

Supported by

University of Washington Activities in CHI and DM Research on NSTX-U & CHI on QUEST

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI **Princeton U Purdue U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

R. Raman University of Washington / NSTX-U

Supporting Personnel Thomas R. Jarboe (Prof. & Co-Pi), Brian A. Nelson (Research Prof.) John Rogers (Engineer) Wei Siang Lay, Gary Plunkett (UW students) N. Hamada (QUEST student to be attached to NSTX-U)

This work is supported by US DOE contract numbers DE-SC0006757 and DE-AC02-09CH11466

> NSTX-U Q2 Review 24 April 2015

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep U Quebec

U-Wash. Research is Responsible for Three Large Systems

- Transient Coaxial Helicity Injection (CHI) on NSTX-U
 FY15 goal: Establish Transient CHI start-up on NSTX-U
- Disruption Mitigation (DM) Studies on NSTX-U
 - FY15 goal: Establish MGI capability on NSTX-U
- CHI Research on QUEST (Kyushu University, Japan)
 - FT15 goal: Test CHI hardware on QUEST
- Planned Near-Term Goal (FY16 and beyond)
 - Build and Test EPI (Electromagnetic Particle Injector) system at U-Wash., for eventual use on NSTX-U
- Desired Longer-Term Goal (FY18 and beyond) See back-up slides
 - Restore and make operational CT injection system for eventual tests on NSTX-U

NSTX-U Aims to Develop and understand non-inductive start-up/ramp-up to project to ST-FNSF operation

- Establish physics basis for ST-FNSF, and non-inductive startup is essential in ST
 - Simplify the tokamak concept to reduce cost
- NSTX-U is striving for fully noninductive operations
 - Transient Coaxial Helicity Injection (CHI) start-up is the front end of that objective
 - Plasma guns and EWB will be tested after those systems are technically ready

NSTX-U Upgrades that Facilitate CHI Start-up

NSTX-U Machine Enhancements for FY15 CHI

- > 2.5 x Injector Flux in NSTX (proportional to I_p)
- About 2 x higher toroidal field (reduces injector current requirements)

🔘 NSTX-U

Significant changes to CHI Configuration on NSTX-U Requires Re-Establishing CHI Discharges as a First Step

- Inner and outer electrode gap reduced on NSTX-U
 - More prone to undesirable arcing
 - Need to establish correct levels of gas injection, voltage & flux shape programming, and levels of required current in PF1CU
- Initial plan is to start with large injector flux and demonstrate reliable discharge initiation in injector region
 - This will be the CHI XMP
 - In support of this, the CHI Cap Bank has been dummy load tested at 25% voltage, which verifies that key components in Cap bank are operational
 - Full voltage test to be conducted after CD4
- XMP will be followed by main CHI XP
 - Goal is to re-establish high-current discharges demonstrated on NSTX

TSC Simulations for NSTX-U support our understanding that NSTX-U is capable of 400 kA start-up currents

0 NSTX-U

Raman – DOE 24 April 2015

NSTX-U MGI will study poloidal injection location variation using identical MGI valves and gas transit piping

• Asses benefits of injection into the private flux region & the high-field side region vs. LFS mid-plane

- 1a: Private flux region
- 1b: Lower SOL, Lower Divertor
- 2: Conventional mid-plane
- 3: Upper divertor
- 4: Future installation

Off-line MGI Studies will Contribute to MGI Valve Development in support of NSTX-U and ITER

MGI valve design based on TEXTOR / JET MGI concept

Version 3

New double solenoid MGI design – V3 (zero net J x B torque) based on ORNL ITER MGI concept

Understand Reliability and Magnetic Field Limits on Valve Operation

G. Plunkett, W-S Lay

CHI Research on QUEST (Kyushu University, Japan)

- Test ECH heating of a CHI Target (in support of NSTX-U CHI)
 - QUEST is equipped with 400kW ECH
- Test CHI start-up using metal electrodes (in support of NSTX-U CHI)
 - Clean metal electrodes should reduce low-Z impurity influx
 - Reactors will use metal divertor plates
- Test CHI start-up in an alternate electrode configuration that may be more suitable for a ST-FNSF installation
 - CHI insulator is not part of a vacuum system (see ST-FNSF design studies paper)

CHI Design Studies for ST-FNSF have Identified Two Designs with > 2MA Start-up Current Generation Potential

Concept – I (NSTX-like)

*Blanket modules and piping insulated from rest of vessel

Concept – II (QUEST-like)

Toroidal electrode on top of blanket structure, analogous to CHI ring electrode previously used on DIII-D

NSTX-U T. Brown, PPPL (Insulator Design) Raman – DOE 24 April 2015

Final CHI Design, and Photo of Installed Electrodes (Jan 2015)

Linear Rail Gun is Especially Well Suited for Operation in High-Ambient Magnetic Fields

Planned Near-Term Goal* (FY16 and beyond)

- 1. Off-line test at U-Washington of Low-power system to confirm velocity parameters and system time response time
- 2. Low-power system installation on NSTX-U, other tokamaks
- 3. Continue off-line tests with a medium-power system for development towards a ITER high-power configuration
 - Increase EPI energy
 - Test injection through curved guide tube
 - Pellet design improvements needed for both EPI and Shell Pellet

*Need additional resources

Scoping Studies Suggest that an EPI Installation on ITER should be feasible*

In FNSF, inclusion of EPI from early design phase should allow installation closer to the wall to benefit from high toroidal field

> * Based on three design review meetings with the US ITER group

Acknowledgments: J.E. Menard, M. Ono, S.P. Gerhard, L. Baylor, D. Rasmussen, M. Lehnen, R. Feder, G. Loesser, V. Barabash, R. Pitts

UW Research on NSTX-U Aims to Develop Capability for Solenoid-free plasma start-up, and MGI and EPI Technologies in Support ITER and FNSF

- CHI research on NSTX-U aims to extend the plasma current start-up magnitude to levels that allow full non-inductive current ramp-up
- UW responsible CHI on QUEST, to study CHI design for FNSF & provide supporting technical data for future NSTX-U CHI upgrades
- ITER-type <u>off-line</u> MGI valve development aims to understand reliability and magnetic field limits on reliable valve operation
- ITER-type MGI valve will be used on NSTX-U in a configuration to do exact comparison experiments
 - Same valve & piping configuration at each poloidal location
- The EPI system has several attractive features
 - Rapid delivery of impurities deeper into plasma with fast time-response
 - Efficiency of system improves in a magnetic field environment
 - Well suited for long stand-by mode operation (single power supply and no moving parts in system)
- ST & Tokamak based reactors would significantly benefit from precise core fueling and toroidal momentum injection
 - NSTX-U is an ideal test bed for developing the CT injection capability

