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Executive Summary of NSTX-U Year-End Report for FY2015 
 

 Executive Summary for FY2015 Notable Outcomes 
 

 Objective 1.2 “Perform experimental research on NSTX-U to resolve key spherical torus 
issues at magnetic field, plasma current, and pulse length beyond that achieved in NSTX, 
after completion of CD-4 for the project” 

 

 NSTX-U did not operate during FY2015 due to the ohmic heating coil arc-fault that occurred 
in April 2015.  However, substantial research program planning and operational preparation 
are in place to support achieving this Notable Outcome in FY2016. The NSTX-U scientific 
organizational structure was re-organized to have three new over-arching Science Groups:  
Boundary Science, Core Science, and Integrated Scenarios. This new structure and run-time-
incentives were implemented to increase cross-group interaction and shot-planning to increase 
shot efficiency and scientific productivity.  To increase the representation of Universities in 
NSTX-U scientific management, at least one University representative is now included in 
leadership of all topical science groups.  This has increased the number of collaborating 
institutions in leadership positions from 4 to 12 from FY2014 to FY2015. 

 

 This new scientific organizational structure was in place for the NSTX-U 2015 Research 
Forum and worked very effectively.  The total requested run-time for experiments is ~250 
days with 55 available implying a record-high factor of 4.5 over-subscription. The 30 highest 
priority proposals have been identified, 23 of these proposals have been reviewed as of 
September 5, and all 30 will be reviewed prior to physics operations.  Thus, roughly half of 
the entire FY2016 research campaign experiments will have been reviewed prior to operation. 

 

 Objective 1.2 “Provide leadership, coordination, and support to the FES joint research 
target with the goal of quantifying the impact of broadened current and pressure profiles 
on tokamak plasma confinement and stability” 

 

 NSTX-U supported the FY-15 Joint Research Target by leading and coordinating research 
activities on the DIII-D, C-Mod, and NSTX-U facilities. Preparation for the JRT-15 started in 
late CY-2013, potential goals and contributions from NSTX-U were discussed in a first 
meeting, initial ideas and a tentative plan for the JRT-15 were then discussed in a joint NSTX-
U/DIII-D meeting to present opportunities and priorities for collaborative research. Joint work 
on the physics of steady-state scenarios sustained by neutral beam current drive emerged as 
the highest priority for NSTX-U and DIII-D to address the JRT-15 goals. C-Mod experiments 
with lower-hybrid current drive as a means to alter the current profile and improve plasma 
stability were also included. 

 

 The delay in NSTX-U operations motivated a shift of activities of NSTX-U researchers 
toward modeling work targeting specific areas of overlap with experiments conducted on the 
other two facilities. For NSTX and DIII-D, the modes thought to dominate fast ion transport 
were toroidal Alfvén eigenmodes. For typical NSTX cases studied, the critical gradient model 
(CGM) and the experiment were found to be in reasonable agreement and show relatively 
small losses of 5-10% until large TAE avalanche events.  Initial simulations for DIII-D using 
CGM were unsuccessful with simulations under-predicting the measured deficit in neutron 
rate by a factor ~2. It was found that other lower-frequency instabilities are present in high 
qmin plasmas in DIII-D, and that such modes must be included in the modeling to improve 
agreement with measurements. 
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 Outcome 3.2 “Develop a plan to continue the NSTX-U/PPPL Theory partnership within 
projected funding levels” 
 
 The FY2015 budgets for NSTX-U and PPPL theory were sufficiently favorable that the 

NSTX-U/Theory partnership could be sustained. Guiding principles for the topics chosen 
include:  (1) importance to the NSTX-U/ST/tokamak research program, (2) ability of PPPL 
theory to make contributions that surpass and/or complement NSTX-U non-PPPL 
collaborator contributions, and (3) ability to dedicate a substantial fraction of time to topic.  
 

 The topical areas, research, and results most consistent with the above goals include:  
 

o Transport and Turbulence:  Development of the GTS gyrokinetic code continued to 
focus on including electromagnetic effects to be able to study finite-beta effects on 
turbulence. Global GTS simulations in the electrostatic limit have shown the how the 
strong parallel flow shear in NSTX can partially suppress low-k Ion Temperature 
Gradient (ITG) mode turbulence, but at the same time serve as a destabilization 
mechanism for the Kelvin-Helmholtz instability. Non-linear GTS calculations indicate 
that ion heat flux values are within a factor of two of the experimental level in the outer 
half of the plasma and that Dissipative Trapped Electron Modes at high collisionality 
yields a dependence of electron heat flux that is consistent with that observed 
experimentally, decreasing transport with decreasing collisionality.  

 
o Energetic Particles:  Fast-ion-mode-driven thermal energy transport continued to be 

studied, and linear HYM simulations showed that core Compressional Alfven 
Eigenmodes (CAEs) can drive Kinetic Alfven Waves (KAW) at larger minor radius, 
resulting in energy channeling to electrons from the core to a region of the plasma just 
outside the main fast ion distribution. Future work will include non-linear HYM 
simulations to determine a better estimate for the power channeling and impact on 
electron temperature profiles.  

 
o Boundary Physics: Pedestal transport is a critically important topic, and a new technique 

to handle electromagnetic effects in the XGC1 code was implemented and benchmarked 
against the Cyclone case. This “hybrid” algorithm can handle tearing parity modes (i.e., 
microtearing). Linear electromagnetic XGC1 calculations have been performed to study 
edge physics in NSTX, and it showed the growth of Kinetic Ballooning Modes at a beta 
value of 6%, in good agreement with experimental observations of an abrupt change in 
turbulence correlation length at a beta value of 8%. Future development of XGC1 will 
include incorporation of kinetic electrons to study trapped electron modes, collisionless 
tearing and microtearing modes.   

