Fourier decomposition.

The frequency modulation of one of the chirps studied in detail
is shown in Fig. 5. To obtain a good representation of this process
using the Wigner integral, one must experiment with the range of the
spectrum examined as well as the integration time. The integration
range used was nine toroidal transits and the frequency spectrum
included 20 percent variation both above and below the mode
frequency.

In Fig. 6 are shown the amplitude and the growth rate as a func-
tion of time. Four chirps are present, the strongest being the second
and third, with amplitude minima at about t¼ 55 and t¼ 65 transits.
The damping is seen to be equal to more than half of the value of the
initial growth rate.

In Fig. 7 are shown the frequency modulation and the mode
phase as a function of time, produced by the particle distribution
through Eqs. (10) and (11). The frequency modulation consists of
delta function frequency bursts, giving a phase change of approxi-
mately p at each amplitude crash when the amplitude reaches a small
value and the chirp occurs. Small fluctuations of density in the vicinity
of the hyperbolic points modify the shift to differ somewhat from p.
The amplitude does not reach zero, and in fact, the speed with which
the phase change occurs depends on the magnitude of the amplitude,
the change of p occurring more rapidly when the amplitude is smaller.

The changes at t¼ 40 and t¼ 73, where the minimum amplitude is
larger, are much slower than those at t¼ 55 and t¼ 65, corresponding
to the 1=A factor in Eq. (11).

The sign of the phase changes at successive chirps appears to be
random, probably produced by small density fluctuations near the
island hyperbolic points. The phase shift places the elliptic point of
the resonance at the previous location of a hyperbolic point, where the
particle gradient is a maximum, and strong growth resumes. The
growth following the collapse is stronger than the initial mode growth,
indicating that at the moment of amplitude crash the density gradient
at the initial hyperbolic point is even steeper than the original gradient.

FIG. 4. Resonance, A ¼ 10�4, and df produced, scale arbitrary.

FIG. 5. Frequency modulation during a chirp, showing the production of two side-
bands with frequency changes of about 15%.
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A small constant in time phase change has been subtracted in this plot
in order to clearly show the changes by p.

The development of the two sideband frequencies shown in
Fig. 5 occurs at the moment of amplitude minimum and phase shift,
t¼ 55. We note that phase shift has been observed in experimental
data33,34 as well as in simulations.35

We find it remarkable that the presence of a strong gradient near
the previous hyperbolic point can through Eq. (11) produce a rapid

shift of the mode to take advantage of this energy source. This cycle
can repeat indefinitely in simulations, and experiments often show con-
tinuous chirping during the whole time history of the Alfv�en mode.

V. CLUMP-HOLE FORMATION

To see the modification of the density profile, we follow the time
evolution of the density perturbation, df. This is done using the weight
w, by binning particles in two dimensions using Pf and h at Poincar�e

FIG. 7. Time evolution of frequency and phase, in units of toroidal transit times. A small frequency drift linear in time has been subtracted to show clearly the shift of approxi-
mately p at the amplitude minima.

FIG. 6. Time evolution of the amplitude A and the growth rate c. The mode amplitude experiences periodic crashes at each chirp. In the plot of c, the red line shows the net
growth including the mode damping and the black line represents c in the absence of damping. The growth rate after each crash is larger than the initial linear growth rate.
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times, insuring that particles have a fixed phase with respect to the
mode, nf� xt ¼ 2pk with k integer. One million particles were used
and data were collected at each toroidal transit, using 50 bins in each
variable. In the simulation shown, the first chirps occur at t ¼ 25; 36;
54; 68; 77, and 85 toroidal transits.

Examples of the evolution of df are shown in Figs. 8 and 9. The
simulation is for a time of 0.3 ms and includes several chirp events,
similar to what is shown in Fig. 1. The initial magnitude of df =f is
10�7 and indicates small density depletion near the elliptic points and
increase near the hyperbolic points, approximately equal in magni-
tude. For the full time history of the magnitudes, see Fig. 10.
Rotational motion about the elliptic points transfers the density max-
ima downward and the minima upward. As the upper low density
centers move to the right, they attach to additional small holes and
pull them upward. The maximum absolute magnitude of df =f in the
holes and in the clumps is approximately equal and approaches
4� 10�4.