Back-up Slides

CHI start-up to ~0.4MA is projected for NSTX-U, and projects to ~20% start-up current in next-step STs

Parameters	NSTX	NSTX- U	ST- FNSF	ST Pilot Plant
Major radius [m]	0.86	0.93	1.2	2.2
Minor radius [m]	0.66	0.62	0.80	1.29
B _T [T]	0.55	1.0	2.2	2.4
Toroidal flux [Wb]	2.5	3.9	15.8	45.7
Sustained I_p [MA]	1	2	10	18
Injector flux (Wb)	0.047	0.1	0.66	2.18
Projected Start-up current (MA)	0.2	0.4	2.0	3.6

Injector flux in NSTX-U is ~ 2.5 times higher than in NSTX \rightarrow supports increased CHI current

Transient CHI Scaling: Generated Toroidal Current is proportional to Injector Flux

NSTX-U Plans for Disruption Mitigation Studies

1. Massive Gas Injection (MGI) studies in NSTX-U will initially study effect of poloidal injection location variation

- Will consider, and if desirable, implement additional MGI valves at different toroidal locations (for FY16 and later)

- 2. <u>Off-line MGI studies at Univ. of Washington will contribute to MGI valve</u> development (provide results to ORNL)
- 3. Electromagnetic Particle Injector (EPI) will develop capability for fast time-scale impurity injection into a tokamak plasma (need additional resources)
 - Off-line development work to develop NSTX-U injector
 - Then use injector on NSTX-U and/or another tokamak
 - Continue <u>off-line</u> work for ITER/FNSF relevant injector development

Initial Studies

- Compare mid-plane and PFR locations, and lower divertor location, for gas assimilations studies using identical gas injection set-up
 - Asses benefits of lower divertor injection (provide radiative mantle to a VDE)
 - Optimum poloidal injection location for minimizing damage from VDEs
- Measure radiated power profiles, divertor heat loads and currents in divertor tiles, and compare to unmitigated discharges

Later Studies

- Use FY15 result to asses need for other injection locations
- Proximity of q=2 surface to plasma edge
- Pre-existing MHD in discharges, and other studies
- Aspect ratio comparison studies with DIII-D

CHI Implementation on Quest Requires Electrodes that can be Intersected by Poloidal Flux

🔘 NSTX-U

Photos of Primary CHI Insulators (US Contribution), and part of electrodes (Japanese Contribution)

Location of Power Supply for CHI

Expect CHI Capability on QUEST in 2015

- CHI insulators (provided by U-Washington) and electrodes successfully fabricated and installed on QUEST
 - The QUEST CHI electrode design is similar to one of the CHI configurations we are considering for a ST-FNSF
- Capacitor bank*, gas injection system and voltage snubber to be installed during the next few months (Univ. of Wash. contribution)
- Initial experiments will test voltage hold-off (2015)
- After that the goal is to reliably grow the CHI plasma into the vessel, and avoid absorber arcs (2016)
- Successful growth of the CHI plasma in combination with clean electrodes will allow closed flux surfaces to form, which will be studied and compared to results from NSTX, HIT-II and HIST, using ECH & metal electrode capability in QUEST

Capacitors provided by PPPL

Initial Electromagnetic Particle Injector Concept Motivated by Prior Experience with CT Injector

EPI injector propels solid material projectile & contains 1 electrical system

1) Acc. cap. bank (1 ms time scale) 2-5 kV

CT injector propels plasma armature and contains 4 electrical systems

- 1) Gas Valves (10 individual valves)
- 2) Bias solenoid
- 3) Formation cap. bank (20 µs time scale)
- 4) Acc. cap. bank (10 µs time scale) ~ 40 kV

CT Injector on TdeV

Г

Linear Rail Gun is Especially Well Suited for Operation in High-Ambient Magnetic Fields

Planned Near-Term Goal* (FY16 and beyond)

- In a simple rail gun, the magnetic field is produced by the current flowing along the rails
- To increase the JxB force accelerating the projectile, the current along the rails needs to be increased
- An important advantage of a linear rail gun is that the ambient magnetic field in ITER can be used to increase the gun efficiency
- Injector can to be positioned very close to the vessel, which further improves the system response time and efficiency

*Need additional resources

Initial Test Configuration will Accelerate 1 to 2g payloads

Rails will be sandwiched between insulating plates with small hole optical access to track projectile motion with fast photo diodes

Primary Components of an EPI System for ITER

Raman – DOE 24 April 2015

Small, 20mF, 1.5kV capacitor bank allows test of a NSTX-U/DIII-D relevant injector

NSTX-U DM Research Aims to Develop MGI and EPI Technologies in Support ITER and FNSF

- ITER-type <u>off-line</u> MGI valve development aims to understand reliability and magnetic field limits on reliable valve operation
- ITER-type MGI valve will be used on NSTX-U in a configuration to do exact comparison experiments
 - Same valve & piping configuration at each poloidal location
- Similar plasma poloidal size and shape on DIII-D and NSTX-U allows multimachine comparison studies
 - FY15 will focus on enabling MGI capability
 - FY16 and beyond will focus on more detailed studies
- The EPI system has several attractive features
 - Rapid delivery of impurities deeper into plasma with fast time-response
 - < 5ms from trigger to delivery at 7m from plasma
 - ~ 2ms delivery time, if installed closer to vessel (FNSF)
 - >10ms for Shell Pellet (>20ms for high-Z MGI)
 - Efficiency of system improves in a magnetic field environment
 - Well suited for long stand-by mode operation (single power supply and no moving parts in system)

Desired Longer-Term Goal (FY18 and beyond)

Restore and make operational CT injection system for eventual tests on NSTX-U

Need significant additional resources for this activity

In Tokamak/ST based Reactors, Flexible Fueling System may be the Only Choice for Density Profile, and providing Rotation and Rotation Shear

- A flexible fueling system is all that a DEMO device may be able to rely on to alter core plasma conditions (in addition to a small fraction of external current drive)
- In a device with high bootstrap current fraction, optimized density and pressure profiles must be maintained
- Toroidal rotation and rotation shear is necessary for maintaining MHD stability and reducing anomalous transport, but ITER and AT/ST DEMO may have low toroidal rotation

Supported by

NSTX-U Project / Facility Status

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

0 NSTX-U

Masa Ono and Jon Menard

for the NSTX-U Team

NSTX-U FY 2015 Q2 Review Meeting April 24, 2015

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Tsukuba U Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH SNU ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

M. Ono NSTX-U FY 2015 Q2 Review

Outline

- Preparation toward Operation
- Research Operations Plan
- Research facility / diagnostic enhancement activities
- Incremental budget
- Summary

NSTX-U Construction and ISTP completed CD-4 plasma operation starting today

M. Ono NSTX-U FY 2015 Q2 Review

NSTX-U ISTP was completed successfully CD-4 Plasmas should be achieved soon

- The NSTX-U Activity Certification Committee (ACC) has completed its review of operational readiness on April 10, 2015.
- The NSTX-U operations safety certificate was issued on April 10.
- The center-stack bake was performed over weekend, April 10 -12.
- The NSTX ISTP has started on April 16.
- Magnetic calibration performed utilizing ISTP single coil pulses.
- Magnetic reconstruction codes LRDFIT and EFIT are both exercised
- DCPS has been exercised and working very reliably.
- With the CD-4 achievement now imminent, we are updating the detailed plan toward research operations.