 
o Macroscopic Stability:  The non-linear M3D-C1 code has been extended to include a 

finite thickness resistive wall and full 3D nonlinear simulations of Vertical Displacement 
Events (VDEs) in NSTX have been performed. New synthetic diagnostics are being 
added to the code to enable more detailed validation with NSTX magnetics and halo 
current data. IPECOPT with stellarator optimization tools and also IPEC coupling matrix 
methods were successfully utilized to find the n=1-6 optimized configuration for 
neoclassical toroidal viscosity (NTV) with minimized residual resonant fields for the 
planned NSTX-U off-midplane non-axisymmetric control coils (NCC).  
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 Executive Summary for Facility and Diagnostics   
 

 
 NSTX Upgrade Project Accomplishments 

 

 CD-4 KPP-1 - In FY 2015, the NSTX-U team continued to make very good progress on the 
NSTX Upgrade Project.  After completion of an integrated systems test procedure (ISTP) on 
August 10, 2015, in shot 201085 NSTX-U achieved 100kA of plasma current satisfying 
the CD-4 key performance parameter (KPP) threshold of 50kA necessary for completion of 
the NSTX Upgrade Project.  EFIT equilibrium reconstructions confirmed the plasma current 
and plasma shape consistent with the camera images.  This achieved an important first step 
toward resuming research operations and using the new capabilities of NSTX-U. 
 

 CD-4 KPP-2: - On May 11, 2015, the NB2 neutral beam system successfully fired 45kV 
beams with 100 ms pulse lengths for multiple shots, successfully completing the NSTX 
Upgrade Project CD-4 KPP for Neutral Beam injection into the in-vessel armor at > 40keV 
beam for > 50 ms.  The first cryo-panel regeneration of NB2 was successfully completed.    

 
 Facility and Diagnostic Milestones  

 
 Milestone F(15-1) - The high-Z tile project using molybdenum alloy “TZM” (Titanium-

Zirconium-Molybdenum) is on schedule for installation following the FY16 run campaign. 
Initial analyses of the first design iteration have been completed.  Material procurements have 
begun after a successful Conceptual Design Review. 

 
 Milestone F(15-2) - Conceptual layout of the divertor cryo-pump (DCP) including the 

refrigerator and the cryo-lines through the test cell has been performed.  Drawing of cryo-
system details for components that need to be fabricated has been performed.  Layout of in-
vessel routing of the cryo-pump has started and the size of the refrigeration system has been 
scoped.  The detailed specification / scope of work for refrigeration systems has been started.   

 
 Milestone F(15-3) - The project for the NSTX-U ECH / EBW High Power 28 GHz RF 

Source is gyrotron-based and the TFTR Test cell Basement was chosen for its site due to low 
stray magnetic fields and availability of floor space and ample AC power and water cooling. 
The conceptual design review for the ECH system is to be held in late September 2015 / early 
October and the preliminary design completion will follow. 

 
 Milestone F(15-4) - Non-symmetric Control Coil (NCC) design and physics analysis have 

been continued and extended, in particular by combining the existing mid-plane coils with the 
off-midplane coils. High-level engineering design and analysis have been conducted. Mineral 
Insulated Cables (MICs) are a strong candidate for the in-vessel coil application. A 
procurement requisition is currently in progress to purchase test samples in order to conduct 
various tests and decide if the MIC can be used for these coil applications.  

 
 Milestone D(15-1) - A major NSTX-U boundary science diagnostic is the Material Analysis 

Particle Probe (MAPP), and MAPP installation on NSTX-U was completed. Commissioning 
of this instrument is expected to be finished in October 2015, when execution of the first 
experimental proposals requiring analysis of MAPP samples are planned. 
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Operations, Heating Systems, and Diagnostics 
 

 The digital coil protection system (DCPS) has been successfully tested and utilized during the 
power supply commissioning and integrated testing leading to the achievement of the first 
plasma and KPP target.    

 
 Substantial progress was made in commissioning the NSTX-U magnetic diagnostics.  These 

sensors were used to support the CS KPP activity, allowing EFIT reconstructions of all 
discharges.  A large number of upgrades to the plasma control system hardware and software 
were also implemented.   

 
 The NSTX-U gas injection systems on NSTX were improved in the area of divertor heat flux 

mitigation, and increased levels of gas injection from high-field side.  These systems were 
brought on-line and calibrated in support of CD-4 operations. Three Massive Gas Injection 
(MGI) valves with the ITER MGI double flyer plate design have been successfully tested in 
external magnetic fields of 1 T. The upper MGI valve has been installed on NSTX-U.  

 
 A Lithium Safety Peer Review was held at PPPL on June 16 – 18, 2015.  The review was part 

of a US Department of Energy “notable outcome” for the Laboratory for fiscal year 2015. The 
NSTX lithium evaporator (LITER) system have been remounted and checked for 
interferences with the upper divertor gap. 
 

 Newly implemented boronization system will enable PFC conditioning prior to lithium, and 
the ability to inject boron and boron carbide will permit granule injection studies without 
introducing lithium into NSTX-U.   

 
 All hardware components to enable Transient CHI operations are installed on NSTX-U. An 

important external system required for initiating CHI discharges is the CHI 2 kV, 40 mF 
Capacitor Bank. Tests were conducted by operating the system from a local computer that is 
located near the capacitor bank system.   
 

 The HHFW system installation was completed and steady progress made in commissioning. 
Significant HHFW related diagnostic upgrades were also performed in FY 2015.  