After the initial formation, the clumps drift leftward and the
holes to the right, indicating that they are not attached to the reso-
nance elliptic and hyperbolic points. This motion is more rapid at the
times when the amplitude is a minimum, when the resonance width is
small and a chirp is produced. The drift motion agrees with Eq. (20).
After some toroidal transit times, the holes begin to drift upward and
the clumps downward away from the resonance. The maximum sepa-
ratrix width of the resonance is about dPf=ww ¼ 0:02, with ww the

poloidal flux at the last closed flux surface, so the holes and clumps are
self-organized density variations, drifting far from the resonance.

In Fig. 10 is shown the time history of the magnitude of the den-
sity perturbation as well as a history of the mean values of Pf in
clumps (df > 0) and holes (df < 0) showing steady motion of clumps
down the density gradient and the holes up the gradient. The plot was
obtained by finding the mean values of Pf,

Ð
PfdfdPfdh=

Ð
dfdPfdh

with the integrals restricted to domains with df positive for clumps
and negative for holes. The holes, moving into a region of high density,
are quickly dissipated by the sheared flow and cannot be followed very
far. The clumps, moving into low density, are very stable and move
toward the plasma edge.

In Fig. 11 is shown the time evolution of df around the maximum
mode amplitude occurring before a chirp. The shape and magnitude
of the cavity around Pf ¼ 0:8 and the peak at Pf ¼ 0:75 change little
in this period, the cavity broadening a little. There is a rapid sequence
of density fluctuations at the edges of the cavity and the peak present
at the time the mode reaches its maximum value, showing that small
scale density fluctuations, in addition to the large clumps and holes,
also give particle transport outward. This plot is made by binning par-
ticles using df every time step and accumulating the data for 1=10th of
a toroidal transit time to improve statistics. A total of 106 particles
were used and there are 100 bins in canonical momentum Pf. There
are also 100 time steps per toroidal transit, so there are 105 particles
per bin.

FIG. 8. Plots of df at t¼ 1, t¼ 24, t¼ 53, and t ¼ 84. Initially, df is 10�7, and indicates small fast ion density depletion near the four elliptic points and increase near the
hyperbolic points, extending vertically beyond the resonance. The maximum island width is only dPf ¼ 0:02. The color bar shows both positive and negative df, with the maxi-
mum absolute magnitudes approximately equal. The plots at t¼ 24, t¼ 53, and t¼ 84 occur just before chirps, and high density streamers extending vertically from the
clumps are visible. These occur at each chirp and are density peaks moving down to join the clumps.
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FIG. 9. Plots of df at t¼ 100, t¼ 120, t¼ 200, and t¼ 500. The holes propagate upward away from the resonance and are torn apart from the sheared flow, and the clumps
propagate downward, toward the plasma edge.

FIG. 10. Time evolution of the root mean square magnitude of df , with the clumps and holes approximately equal in magnitude. Also shown is a history of the mean values of
Pf in clumps (df > 0) and holes (df < 0) showing steady motion of the clumps down the density gradient. The holes move some distance up the gradient but are then
destroyed by the velocity shear and cannot be followed very far.
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The steady production of clumps moving outward radially and
holes moving inward produces a flow of particles across the resonance
and serves to provide the energy for the continuous periodic chirping.

VI. CONCLUSION

TAE mode chirping occurs when modes are near marginal stabil-
ity with weak collisions. The mode initially grows until it has flattened
the local density gradient sufficiently to eliminate the drive for growth.
Large damping causes the approach to amplitude maximum to be
very slow, and the continual strong resonance mixing causes excessive
density flattening. The damping then causes a crash of the mode
amplitude and a frequency chirp. At the amplitude minimum, there is
a rapid shift of the mode phase through p, occurring in a time of one
or two toroidal transits. When the mode has collapsed, the concentra-
tions of particles surrounding the resonance form clumps and holes.14

The shift of mode phase at the amplitude minimum places the elliptic
point at a strong density gradient and the resulting growth leading to
the next chirp is stronger than the initial linear growth rate of the
mode. The large scale clumps and holes produced by the rotational
transformation of initial weak density depressions and accumulations
occurring near the elliptic and hyperbolic points of the resonance
increase in magnitude, with the clumps moving outward and the holes
moving inward. A non-chirping TAE mode typically saturates in
amplitude, with particle collisions continually replenishing the density
gradient within the resonance, and the resonance mixing providing
the energy to balance the damping. The clump simulations are colli-
sionless, and the damping is large. The continuous production of
clumps and holes produces a net flow of particles down the density
gradient across the resonance and supplies energy to drive the
chirping.
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