New Digital System Provides Comprehensive Coil Protection Protects NSTX-U machine against electromagnetic loads

Computes forces and stresses in real-time based on reduced models of the full mechanical structure

Redundant systems: both systems are ready for CD-4!

System #1 is used during rectifier dummy-load testing and ISTP, ready fo CD-4 plasma ops.

System #2 is also exercised and ready to support CD-4 and beyond.

Full commissioning system will be a key part of early operations and it is working very well!

5
Post CD-4 / Pre-research operation activities

Critical period to prepare for research operations

Apr. 2015	May 2015			June 2015		July 2015				
	Bakeout	ISTP		Commissioning	ch Plasma Operation					
CD4	/	MPTS	R&R							
Activities before baked MPTS Input / exit flight MPTS Initial Stray light Bakeout system for MF tubes Complete shutter actua IR Cameras Bakeout connections to	tubes Assess. PTS flight ation o inbd. div.	Needed for commissioning "Injector 4" puff valve Boronization GDCs MAPP Zeus, LoWeuS, MonaLisa Fast Mirnov DTACq Midplane Bolometer EIES & Filter scopes 2nd plasma TV VIDE DIMEOther priori LITER brac SGI Divertor Inj CHI injecto MGI								
Ip Calculator + Perm Generator Testing PF-1a, PF-1c, PF-2 D FCC DCPS Watchdog Interface to L1 Fault HF+SPA testing	issive L testing g Timer System	MPT N2 R Repo Wind calib prob	S R& amai eat w dow c pratio pe.	R: n and Rayleig ith Argon chromatic n with in-situ	Jh					
NSTX-U	M. Ono NS	TX-U FY 20	15 Q2 R	eview		April 24., 2015				

Five Year Facility Enhancement Plan (green – ongoing) Engineering design for ECH, Cryo-Pump and NCC performed in 2015

M. Ono NSTX-U FY 2015 Q2 Review

NSTX-U diagnostics to be installed during first year

All center stack sensors mounted & ex-vessel terminations in progress

MHD/Magnetics/Reconstruction

Magnetics for equilibrium reconstruction Halo current detectors High-n and high-frequency Mirnov arrays Locked-mode detectors **RWM** sensors

Profile Diagnostics

MPTS (42 ch, 60 Hz) T-CHERS: $T_i(R)$, $V_{\phi}(r)$, $n_C(R)$, $n_{Li}(R)$, (51 ch) P-CHERS: $V_{\rho}(r)$ (7¹ ch) MSE-CIF (18 ch) MSE-LIF (20 ch) ME-SXR (40 ch) Midplane tangential bolometer array (16 ch)

Turbulence/Modes Diagnostics

Poloidal FIR high-k scattering (installed in 2016) Beam Emission Spectroscopy (48 ch) Microwave Reflectometer, Microwave Interferometer Ultra-soft x-ray arrays – multi-color

Energetic Particle Diagnostics

Fast Ion D_{α} profile measurement (perp + tang) Solid-State neutral particle analyzer Fast lost-ion probe (energy/pitch angle resolving) New capability, Neutron measurements Enhanced capability Charged Fusion Product

Edge Divertor Physics

Gas-puff Imaging (500kHz) Langmuir probe array Edge Rotation Diagnostics (T_i, V_{ϕ}, V_{pol}) 1-D CCD H_{α} cameras (divertor, midplane) 2-D divertor fast visible camera Metal foil divertor bolometer **AXUV-based Divertor Bolometer** IR cameras (30Hz) (3) Fast IR camera (two color) Tile temperature thermocouple array Divertor fast eroding thermocouple Dust detector Edge Deposition Monitors Scrape-off layer reflectometer Edge neutral pressure gauges Material Analysis and Particle Probe **Divertor VUV Spectrometer**

Plasma Monitoring

FIReTIP interferometer Fast visible cameras Visible bremsstrahlung radiometer Visible and UV survey spectrometers VUV transmission grating spectrometer Visible filterscopes (hydrogen & impurity lines) Wall coupon analysis

Multi-Pulse Thomson Scattering System New pulse burst MPTS system being prepared

- Realignment of MPTS nearing completion
- 42 spatial channels improved spatial resolution in pedestal
- Plan to have MPTS ready for calibration in May, 2015
- Pulse burst MPTS (Early Career Research Proposal Award) to be available for FY 2016 The 2nd year progress report submitted.

Comprehensive Boundary Physics Tools Boronization, Lithium Evaporators, Granule Injector, High Z tiles

∭NSTX-U

M. Ono NSTX-U FY 2015 Q2 Review

10

High-Z Tile Design Progressing (plan to be ready by Jan. 2016)

- WAF (work authorization form) is complete, waiting for review & signature
- WP (work package) Form is complete
- System Design Document (SDD) 1st draft is complete, a review meeting planned in May.
- Initial tile analysis is 75% complete
 - Thermal, EM & Structural, Combined Load Case
 - Will produce a calculation sheet.
- After analysis complete, a CDR/Manufacturing Readiness Review (MRR) will be held in May
 - Will present design & analysis results to determine material selection & lead the way for raw material selection & purchase (long lead item).
 - This will also serve to fully define the project's scope.

Divertor Cryo-pump Physics Design Activities Started Develop engineering design and cost/schedule this year

- Several options for the cryo feed line considered and made some key decisions:
 - The size of the liquefier determined.
 - Bay"D" bottom port identified as the candidate access port for the LN/LH feedthrough, which allows us to finalize the route for the transfer lines.
- We will be starting the divertor conceptual design.
- Design review schedule to follow this outline:
 - System level CDR soon (mid summer).
 - Break out PDRs and FDRs for the other elements as needed to support procurements and installations (cost and schedule).
 - Hold integrated system FDR prior to commissioning.
 - Liquid He system is identified as a long lead item
 ~ 18 months.