 
 Installation, calibration, and commissioning of the core diagnostic capabilities including 

MPTS and CHERS (which are needed to support the FY2016 campaign) have been 
completed. The Motional Stark Effect-Collisionally Induced Florescence (MSE-CIF) system 
and the Motional Stark Effect diagnostic based on Laser Induced Fluorescence (MSE-LIF) 
were commissioned. The core and edge tangential Multi-energy Soft X-ray system (ME-
SXR), the midplane tangential Transmission Grating Imaging Spectrometer (TGIS), and the 
poloidal Ultrasoft X-ray arrays (USXR) are being readied. Both vertical and tangential Fast 
Ion D-Alpha (FIDA) diagnostics are ready for plasma experiments on NSTX-U.  A new and 
innovative ssNPA system has been installed. Other fast ion diagnostics that were previously 
available on NSTX have also been reinstalled and tested.  Over 20 boundary physics 
diagnostic systems on NSTX-U are operational and additional ones are being readied. 
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 Executive Summary of Research Results – FY15 Milestones 
 

 R(15-1): Assess H-mode energy confinement, pedestal, and scrape off layer 
characteristics with higher BT, IP and NBI heating power 

 
 A number of experiments were submitted to the NSTX-U 2015 Research Forum to investigate 

how increased plasma current, field strength and heating power will influence H-mode energy 
confinement, local transport, pedestal and scrape-off layer structure, and divertor heat flux 
width.  These experiments will rely upon a number of enhanced diagnostic measurements, and 
together will be coupled with modeling efforts to expand our physics understanding of core, 
pedestal, scrape-off-layer (SOL) and divertor physics at higher field, higher power, and 
presumably reduced collisionality. 
 

 Recent global nonlinear gyrokinetic simulations using GTS predict a distinct dissipative 
trapped electron mode (DTEM) in NSTX H-modes with large density gradients.  A unique 
feature of the DTEM is that predicted transport increases with increasing collision frequency 
in the range relevant for NSTX-U and could be at least partially responsible for the observed 

energy confinement scaling in NSTX (E~1/*). 
 
 Plasma current scans contained in the above transport experiments will also provide new data 

on the scaling of SOL and divertor heat flux widths at increased plasma current.  In addition 
to Langmuir probes, the divertor measurements will exploit three infrared cameras, including 
one wide-angle, slow frame rate camera and two dual-band fast frame rate cameras. 

 
 R(15-2): Assess the effects of neutral beam injection parameters on the fast ion 

distribution function and neutral beam driven current profile 

 In preparation for dedicated experiments on NSTX-U activities focused on the development 
of improved modeling/analysis tools and of diagnostics to characterize the fast ion 
distribution function and its evolution as a function of NB injection parameters. 

 Several numerical tools have been improved and validated against NSTX and DIII-D data to 
provide a more accurate description of the fast ion evolution. Those models have been 
developed to provide quantitative results also for scenarios with instabilities causing enhanced 
fast ion transport. Instabilities range from toroidal Alfvén eigenmodes (TAEs) and other 
Alfvénic instabilities to lower frequency MHD and energetic particle-driven modes such as 
long-lived kink modes, fishbones and EPMs. 

1. Starting from the ORBIT code, an “hybrid” model has been developed to compute self-consistently 
the evolution of instabilities and fast ion distribution.  Phase and amplitude of each mode are 
evolved based on the energy exchanged with fast ions. Growth rates and relaxed fast ion profiles 
are computed dynamically, providing a quantitative estimate of the mode stability and saturation 
amplitude.  

2. A second approach relies on the notion of a “critical gradient” in the fast ion profile resulting from 
fast ion transport by instabilities. Required inputs are growth and damping rates, which are obtained 
for example from linear stability analysis through the NOVA-K and HINST. 

3. A reduced model for fast ion transport (“kick” model) has been implemented in TRANSP and 
tested against NSTX and DIII-D data. Initial results compare well with experimental results and 
with predictions from the “critical gradient” model. Extensive validation is ongoing, suggesting 
further improvements to the model.  
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 R(15-3): Develop the physics and operational tools for obtaining high-performance 
discharges in NSTX-U 
 
 Modeling, control tools and experimental planning were conducted in FY2015 to prepare for 

the realization of high-performance discharges on NSTX-U in FY16. A significant 
accomplishment was the commissioning of the NSTX-U magnetic field sensors, including the 
new sensors on the center-stack.  This enabled off-line equilibrium reconstructions during the 
first plasmas on NSTX-U and the ability to qualify the calibrated signals in the real-time 
plasma control system.  This activity is a critical step in actively controlling the plasma shape 
to achieve high-performance discharges. 
 

 The realtime EFIT (rtEFIT) code in the plasma control system was updated to incorporate the 
latest version released by General Atomics and the new magnetic measurement locations on 
NSTX-U.  This new version was tested using input data created by NSTX-U TRANSP 
simulations where the magnetic field at the location of the magnetic sensors was a constraint 
to rtEFIT.  The reconstruction based on the synthesized magnetic sensor information was in 
good agreement with the plasma shape from TRANSP providing confidence that an essential 
tool for active shape control in the PCS is ready to support operations in FY16. 
 

 A number of experimental proposals that commission control tools necessary for high-
performance discharges on NSTX-U completed a full review in FY15, and two XPs that 
integrate control tools and operational scenarios to develop high-performance plasmas on 
NSTX-U in FY16 were also approved.  

 
 Many experiments were also submitted to directly address MHD mode stabilization and 

control, aiming to directly exploit the new capabilities of NSTX-U in this role. The proposals 
spanned a large range of topics, all which must be addressed in the new NSTX-U device, and 
many which will examine the latest advances in mode control capabilities in magnetic fusion 
as a whole. The proposals range from error field correction to state-space control of key 
plasma profiles including current profile peaking and beta, plasma rotation, tearing mode 
stabilization, and passive and active control of unstable RWMs. 
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 Executive Summary for Additional Research Highlights 
 
Boundary Science 

 
 Executive Summary of Research Highlights for Pedestal Structure and Control 

 
 The evolution of the H-mode pedestal profiles between edge-localized mode cycles has been 

studied in-depth in collaborative experiments on Alcator C-Mod and DIII-D. Multiple 
diagnostics show the onset of quasi-coherent fluctuations during recovery of the edge pressure 
gradient after an edge-localized mode. Theory suggests that the onset of kinetic ballooning 
modes is the mechanism that clamps local pressure gradients. The measured gradients are in 
good agreement with calculations of the kinetic ballooning mode critical gradient in the 
EPED1 model. 
 