NCC Coils Design Activity Started Develop engineering design and cost/schedule this year

- Square and round cross-section conductors are considered. The selection criteria include thermal capability, manufacturability, impact on interfacing objects, fabrication lead time and cost.
- Helium and water cooling systems are being quantified. Water can cool faster but maybe riskier for use inside the vacuum vessel.
- A WAF estimate (cost and schedule) will be prepared as part of the CDR which is targeted for September 2015.

NCC to be installed in front of the primary passive plates and behind the graphite tiles

Good progress made in design and analysis

28 GHz ECH System Design Activity Started Develop engineering design and cost/schedule this year

- CHI can form a 200-400 kA seed plasma, but it is too cold for HHFW absorption.
- Use of ECH can "bridge the T_e gap" to where HHFW and then NB current drive can support the ramp and sustain the current – crucial for OH solenoid-free compact STs.
 - Good first pass absorption predicted.
- Goal of first ECH power in 2017 run with 15% incremental funding.

28 GHz 1 MW

- Gyrotron will be located in the TFTR basement.
- The revised waveguide path passes through the NSTX area floor near the corner of NSTX-TFTR door and South side of the Shield Wall.
- A commercial waveguide manufacturer was contacted and expect be able to complete the list of the components we need for our NSTX-U 1+ MW ECH waveguide system.

NSTX FY 2017 FWP Budget Summary (\$M) Incremental budget enables full 5 year plan implementation

	FY2014	FY2015	FY	2016			FY2017			
Budget Cases	BA	BA	Base Base+15%		Warm Shutdown	Base-5%	Base	Base+10 %	Full/15%	
Run Weeks	0	12	14	16	0	12	14	16	16	
Facility Ops	\$17.02	\$31.46	\$32.73	\$33.28	\$24.12	\$31.44	\$31.44 \$32.36		\$32.91	
Facility Enhancements	\$0.86	\$6.96	\$4.13	\$11.53	\$0.00	\$3.54 \$4.11		\$8.13	\$11.41	
CS & 2nd NBI	\$23.70	\$1.77	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
Facility Total	\$41.58	\$40.19	\$36.86	\$44.81	\$24.12	\$34.98	\$36.47	\$41.04	\$44.32	
DDDI Besearch	\$10.41	\$14.22	\$1 <i>4 4</i> 2	\$14.88	\$12.66	\$13.66	\$14.78	\$15 44	\$15.44	
Collab Diag Interf	\$0.40 \$2.48		\$1.00	\$1.10	\$0.00	\$1.03	\$1.03	\$1.03	\$1.03	
Collaborations	\$9.95	\$9.25	\$9.25	\$10.18	\$7.40	\$8.79	\$9.25	\$10.18	\$10.18	
Science Total	\$20.76	\$25.95	\$24.67	\$26.16	\$20.06	\$23.48	\$25.06	\$26.65	\$26.65	
NSTX-U Total \$M \$62		\$66.14	\$61.53	\$70.97	\$44.18	\$58.45	\$61.53	\$67.68	\$70.97	
NSTX-U/PPPL Total FTEs	150	158.6	141.3	152.3	107	134.1	139.4	150	157.6	

- FY2015 EXCLUDES ~ \$2.2M set aside for GPP
- FY2015 Facility Enhancements budget enables implementation of 5 year plan and also includes BASE Program Activities (dTMB & OH Clg Water preheater)
- President's base budget in FY 2016 2017 enables NSTX-U base operation schedule and perform one five year plan major facility enhancement.
- 15% incremental budget enables optimal NSTX-U operation and implementation of all three five year plan major facility enhancements.

Incremental FWP Budget Summary (\$M) Incremental budget enables full 5 year plan implementation

All Values sho	wn in Millions									
		FY15	FY16	FY16	FY17	FY17I	FY17I			
		BASE	BASE	+15%	BASE	+10%	+15%			
Increased Run	-Week (2)			\$0.55		\$0.56	\$0.56			
Facility Enhan	cements							Pre-Concep	otual Design	Estimates
	High Z Tiles	\$0.88	\$0.32					\$1.2		
	LDC	\$0.82	\$3.75		\$3.54			\$8.1		
	ECH	\$1.65		\$5.70		\$2.73	\$2.73	\$10.1		
	NCC	\$0.78		\$1.70		\$1.28	\$4.57	\$7.0		
PPPL Research	1			\$0.46		\$0.66	\$0.66			
Collab Diag Int	terf			\$0.10						
Collaborations				\$0.93		\$0.93	\$0.93			
TOTAL		\$4.13	\$4.07	\$9.44	\$3.54	\$6.15	\$9.44			

- The additional run week estimate is ~ \$275K/week based on latest estimate of power usage, consumables and overtime once.
- The facility enhancements incremental request is based on pre-conceptual estimates for each system. More accurate cost and schedule should be available in September, 2015 after the engineering design work.
- For NSTX-U/PPPL research, incremental funds in FY16 and FY 17 will support a post-doc on liquid metal/surface science, to continue the ongoing effort of theory support. In F17, the increased can fund one more post-doc or to support promoting one of our current post-docs to research staff.
- In collaborator interface in FY16 was increased 10% to cover additional engineering support for collaborators.
- Our collaborators budget was increased by 10% (+\$0.93M) in each year.

Summary of Facility and Diagnostics Preparation toward NSTX-U Operation

- NSTX Upgrade Project has entered the final phase. Integrated Systems Test Procedures completed and the plasma operation toward CD-4 is beginning today.
- Research operation schedule / commissioning Presently planning to start research plasma operation in late June, 2015. Working toward minimizing the research prep time (~ 2 months) after CD-4.
- Diagnostic Enhancements / Commissioning are progressing well. All of the planned diagnostics should be available during the first year of plasma operations.
- Boundary Physics Enhancement / Preparation is going well (lithium and boronization).
- Engineering design work has started for the major facility enhancements: high-Z tiles, divertor cryo-pump, ECH, and NCC.
- Incremental budget enables full research operation and 5 year plan facility/diagnostic enhancements.

Enhanced Capability for PMI Research Multi-Institutional Contributions

Disruption and Plasma Control Tools for NSTX-U Massive gas injection system for disruption mitigation study

FY 2015-16:

- Multi-poloidal location massive gas injector system for disruption mitigation will be implemented to test the efficiency vs location. U. Washington
- A Real-Time Velocity (RTV) diagnostic will be incorporated into the plasma control system for feedback control of the plasma rotation profile.

Solenoid-free start-up in support of ST-FNSF NSTX-U CHI configuration permits ~ 400 kA level start-up

FY 2015 - 2016 Non-Inductive Start-up Systems Design for Post-Upgrade Operations

- CHI will start with the present 2 kV capability then enhanced to ~ 3 kV higher voltage as needed.
- PEGASUS gun start-up producing exciting results Ip ~ 160 kA. The PEGASUS gun concept is technically flexible to implement on NSTX once fully developed. High voltage gun for the NSTX-U will be developed utilizing the PEGASUS facility in collaboration with University of Wisconsin.