 A detailed comparison between the gas-puff imaging and beam emission spectroscopy 
diagnostics shows a high degree of similarity in the trends of poloidal correlation lengths, de-
correlation times, and velocity estimates for boundary turbulence measured at the same 
normalized radius. One outstanding difference is a factor of ~7 different in fluctuation levels, 
with the higher values approaching 15-20% observed in the gas-puff imaging. Resolution of 
these differences likely requires sophisticated time-dependent modeling and synthetic 
diagnostics.  
 

 Pedestal modeling studies have advanced, primarily using the XGC suite of kinetic codes. A 
new formula for the bootstrap current in spherical tokamaks has been derived. Deviation from 
the well-known Sauter neoclassical formula occurs because of large gyro-radius, large 
banana-orbit trapped particle fraction, and some unconventional guiding center orbit effects. 
The suite of codes was also used to better understand Enhanced Pedestal H-modes, an 
attractive high confinement scenario from NSTX, which will also be explored in NSTX-U.  

 
 Executive Summary of Research Highlights for Divertor and Scrape-Off Layer 

 
 Comparisons of the heat flux footprints in ohmic discharges with scrape-off layer turbulence 

calculations showed that the length and time scales of the turbulence is consistent with 
resistive ballooning modes; furthermore, H-mode discharges occupy a theoretically expected 
region of parameter space for profiles very close to the separatrix. Validation of the model 
predictions is critical, as the model has previously indicated that the inverse scaling of the 
heat flux footprint width with plasma current may be dominated by turbulence. During 
transient events, new analysis showed that the heat flux footprint narrowed in NSTX with 
increasing amplitude of edge-localized modes, qualitatively consistent with NSTX operation 
along the current-driven kink-peeling mode branch of edge stability space. 
 

 In preparation for experiments with the innovative snowflake divertor configuration, 
additional equilibrium calculations with new NSTX-U coils were conducted, showing the 
feasibility of generating desirable magnetic topologies. Edge plasma transport calculations 
with the UEDGE code were used to determine that the injected argon gas concentration 
needed to reduce divertor heat flux below 5 MW/m2 in snowflake and standard configurations 



9 of 189 

should be ~1-2%. In addition the effect of applied 3-D magnetic perturbations on the 
snowflake topology, particularly near the X- and strike-point regions, was assessed.  
 

 The effect of externally applied 3-D magnetic fields on the magnetic field line topology near 
the divertor strike zones was assessed with the IPEC ideal plasma response code. Overall 
plasma response reduces the amplitude of the stochastic field, but can in some cases amplify 
the field for low-n perturbations, which is qualitatively consistent with strong striations of 
divertor heat flux observed in such cases. 
 

 Preparation for NSTX-U operations with a number of new boundary diagnostic capabilities 
has accelerated. The upgraded and new diagnostics include resistive and infrared imaging 
bolometry, divertor spectroscopy for impurity evolution from plasma facing components, 
divertor cameras for radiation and feedback control and thermography, and measurements of 
edge neutral density and imaging of the lithium granule injector ablation. 

 
 Executive Summary of Research Highlights for Materials and Plasma Facing 

Components 

 
 Substantial progress was made on understanding the behavior of lithium films and 

interactions on a number of high-Z materials. Deuterium retained in lithium on molybdenum 
substrates could be reduced by 75% as temperature was increased to 180o C. The presence of 
oxygen impurities increased the overall retention, and required a temperature of 380o C for 
desorption. Progress was also made on wetting of liquid lithium on stainless steel substrates. 
 

 The Material Analysis Particle Probe (MAPP) made measurements on the LTX device, in 
preparation for use in NSTX-U. The new results suggested that lithium-coated stainless steel 
might be retaining hydrogen in a more weakly-bound state than expected. This is similar to 
the weaker oxide-bonding observed in laboratory experiments, i.e. that the hydrogen is not 
bound as Li-H. In addition, material migration and mixed-material evolution studies using the 
WALLDYN code package for NSTX and NSTX-U were initiated. 
 

 Collaborative experiments conducted on the Magnum-PSI experimental plasma device 
strongly suggest the ‘accepted’ temperature limits associated with lithium PFCs, typically ~ 
400o C, may be overly pessimistic. In these experiments, lithium layers were evaporated onto 
TZM samples, and pre-filled liquid metal targets were also tested.  It was found that the 
inferred lithium erosion yield was approximately two orders-of-magnitude less than an 
adatom-evaporation model in previous studies conducted on the PISCES-B device. These 
results point to higher acceptable temperature operating windows for lithium on high-Z 
substrates, as envisioned for NSTX-U. 
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Core Science 
 

 Executive Summary of Research Highlights for Macroscopic Stability 

 
 The ideal magnetohydrodynamic (MHD) stability limits of kink modes in tokamak plasmas 

have been explored in detail for NSTX. Calculations with the DCON code for a large number 
of experimental equilibria showed that previous estimates of the no-wall limit on the plasma 
beta and internal inductance were relatively accurate. The no-wall beta limit also decreased 
with increasing aspect ratio and increasing broadness of the pressure profile. These no-wall 
beta limit dependencies have implications for NSTX-U which has a larger aspect ratio and 
new neutral beams that may increase the broadness of pressure and current profiles.  
 