HHFW to Support Current Ramp-up Research Efficient electron heating and CD even at low Ip

New Compliant Antenna Feeds Allow HHFW antenna feedthroughs to tolerate 2 MA disruptions

- Prototype compliant feeds tested to 46 kV in the RF test-stand. Benefit of back-plate grounding for arc prevention found.

- RF diagnostics also installed.

Antennas were re-installed with the new feeds and back-plate grounding

Remaining tasks: Energize RF power supplies in May to be ready by June. Higher B_T should improve heating efficiency

Flexible Mid-Plane Feedback Coils for MHD Studoes NCC will greatly enhance MHD physics studies and control

- 6-channel Switching Power Amplifier (SPA) powers independent currents in existing EFC/RWM and NCC coils.
- NCC (a facility enhancement) can provide various NTV, RMP, and EF selectivity with flexibility of field spectrum ($n \le 6$ for full and $n \le 3$ for partial)

Base – Engineering design work on NCC to be performed in 2015. 10% incremental funding enables start of procurement in FY 2016 and installation in FY 2017 to be available in FY 2018.

Enhanced turbulence diagnostics will give comprehensive view

MSE-CIF and MSE-LIF will provide Er information

MSTX-U

Enhanced FIDA will measure NBI distribution function For NBI fast ion transport and current drive physics

Fast Ion D-Alpha Diagnostics

- Both vertical (perpendicular) and new tangential (parallel) FIDA systems are ready.
- Both FIDA systems have 10 ms, 5 cm, ≈ 10 keV resolutions.

FY 2015 - 2016 Energetic Particle Conceptual Design and Diagnostic Upgrade

- SS-NPA enhanced due to removal of scanning NPA (neutral particle analyzer).
- sFLIP is installed for lost ion measurements
- Active 2 X 2 TAE antennas installed. Initially passive spectroscopy then active excitation at few kW level.
- Proto-type charged fusion product (CFP) profile diagnostic to be installed this year.

20

60

ENERGY (key)

80

100

Supported by

NSTX-U Program - FY2015 Q2 Report

Jon Menard, Masa Ono For the NSTX-U Team

> PPPL and FES April 23, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati **CEA**, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep

*This work supported by the US DOE Contract No. DE-AC02-09CH11466

• Research highlights for Q2

• Preparation for 2015 run campaign

Highlights of the Macroscopic Stability TSG for FY15-Q2

- Seven leadership positions in the 2015 FES Workshops, five presentations at the Transients Workshop, many whitepapers
- 37 experimental proposals received for FY15 NSTX-U run, 20 of those awarded 10 run days in priorities 1, 2 and cross-cutting time
- Disruption Prediction, Avoidance, and Mitigation Working Group established to understand and reduce disruptions in NSTX-U
- Two posters presented at the Sherwood Fusion Theory Conference
- One paper submitted to PPCF and one accepted by PRL

ITER "Proto-Type-like" MGI Valve Developed, **Tested, and Delivered** to NSTX-U to Support FY15 MGI Studies

Fluid no wall

Kinetic

1.1

Wana

NSTX-U

NSTX-U Macroscopic Stability group has very strong participation in FES Community Planning Workshops

• Leadership:

- D.P. Brennan: co-lead of Transients panel "Preventing device damage from disruptions" and of Integrated Simulations panel "Disruption prevention, avoidance, and mitigation"
- S.A. Sabbagh: lead of Transients sub-panel "Disruption Prediction"
- D. Gates: co-lead of Transients sub-panel "Disruption Avoidance" (also S.A. Sabbagh, S.P. Gerhardt, and E. Koleman member of that sub-panel)
- S.P. Gerhardt: member of Integrated Simulations panel "Disruption prevention, avoidance, and mitigation"
- R. Raman: member of Transients sub-panel "Disruption Mitigation"
- J.-K. Park: member of Transients sub-panel "ELM Suppression or Mitigation with Resonant Magnetic Perturbations"

• Transients Workshop, March 30 – April 1, 2015

- S.A. Sabbagh: "Disruption Prediction sub-panel status"
- Z.R. Wang: "The drift kinetic and rotational effects on determining and predicting the macroscopic MHD instability"
- D.P. Brennan: "Outstanding theory and modeling needs for validated predictive modeling of disruptions"
- R. Raman: "Outstanding Issues for ITER and FNSF, NSTX-U MGI and EPI, Plans and Key Contributions to Mitigation"
- J.-K. Park: "Filling the gaps in physics understanding of resonant magnetic perturbations with spherical tokamaks"

White Papers (see above + below)

- S.A. Sabbagh et al., "A National Initiative for Disruption Elimination in Tokamaks (Brief summary)"
- J.W. Berkery and S.A. Sabbagh: "Disruptivity Reduction Plan for NSTX-U, Including Characterization of Causes and Implementation of Kinetic Stability Theory Models"
- S.P. Gerhardt and J.W. Berkery "Improving Understanding of 3D Disruption Halo Currents"
- Many more...

NSTX-U FY2015 Q2 Report

NCC Physics Design nearing completion: Optimization for NTV braking has been performed with IPEC coupling matrix

- NCC and midplane coils can be combined to remove the dominant resonant modes up to the second, giving the optimized NTV for core
 - NCC 2x12 provides n=1,2,3,4,6 optimized NTV, and 2x6 provides n=1,2,6
 - Optimized NTV can be used to control local torque with minimized resonance

Study of RMP characteristics with NCC extended with TRIP3D (T. Evans, GA) – 2x12 NCC (and 2x7) favorable for RMP

- Vacuum Island Overlap Width (VIOW) analysis shows full NCC 1kAt can produce sufficient VIOW in a wide range of q₉₅, but partial NCC needs more currents with low q₉₅ targets
 - Also shows 2x7, with "one" more additional array upon partial NCC can provide the greater VIOW by toroidal coupling (n=2,4,9)

🔘 NSTX-U

Transport and Turbulence group investigating ST and AT transport through wide range of collaborations

- Collaboration on NSTX high-k analysis and ETG simulations (Ruiz, White MIT; Ren, Guttenfelder – PPPL)
 - Observed linear and nonlinear stabilization effects of density gradient on electron-scale turbulence in a set of NSTX H-modes; MIT student masters thesis and paper in preparation
- Investigating role of Kelvin-Helmholtz and collisional TEM turbulence in NSTX confinement (Wang, PPPL theory)
 - Invited talk at IAEA-TM on Theory of Plasma Instabilities
- Collaboration on DIII-D transport analysis (Guttenfelder, Grierson PPPL; Ernst MIT; Burrell, Rhodes, Garofalo, Staebler – GA)
 - Investigating role of rotation and finite beta in deep core of QH-modes and high- β_p H-modes; to be presented at US-EU TTF 2015 (Salem, MA)
- New UCLA graduate student (S. Tang, w/ N. Crocker, from Dec. 2014), investigating GAE & CAE activity and their role in core energy transport in NST
- Additional papers published, in review
 - IAEA NSTX Overview paper [Kaye, Nucl. Fusion 55, 104002 (2015)]
 - Observation of nonlocal turbulence and transport in NSTX (Ren, Phys. Plasmas, in review)
 - Influence of centrifugal effects on impurity and momentum transport in NSTX (Buchholz, U-Bayreuth collaboration, in team review)
- Contributing to FES Community Planning Workshops 2015 through panel members (Kaye, Tritz) & whitepaper contributions (Guttenfelder)

Inverse correlation between electron-scale turbulence and density gradient related to ETG stabilization

J. Ruiz Ruiz (MIT)

- Early in discharge (t<320 ms), no electronscale turbulence measured
 - Large density gradient (R/L_{ne}) *linearly* stabilizes ETG (R/L_{Te,exp} ~ R/L_{Te,ETG-threshold})
- Electron scale turbulence develops & evolves for t>320 ms (R/L_{Te,exp} > R/L_{Te,ETG-threshold})
 - Turbulence intensity reduced during evolution of discharge, correlated with increasing density gradient
 → nonlinear stabilization

ETG instability weakened & shifted to higher k_θ with increased R/L_ne

 Both expected to reduced transport (nonlinear simulations underway)

🔘 NSTX-U

NSTX-U FY2015 Q2 Report

Energetic Particle group research has focused on code development & validation, simulations of NSTX data

- Focus on NSTX scenarios with multiple unstable TAEs
 - "Critical gradient" model shows reasonable agreement with experiment [Gorelenkov, White, IAEA 14]
 - Comparison with ORBIT simulations under way
 - "Kick" model in TRANSP being tested [Podestà, NF 2015]
 - Shows importance of selective phase space EP transport to compute NB-CD
 - Linear & nonlinear M3D-K simulations performed for TAEs, fishbones
 - (Linearly) unstable TAEs from M3D-K compare well with experiment [Liu, PoP 2015]
 - Nonlinearly, strong mode-mode interaction results in enhanced EP transport [Fu, 2015]
- Theory of chirping AEs is the focus of a collaboration with Univ. Texas at Austin [Duarte, Berk, Gorelenkov, Sherwood 2015]
- HYM code revealed new mechanism for energy channeling from NB ions to thermal electrons [Belova, PRL 2015 (under review)]
 - May help to explain central electron heating deficit in NSTX NBI shots
- NSTX-U/PPPL is leading two new ITPA-EP activities [Podestà, ITPA-EP 2015]
 - Joint Exp't on NB-CD physics
 - Joint Modeling Activity on EP transport studies via reduced models

New "kick" model for fast-ion transport predicts different J_{NB} , ion/electron power split, inferred thermal transport

Nucl. Fusion 55 (2015) 053018

M. Podestà et al

Figure 11. (*a*)–(*c*) Current density profiles calculated by TRANSP with different assumptions for fast ion transport (NSTX #139048). TRANSP results are averaged over t = 300-305 ms. (*d*)–(*f*) Total heating power transferred to electrons and ions for the three cases.

NSTX-U FY2015 Q2 Report

NSTX-U Boundary Science Group Activities for Q2 FY15

- Three NSTX-U related talks presented at the Transients Control e-meeting (Mar 30-Apr 2), with several white papers in preparation
- Ten talks to be presented at the PMI workshop (May 4-6), with white papers in preparation
- Two collaborative Lithium related papers
 - New Steady-State Quiescent High-Confinement Plasma in an Experimental Advanced Superconducting Tokamak (J.S. Hu, et. al., Phys. Rev. Letts. 114 (2015) 055001)
 - Enhanced H-mode pedestals with lithium injection in DIII-D (T.H. Osborne, et. al., Nucl. Fusion 2015 at press)
- A guest lecture on principles of magnetic confinement fusion and plasma-wall interactions, including effects of lithium walls in NSTX, presented at Cornell Univ.

Integrated Scenarios Group Activities for Q2 FY15

- Advanced Scenarios: S. Gerhardt + D. Battaglia
 Priority #1 → Get NSTX-U operational
- RF group:
 - Publications:
 - R. J. Perkins et al., "The contribution of RF rectification to field-aligned losses of high-harmonic fast wave power to the divertor in the National Spherical Torus eXperiment," Phys. Plasmas 22, 042506 (2015).
 - Engagement in upcoming FES workshops
 - Two white papers (1 first author + 1 co-author) to boundary workshop
 - Three first-author white papers to integrated modeling workshop in collaboration with RF SciDAC team

Solenoid-Free Start-up

- Publications:
 - Paper accepted for publication in FS&T: "Design Description for a Coaxial Helicity Injection Plasma Start-up System for a ST-FNSF (2015)"
 - R. Raman, T. Brown, L.A. El-Guebaly, T.R. Jarboe, B.A. Nelson, J.E. Menard
 - "Plasmoids formation during simulations of CHI in NSTX", submitted to PRL
 - F. Ebrahimi and R. Raman

• Research highlights for Q2

• Preparation for 2015 run campaign

NSTX-U Science Program Organizational Structure for 2015

Successful Research Forum held Feb 24-27, 2015 Pre-Forum Run-time Guidance for XP Prioritization:

Baseli Co Nominal total Mini Milestone weig	ne (12+4 weeks) # run weeks: Estimated total # run days: Estimated XMP run-days Reserve for multi-TSG XPs ontingency / director's reserve days for TSG/TFs to prioritize imum # run days per TSG / TF hting for FY15-early FY16 run	16 80 25 10 5 50 2.5 0.75	Cross-cutting 0.25	commiss	ioning, sł	not developme	ent, calibration	s (may not incl	ude TSG-spec	ific XMPs) Pr	iority #1 fract i 0.75	on
	TSG / Task Force	FY 15 Milestones	FY16 Milestones	FY15 count	FY16 count	Milestone additional runtime	Forum Idea Count Increment	Nominal TSG / TF run days for single TSG XPs	Nominal TSG / TF run days for multi-TSG XPs	Nominal TSG / TF run days for all XPs	Nominal Priority 1 XP run time	Nominal Priority 2 XP run time
	Pedestal	R15-1		1	0	0.75	0.5	3.5	1	4.5	3.5	1
Boundary	Divertor and SOL	R15-1	R16-1	1	1	1	1	4.5	1	5.5	4	1.5
	Materials and PFCs		R16-2		1	0.25	0	2.5	1	3.5	2.5	1
	Macroscopic Stability	JRT-15, <mark>R</mark> 15-3	JRT-16	2	1	1.75	1	5	1	6	4.5	1.5
Core	Transport & Turbulence	JRT-15, <mark>R</mark> 15-1		2	0	1.5	0.5	4.5	1	5.5	4	1.5
	Energetic Particles	JRT-15, <mark>R</mark> 15-2	R16-3	2	1	1.75	0.5	4.5	1	5.5	4	1.5
	Advanced Scenarios and Control	Notable, JRT- 15, R15-2, R15-3	JRT-16, R16-4	4	2	3.5	1	7	1	8	6	2
Scenarios	Solenoid-Free Start-up		R16-4	0	1	0.25	0	2.5	1	3.5	2.5	1
	Wave Heating and Current Drive		R16-3	0	1	0.25	0	2.5	1	3.5	2.5	1
Task Forces Particle Control		R15-3		1	0	0.75	0.5	3.5	1	4.5	3.5	1
		-			-	Total		40	10	50	27	12