 The MISK code has been further validated by detailed comparison with experimental results 
from NSTX. In several discharges the code predicted a transition from damping of the mode 
to growth as the time approaches the experimental time of plasma disruption via an unstable 
resistive wall mode (RWM). The main stabilization mechanism is through rotational 
resonances with the motions of thermal particles in the plasma, though energetic particles also 
contribute to stability. 
 

 Joint experiments in NSTX and DIII-D have unified kinetic resistive wall mode physics 
between the two devices. Analysis of kinetic RWM marginal stability points using the same 
computational tools (MISK code) show good quantitative agreement between experiment and 
theory over a wide range of plasma rotation, with RWMs becoming unstable at high as well as 
low rotation in both devices. Near zero rotation, the linear kinetic calculation can overestimate 
the plasma stability as non-linear effects can cause destabilization below the computed linear 
stability points – an important consideration for ITER. 
 

 Following the call by DOE placing tokamak disruption prediction and avoidance as one of 
two highest priority research elements in the US fusion program, a new analysis code 
(DECAF) has been developed for characterization and forecasting of tokamak plasma 
disruptions. Initial results have produced automated analysis of disruption event chains, and 
an NSTX-U Working Group has been formed to continually improve analysis performance. 
 

 The first NSTX-U plasmas that have surpassed DOE CD-4 goals have been reconstructed 
using a new NSTX-U EFIT model and analysis and a capable set of magnetic diagnostic and 
coil current input. The model and diagnostics proved to be sufficiently complete and with 
sufficient stray field compensation to allow reconstructed ohmically heated equilibria with 
reconstructed wall current significantly larger than the reconstructed plasma currents.  
 

 The joint efforts to quantify 3D plasma response in tokamaks across theory and experiments 
in US devices have been extended, and show that ideal MHD approximations are widely valid 
but kinetic and rotational effects can be important especially in high-β operational regimes. 
The ideal responses measured by upgraded sensors in DIII-D below the no-wall β limit were 
successfully reproduced by IPEC, MARS-F, VMEC, and M3D-C1, with only minor 
differences, and the responses across and beyond no-wall limit for both DIII-D and NSTX 
were also quantitatively explained by kinetically self-consistent calculations using MARS-K. 
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 The self-consistent calculations with drift-kinetic effects using MARS-K were numerically 
verified with a new code – the general perturbed equilibrium code (GPEC), by showing good 
agreement between computed eigenfunctions. GPEC applications to NSTX-U predicted the 
well-known trend of resonant field amplification (RFA) across the no-wall limit, and further a 
new trend near the kinetic no-wall limit with finite response amplitude. The two important 
aspects of kinetic response, modified amplitude and toroidal phase shift due to the torque, can 
be efficiently studied by Nyquist diagram by scanning applied field frequency. MARS-K 
applications to NSTX-U reveal the characteristic shapes and poles of the diagram depending 
on kinetic and fluid models, and will be tested in DIII-D and NSTX-U experiments. 
 

 A state-space algorithm for plasma rotation control was expanded to include actuation by 
neutral beam injection and the unique use of NTV torque in closed-loop feedback on a target 
rotation profile. The capabilities of the control algorithm and the dynamics and steady-state 
capabilities were examined for an improved NTV model including the observed strong 
dependence on ion temperature.  The controller is projected to achieve steady-state rotation 
profiles for a wide range of ion temperatures.  

 
 NSTX-U Non-axisymmetric Control Coil (NCC) physics design has continued and extended, 

in particular by including the existing midplane coils with the planned off-midplane coils. The 
three rows of coils can produce highly coherent perturbations at the outboard section without 
a gap between the coils, and thus better align and control the perturbation relative to the field 
lines. For resistive wall mode (RWM) control capability by NCC, the sensors were 
successfully optimized, and VALEN3D predicts that the active RWM control can stabilize 
plasma even near the ideal wall limit if the optimized sensors and gains are combined with 
NCC. TRIP3D analysis shows 2x6 partial NCC should achieve ELM suppression and 
interesting combinations of high-n islands when more coils are added. 
 

 The nonlinear 3D Extended MHD code M3D-C1 has been extended to include a finite 
thickness resistive wall. Full 3D nonlinear simulations of Vertical Displacement Events 
(VDEs) in NSTX have been performed. New synthetic diagnostics are being added to the 
code to enable detailed validation with NSTX magnetics and halo current data. 

 

 NSTX-U will employ three Massive Gas Injection (MGI) valves that are very similar to the 
double flyer plate design being considered for ITER. NSTX-U will be the first device to 
operate this valve design in plasma discharges. These valves have been tested off-line and 
deliver the required amount of gas to support NSTX-U experiments, which will offer new 
insight to the MGI data base by studying gas assimilation efficiencies for MGI gas injection 
from different poloidal locations, with emphasis on injection into the private flux region. The 
valve has also been successfully operated in external magnetic fields of 1 T.  
 

 A novel disruption mitigation system based on the rail-gun concept has been designed, and 
plans for an off-line experimental test are in progress. This device - referred to as an 
Electromagnetic Particle Injector (EPI) - is fully electromagnetic, with no mechanical moving 
parts, which ensures high reliability after a long period in standby. Scoping studies conducted 
during 2015 show that in addition to responding on the required fast time scale, its 
performance substantially improves when operated in the presence of high magnetic fields. 
The system is also suitable for installation in close proximity to the reactor vessel.  
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 Executive Summary of Research Highlights for Transport and Turbulence 

 
 In some NSTX H-mode plasmas, the high-k fluctuation power (measured by coherent 

microwave scattering) was observed to decrease and shift to higher perpendicular wave-
number with increasing density gradient, even though the electron temperature gradient 
remained well in excess of the linear ETG threshold.  Nonlinear gyrokinetic simulations 
(GYRO) show that increasing the density gradient reduces the predicted transport and shifts 
the nonlinear turbulent spectra to higher poloidal wave number, qualitatively supporting the 
experimental observation of nonlinear density gradient stabilization of ETG turbulence (i.e. 
beyond well-known linear threshold effects).  (Collaboration with MIT) 

 
 Global nonlinear gyrokinetic simulations (GTS) predict a distinct dissipative trapped electron 

mode (DTEM), with transport increasing with increasing collision frequency, in some NSTX 
H-mode discharges where large density gradients locally suppress ETG turbulence. While 
these DTEM simulations are based on discharges somewhat different than those used for 
energy confinement scaling studies, they provide an additional theoretical microturbulence 
mechanism (in addition to microtearing modes) that could be at least partially responsible for 

the observed energy confinement scaling in NSTX, E~1/* (to be tested in FY2016). 
 