🔘 NSTX-U

Some statistics on XMP/XP idea submissions:

Topical Science Group or Task Force	Run Days Requested	Fraction
Macroscopic Stability (MS)	40.75	14.9%
Cross-cutting and Enabling (CC)	34.85	12.8%
Divertor and Scrape-off-layer (DS)	33.5	12.3%
Advanced Scenarios and Control (ASC)	33	12.1%
Pedestal Structure and Control (PS)	25	9.2%
Particle Control Task Force (PC)	23	8.4%
Energetic Particles (EP)	22.5	8.3%
Turbulence and Transport (TT)	21	7.7%
Materials and PFCs (MP)	15.5	5.7%
Solenoid-free Start-up and Ramp-up (SR)	14.5	5.3%
Wave Heating and Current Drive (RF)	9	3.3%
	272.6	100%

Requested / Available Run Time: Total: 273 / 80 = 3.4× Research: 248 / 55 = 4.5×

#	Institution	Run Days Requested	Fraction
1	Princeton Plasma Physics Laboratory	112.1	41.1%
2	Oak Ridge National Laboratory	28.5	10.5%
3	Princeton University	20.5	7.5%
4	Lawrence Livermore National Laboratory	18	6.6%
5	General Atomics	17	6.2%
6	ITER (France)	12	4.4%
7	University of Washington	11.5	4.2%
8	Columbia University	10.5	3.9%
9	University of Wisconsin	9	3.3%
10	University of California - Irvine	7.5	2.8%
11	Nova Photonics	6	2.2%
12	University of Illinois	4	1.5%
13	Massachusetts Institute of Technology	4	1.5%
14	University of California - San Diego	3	1.1%
15	Johns Hopkins University	3	1.1%
16	University of Tennessee	2	0.7%
17	Lehigh University	1	0.4%
18	Florida International University	1	0.4%
19	University of California - Los Angeles	1	0.4%
20	University of York (United Kingdom)	1	0.4%
		272.6	100%

84 unique lead author names

🔘 NSTX-U

Prioritization, run-time, expected run-month – all documented online for every experimental proposal, shared with team

NSTX-U master XP list 2015 📩

File Edit View Insert Format Data Tools Form Add-ons Help. Last edit was made 13 minutes ago by Jonathan Menard

吾 🔊 🛪 🍸 💲 % 🖉 200 123 - Arial 🚽 10 - 🖪 🗶 중 Α - 🌺 - 田 - 田 - 冨 - 블 - 뷰 - 파 - 🚥 🖬 文 - Σ -

Ťx	Next unique X	MP/XP nu	imber:																								
	A 4	≻ C	D	E	F	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ AF	AS AS	AT	AU	AV
1	Next unique XMP/XP number:	108	1526										Estimate assig	ed fract gned to	ional distri a 4 run we	bution of ek(RW)p	run time eriod			Priority	y 1 XMI	P/XP ru	n-time	Cros	s-cuttin run	g and E I-time	nabling
2	T SG / TF	XMP Number	XP Number	Title of proposal	Author last name	Priority Label	Priority 1 run time a ssigned at forum	Priority 2 run time requested at forum	Non-XMP CCE run time a ssigned after forum	Multi-TSG XP run time assigned after forum	Comments / note s		Run Weeks 1-4	Run Weeks 5-8	B> Li (actual timing TBD)	Run Weeks 9-12	Run Weeks 13-16	Sum Chk		Run Weeks 1-4	Run Weeks 5-8	Run Weeks 9-12	Run Weeks 13-16	Run Week 1-4	Run s Weeks 5-8	Run Weeks 9-12	Run Weeks 13-16
3		106		Magnetics Calibration	Myers	P1a 1	1.5	0					1					1		1.5	0	0	0	0	0	0	0
4				MSE-CIF Calibration	Levinton	P1a ·	1	0					1					1		1	0	0	0	0	0	0	0
5				MSE-LIF Calibration	Levinton	P1b 1	1	0					1					1		1	0	0	0	0	0	0	0
6				MSE Measurement of NB Interference	Levinton	P1b 1	1	0					1					1		1	0	0	0	0	0	0	0
7	Diagnostic			FID A/ss NPA/sFLIP checkout	Liu	P1c *	1	0					1					1		1	0	0	0	0	0	0	0
8	Operations	103		Materials Analysis Particle Probe Com	Allain	P1c 1	0.5	0.5					1					1		0.5	0	0	0	0	0	0	0
9	XMPs			Neutron diagnos tic calibration plasma	Darrow	P1a 1	0.5	0			SPG: Defines safety envelope. MUST do	5	1					1		0.5	0	0	0	0	0	0	0
10		107		Commissioning the Thomson Scatteri	LeBlanc	P1a 🕚	0.5	0					1					1		0.5	0	0	0	0	0	0	0
11		104		MHD Spectros copy Check out	Berkery	P1c 1	0.25	0					1					1		0.25	0	0	0	0	0	0	0
12				IR thermography calibration and comm	Ahn	P1b 1	0	0					1					1		0	0	0	0	0	0	0	0
13		100		CHERS XMP	Podesta	P1a ·	1	1					0.5	0.5				1		0.5	0.5	0	0	0	0	0	0
19		100			Mueller	P1a ·	0.5	0																			
18				Lotinia H made access an NSTVII	Boyer	P1a 1	3	0			JEM: reduced from 4 to 3		1					1		3	0	0	0	0	0	0	0
17		404		NSTVI brockdown c congris downloar	Battaglia	Pia Dia	0.5	0					-					1		0.5	0	0	0	0	0	0	0
18		101		NST/EU Automatic Shutdown	Gerbardt	P1b	0.5	0.5					1					1		0.5	0	0	0	0	0	0	0
19				6 SPA and Proportional RWMcontrol C	Gerhardt	P1b	0.5	0.25					1					1		0.5	ő	ő	0	0	0	0	0
20		105		Software Test fon n=0 Control	Bover	P1b	0.5	0					1					1		0.5	0	0	0	0	0	0	0
21				Soft-Limiting of Coil Forces and Stress	Gerhardt	P2b	0.5	0			SPG: eliminate until the algorithm is defi	i	1					1		0.5	0	0	0	0	0	0	0
22				Optimization of the between-s hot heliu	Battaglia	P1o 1	0	0.25					1					1		0	0	0	0	0	0	0	0
23		102		Flow rate calibration of gas valves	Battaglia	P1a 🕚	0	0					1					1		0	0	0	0	0	0	0	0
24				Full shape control development	Kolemen	P1b 1	2	1			SPG: This must include S.P. control		0.75	0.25				1		1.5	0.5	0	0	0	0	0	0
25	Physics			D is charge Development of Double Nu	Gray	P3 1	0	0			SPG: Mueller/Boyer/Battaglia should co	N	0.5	0.5				1		0	0	0	0	0	0	0	0
28	Operations			Granule Injector operational readines s	Luns ford	P1c 1	0.5	0					0.5	0.5				1		0.25	0.25	0	0	0	0	0	0
2/	XMPs			drs ep Control Check-out	Gray	P3 1	0	0			SPG: Mueller/Boyer/Battaglia should co	N		1				1		0	0	0	0	0	0	0	0
28				HHFW antenna conditioning and perfo	Perk ins	P1a ·	2	1			SPG: Either must be done, or skip entire	e		0.75		0.25		1		0	1.5	0.5	0	0	0	0	0
20				Increase Btabove 0.51, Ip above 11VA	Battaglia	P1a 1	1	0						0.75		0.25		1		0	0.75	0.25	0	0	0	0	0
30				Reartime EFC algorithm development	Kolemen	P3 1	0	0			JEM: May need XMP time for EFC algori	1		0.5		0.5		1		0	0.05	0.05	0	0	0	0	0
32				High-7 reference dis charge developme	Jawarski	P10	0.5	0.5			IEM: Pup days reduced			0.5		0.5		1		0	0.25	0.25	0	0	0	0	0
33				Commissioning the CHI System	Raman	P1a	1	0.0			SEW. Run days reduced			0.5		0.75		1		0	0.25	0.25	0	0	0	0	0
34				Commissioning the MGI Valves	Raman	P1a	1	0						0.20		1		1		ő	0	1	0	0	0	0	0
35				RWM state-space control with 6 coils -	Sabbaoh	P1o 1	0.25	0								0.75	0.25	1		0	0	0.1875	0.0625	0	0	0	0
38				Snowflake Control	Kolemen	P1b	1	0.5								0.5	0.5	1		0	0	0.5	0.5	0	0	0	0
37				Checkoutreal-time diagnostic connect	Kolemen	P2b	0	0			SPG: Piggyback, no run time					0.25	0.75	1		0	0	0	0	0	0	0	0
38				LGI Control	Kolemen	P3 1	0	0			JEM: We have not yet committed to doin	n				0.25	0.75	1		0	0	0	0	0	0	0	0
39				Rotation Control using 3D coils	Kolemen	P3 1	0	0.5			JEM: Need to develop plan. Rotation co	c					1	1		0	0	0	0	0	0	0	0
40						Total	25	6.5	0	0													Total: 24.	50			Total:
41						Guidance	25	0															Check 25.0	10			
43			1501	Ontimization of vertical control close	Bauer	P1a -	0	0	1				1					4		0	0	0	0	1	0	0	0
44			1507	Tuning of the Automated Ramodown S	Gerberdt	Pia Pia	0	0	0.5				1					1		0	0	0	0	0.5	0	0	0
45			1502	X-point control integration with shape r	Kolemen	P1a	0	0	1		SPG: This moved to CC&E		1					1		0	0	0	0	1	0	0	0
46			1504	Beam power and beta-N control	Bover	P1b	0	0	0.5		or of his moteo to o out		0.5	0.5				1		0	0	0	0	0.25	0.25	0	0
47			1507	Maximizing the non-inductive current fra	Gerhardt	P1a ·	2	0						0.5		0.25	0.25	1		0	1	0.5	0.5	0	0	0	0
48			1508	Controlled Snowflake Studies	Kolemen	P1b	1	0.5	0.5					0.25		0.5	0.25	1		0	0.25	0.5	0.25	0	0.125	0.25	0.125
49			1509	Combined betaN and lifeedback contr	Boyer	P1b 1	0.75	0.5						0.25		0.25	0.5	1		0	0.1875	0.1875	0.375	0	0	0	0
50				Develop VERY long pulse H-mode for	Battaglia	P1c ·	1	0	0.5							0.25	0.75	1		0	0	0.25	0.75	0	0	0.125	0.375
51				Current profile controllabilitys coping s	Boyer	P1b ·	0.75	0			Myers/LaHaye inclusion					0.25	0.75	1		0	0	0.1875	0.5625	0	0	0	0
52				Closed Loop Density Feedback	Battaglia	P2a ·	0	0	0.5							0	1	1		0	0	0	0	0	0	0	0.5
53	Advanced			NBsustainment	Poli	P1c 1	0.5	0			Matched with 1/2 day from SFSU, so 1 t	te					1	1		0	0	0	0.5	0	0	0	0
54	Scenarios			Rotation Control	TBD	P2a ·	0	0.5			Need to identify a leader for this						1	1		0	0	0	0	0	0	0	0
58	and Control			Reversed Shear Mas ma with Relaxed	Gerhardt	P2a 1	0	0.5			Will be led by H. Yuh						1	1		0	0	0	0	0	0	0	0
57	(ASC)			Compare the bagefit of off-mis NBI for	Canik	P20	0	0			Mast of the second and he accomplished						1	1		0	0	0	0	0	0	0	0
58				Combining High Non-Inductive Fraction	Gerbardt	P2b	0	0			Reconsider at mid run assessment						1	1		0	0	0	0	0	0	0	0
59				Redistion Control	Kolemer	P20	0	0			Need the PCS capabilities. Consider an						1	1		0	0	0	0	0	0	0	0
					Norement	F20	0	U			reed the molo capabilities . Consider aga	•								0	0	U	0	0	v		v

2 XP reviews completed today, 15-20 more (per month) expected for May, June
Summary

- Continued scientific productivity on NSTX-U, collaborations
- Strong leadership and participation in community workshops
- Successful Forum, XP prioritization complete, reviews started
- Research Team rapidly getting ready for the 2015 Run!