 Recent ORBIT modeling indicates that compressional and global Alfven eigenmodes (CAE, 

GAE) can cause a net radial convection (due largely to trapped electrons), in addition to the 

previously predicted diffusion by orbit stochastization.  In core regions where large e has 
been inferred, the predicted convection can dominate electron thermal diffusion. 

 
 “Stiff” electron thermal transport (large changes in transport and turbulence for small changes 

in driving gradients) was observed in a set of RF-heated L-mode plasmas.  Electron-scale 
fluctuation amplitudes, as measured by the high-k scattering system at r/a~0.6, were reduced 
significantly following the cessation of RF heating.  Gradient-driven nonlinear gyrokinetic 

simulations investigating local stiffness (GYRO) or finite-* global effects like turbulence 
spreading (GTS) are unable to reproduce the observed behavior.  It is hypothesized that flux-
driven simulations may be required to explain the apparent stiffness. 

 
 Recent analysis of perturbative momentum transport experiments in MAST L-modes indicate 

the existence of a momentum pinch comparable to values inferred in NSTX H-modes.  
Gyrokinetic calculations are being used to assess whether the pinch is consistent with the 
Coriolis pinch mechanism.  This mechanism was unable to explain the pinch in the NSTX H-
modes due to the predicted dominance of fundamentally electromagnetic microtearing and 
kinetic ballooning modes (KBM), motivating the lower beta MAST L-mode and planned 
NSTX-U L-mode experiments for FY2016.  Additional linear gyrokinetic simulations for 
NSTX H-modes predict that the influence of centrifugal effects on momentum transport can 
rival the Coriolis pinch for unstable ITG-KBM modes, an effect that will be explored further. 

 
 Recent analysis has shown that the previously observed deviation in intrinsic carbon transport 

from neoclassical theory (near r/a~0.7) in lithiated ELM-free discharges is eliminated when 
ELMs are triggered using externally applied 3D fields.  This is due to the recovery of main 
ion profiles similar to natural ELMy H-mode discharges.  To further investigate the anomaly 
in the lithiated ELM-free cases, gyrokinetic predictions of quasilinear carbon flux for unstable 
ITG-KBM modes were investigated (using GKW, collaboration with U-Bayreuth).  Most 
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notably, these predictions indicate that both roto-diffusion (impurity flux driven by rotation 
gradient) and centrifugal effects for the unstable ITG-KBM modes can cause a large outward 
convection and corresponding locally hollow carbon profile comparable to experiment. 

 
 A new python-based interface to the STRAHL impurity transport code, including a model for 

neo-classical/anomalous transport in combination with atomic data from the ADAS database, 
has been developed to predict synthetic core/edge multi-energy soft X-ray (ME-SXR) for 
comparison with measurements planned for FY2016.  Modeling of edge electron density and 
temperature measurements using the ratio of helium line emission has been tested on RFX-
mod, using the system that will be installed for future NSTX-U experiments (FY2016 or 
FY2017). Models have also been developed to quantify impurity densities from beam plasma 
charge-exchange and background Bremsstrahlung emission, measured in the XUV spectral 
range using the upgraded Transmission Grating Imaging Spectrometer (TGIS). 

 
 NSTX-U researchers contributed to analysis and gyrokinetic simulations of the DIII-D 

National Fusion Science Campaign experiment “Controlling H-mode particle transport with 
ECH”.  NSTX researchers were also instrumental in the development and implementation of a 
synthetic Doppler Back Scattering (DBS) diagnostic to apply to gyro-kinetic simulations for 
comparison to experiment.  This work has provided substantial experience and basis for (i) 
studying density profile control in NSTX-U using RF heating, (ii) investigating parallel 
velocity gradient driven instabilities in NSTX-U, and (iii) analysis of DBS measurements 
expected to be developed during NSTX-U operations. 
 

 Executive Summary of Research Highlights for Energetic Particles 

 
 New modeling tools have been developed and validated to provide an accurate description of 

the fast ion evolution even when instabilities cause substantial fast ion transport. Two models 
are available, based on a “Critical Gradient” approach for the relaxed fast ion profile and on a 
“transport probability” for fast ion evolution in phase space. A preliminary comparison 
between the two models for NSTX and DIII-D data shows satisfactory agreement. This work 
addresses Research Milestone R(15-2) and JRT-15. 
 

 A database has been compiled to characterize stability boundaries for several classes of 
energetic particle driven instabilities in NSTX. Recent work has focused on including MSE-
constrained q-profile and rotational shear information in the database. This contributes to 
separate stability regions for different instabilities. The database will be further expanded for 
the new operating regimes accessible on NSTX-U as operations resume. 
 

 The onset of a so-called “bursting/chirping” regime for Alfvénic instabilities is typically 
associated with enhanced fast ion transport. A theory based on hole-clump formation in phase 
space has been tested for NSTX plasmas, based on mode stability analysis performed through 
the NOVA-K code. The results indicate that the theory, which is based on a single-resonance 
idealized scenario, is not enough to properly predict the onset of strongly unstable regimes. 
Work is in progress to extend the previous theory to account for the presence of multiple 
resonances over fast ion phase space. 
 

 Non-linear, self-consistent simulations of TAE and fishbone instabilities for NSTX have been 
performed through the M3D-K code. The simulations show a strong interaction between 



14 of 189 

TAEs and the fishbone, resulting in either increase or decrease of the mode saturation level 
depending on the mode spectrum and frequencies. As beam beta increases above a threshold, 
saturation levels increase sharply and global fast ion transport occurs, similarly to what is 
observed experimentally. 
 

 A new method to investigate the saturation level for Alfvénic modes has been developed. 
Starting from ORBIT code simulations, energy exchange between fast ions and the 
instabilities is computed and used to feed-back on mode evolution and the fast ion 
distribution. The method is being applied to TAE modes on NSTX and will then be extended 
to DIII-D and ITER scenarios. 
 

 Suppression of Alfvénic modes by High Harmonic Fast Wave heating has been investigated. 
Modes were reproducibly stabilized for long periods of time for injected HHFW power in 
excess of 1.5MW. The abrupt return of mode activities at HHFW turn-off suggests that 
modifications to the fast ion distribution, resulting in mode suppression, were relatively small, 
or that HHFW directly interferes with the resonant drive of the modes. 
 

 Analysis tools for the interpretation of fast ion diagnostics data have been improved. A new 
“3D Halo” model implemented in TRANSP provides more accurate estimates of the halo 
neutrals distribution around the Neutral Beam volume, and a technique has been developed 
for the analysis of FIDA and ssNPA data through the FIDAsim code for extended data sets. 
The new technique has been applied to a NSTX database, suggesting measurable flattening of 
the fast ion profile by Alfvénic and other fast ion driven MHD instabilities. 

Integrated Scenarios 
 

 Executive Summary of Research Highlights for Solenoid-Free Start-up and Ramp-up 
 
 All hardware components to enable Transient CHI operations have been installed on NSTX-U 

and the re-furbished CHI capacitor bank systems has undergone full power tests into a 
dummy load to prepare it for CHI plasma operations. 
 

 Modeling that combines TRANSP with TORIC and GENRAY suggest, among other things, 
that start-up should begin using longer wavelength fast wave antenna phasing during the EC 
pre-heating to maximize electron heating and then transitioning to shorter wavelength phasing 
to reduce absorption by fast ions and to maximize absorption by electrons. 
 

 NIMROD simulations aimed at better understanding of the reconnection processes during 
transient CHI discharges have identified a new mechanism for reconnection in NSTX CHI 
discharges. In this mechanism, an elongated current sheet that forms during CHI can 
spontaneously break up into plasmoids through a mechanism known as “Plasmoid Instability” 
could play an important role in large volume closed flux formation. 
 

 In an effort lead by the NSTX-U CHI Team, during the past year all necessary CHI hardware, 
including the US procured primary ceramic insulators, were successfully installed on the 
QUEST vacuum vessel in Kyushu University.  
 

 During FY15 a Topical Review Paper on solenoid-free plasma start-up in spherical tokamaks 
was written that summarizes the state of research for solenoid-free plasma start-up methods. 
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 Executive Summary of Research Highlights for Wave Heating and Current Drive 

 
 Four experimental proposals were allocated runtime: characterizing the scrape-off layer losses 

of high harmonic fast wave (HHFW) power in H-mode plasmas, the absorption of HHFW 
power by fast and thermal ions, generating low-current fully non-inductive plasmas heated 
with HHFW, and a novel technique for obtaining 2D images of the HHFW wavefield.   
 

 NSTX-U HHFW system sources 3 – 6 have been recommissioned for operation, and steady 
progress is being made in restoring Sources 1 and 2. The new compliant center conductors 
have been installed, and vacuum tuning was successful.   

 
 Diagnostic upgrades are underway: (1) divertor Langmuir probes to measure RF rectification, 

(2) an IR camera to monitor heat loads to the antenna (3) the ORNL SOL reflectometer for 
density profile measurements, and (4) various midplane probes in the vicinity of the antenna. 

 
 Recent analysis suggests that RF rectification is playing a role in the deleterious SOL losses 

of HHFW power. Experiments on NSTX-U have been planned around this work, and an 
experiment on the UCLA Large Plasma Device (LAPD) is also being proposed. 

 
 The full-wave code AORSA shows higher SOL power losses when the FW cut-off is moved 

away from the antenna. These previous 2D results were verified using 3D simulations and 
extended to tokamaks with conventional geometry. DIII-D results agree with NSTX results 
and previous experiments, but results for Alcator C-Mod and EAST, which use hydrogen 
minority heating, differ. 

 
 A cylindrical cold-plasma model of fast-wave propagation in NSTX-like conditions has been 

benchmarked against previous models. The computed RF voltage in the SOL is roughly 
consistent with Langmuir probe data. The model also computes significant wave power 
propagating in the edge of the plasma similar to experimental observations and full-wave 
simulations using the AORSA code.  

 
 Predicting the heating of future devices such as ITER depends on accurate calculations of the 

ICRF power absorption partition by different plasma species. A detailed comparison between 
four European ICRH codes plus AORSA shows that power absorption trends (as a function of 
minority concentration) agree reasonably well and improve for low electron absorption. 

 
 A megawatt-level 28 GHz electron cyclotron (EC) heating system is planned for NSTX-U, 

and scoping studies have sited the gyrotron in the TFTR Test Cell Basement where magnetic 
fields (measured during full coil field tests) will not affect the gyrotron operation. The 
gyrotron design development has advanced from 1.2 MW for 0.1 sec to >1.5 MW for 2 
seconds. The waveguide design has been completed and is expected to deliver 90% or more 
of the gyrotron power to the antenna input.  

 
  



16 of 189 

 Executive Summary of Research Highlights for Advanced Scenarios and Control 

 
 Coil currents for plasma startup on NSTX-U were developed using time-dependent modeling 

of the magnetic fields with the LRDFIT code including the new vessel geometry and 
conducting structures. The startup scenario that produced first plasma was in good agreement 
with the target scenario developed using time-dependent modeling. 
 

 XMP-100 and XMP-131 produced the first plasma operation on NSTX-U in order to satisfy 
the KPP CD-4 upgrade milestone. Plasma currents up to 140 kA and lasting up to 40ms were 
achieved using pre-programmed coil currents. This demonstrated the integrated readiness of 
many critical systems, including the plasma control system. 
 

 Advanced Scenarios and Control TSGs will lead a large number of XMP and XPs that 
commission operational plasma control tools on NSTX-U.  These activities including active 
vertical stability, X-point position, and neutral beam injection control will occur early in the 
upcoming NSTX-U campaign and many of these proposals have completed the necessary 
reviews and are approved to run. 

 
 ASC run time priorities for FY16 include the development of scenarios that utilize the new 

capabilities of NSTX-U. These include high non-inductive fraction plasmas, discharge lengths 
lasting many seconds and a stable snowflake configuration. 
 

 Fully non-inductive startup, ramp-up and sustainment scenarios for NSTX-U have been 
explored using time-dependent free-boundary simulations with TRANSP.  The results 
motivate development of an electron cyclotron RF source and dynamic antenna phasing on 
the existing higher-harmonic fast wave system on NSTX-U to maximize the available non-
inductive current drive early in the discharge when the plasma density is too low for efficient 
neutral beam coupling. 
 

 Advances in integration of plasma control algorithms with TRANSP and the free-boundary 
equilibrium ISOLVER calculation in a robust, user-friendly closed-loop software architecture 
allowed for verification of updates and improvements to the real-time EFIT (rtEFIT) code in 
the plasma control software. 
 

 The platform integrating control tools with TRANSP has been used to develop viable current 
profile control algorithms that utilize the second neutral beam on NSTX-U. Experiments are 
planned for the upcoming run that will inform and test the simulation of this advanced control 
capability. 

 
 A large effort toward improving the consistency, maintainability and reliability of the plasma 

control software was completed in FY15 in order to incorporate new control capabilities on 
NSTX-U and enable future growth of the software. 
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Outcome 3.2 “Develop a plan to continue the NSTX-U/PPPL Theory partnership within 
projected funding levels” 
 
FY2015 budgets for NSTX-U and PPPL theory were sufficiently favorable that the previously 
established partnership could be sustained.  Guiding principles for the topics chosen for the 
partnership include:  (1) importance to the NSTX-U research program and the broader 
ST/tokamak community, (2) ability of PPPL theory to make leading contributions that surpass 
and/or complement contributions from NSTX-U non-PPPL collaborators, and (3) ability to 
dedicate a substantial time-fraction (30% minimum, 50% preferable) to reach a scientific 
conclusion and publication. The partnership facilitates collaboration and dedicated activities over 
a range of topics critical to understanding ST physics and projecting to future devices, including 
Transport and Turbulence, Energetic Particles, Boundary Physics, and Macroscopic Stability. 
 
In the area of Transport and Turbulence, global gyrokinetic simulations using the GTS code in the 
electrostatic limit have shown how the strong parallel flow shear in NSTX can suppress to some 
extent the low-k Ion Temperature Gradient mode, but at the same time serve as a destabilization 
mechanism for the Kelvin-Helmholtz instability. Non-linear GTS calculations indicate that this 
low-k turbulence and neoclassical transport combined yields ion heat flux values that are within a 
factor of two of the experimental level in the outer half of the plasma [NT-1, 2]. The simulations 
also found that the relatively large density gradients often observed in NSTX discharges can 
destabilize Dissipative Trapped Electron Modes at high collisionality, and yields a collisionality 
dependence of electron heat flux that is consistent with that observed experimentally, decreasing 
transport with decreasing collisionality [NT-1, 2]. Development of GTS has focused on including 
electromagnetic effects to be able to study finite-beta effects on turbulence, most specifically the 
micro-tearing mode and its effect on electron transport. At present, these effects have been 
incorporated and benchmarked in the cylindrical limit, and further work over the next year will 
extend this capability to general toroidal geometry. 
 
Energetic Particle work, in part has also addressed the issue of what was originally inferred to be 
highly anomalous electron transport related to the presence of CAEs in the plasma core. This 
inference was based on the assumption of classical behavior of beam particle confinement. 
However, recently published work [NT-3] has shown that the fast ion physics may not be 
classical; linear HYM simulations have shown that the core CAEs can drive Kinetic Alfven 
Waves (KAW) farther out, resulting in an energy channeling from the very core to a region of the 
plasma just outside the main fast ion distribution. The KAW damps primarily on electrons, with a 
power channeling estimate of approximately 0.4 MW over a range of realistic, inferred mode 
amplitudes. The amount of channeling could impact the electron temperature by several hundred 
eV. Further work on this topic will include non-linear HYM simulations to determine a better 
estimate for the power channeling and impact on electron temperature profiles. EP studies have 
also involved the implementation of two models into TRANSP that calculate anomalous fast ion 
diffusion in the presence of Alfven Eigenmodes. The Critical Gradient Model and Kick models 
have been validated against data from both NSTX and DIII-D, and show reasonable agreement 
for both machines. Further work in this area will include incorporating the effects on the fast ions 
from lower frequency MHD modes, as well as assessing the effect on neutral beam current drive.  
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In the area of Boundary Physics, atomic and molecular density data in the outer midplane of 
NSTX were inferred from tangential camera data via a forward modeling procedure using the 
DEGAS 2 Monte Carlo neutral transport code [NT-4]. The study assessed the sensitivity of the 
simulated camera image and neutral densities to uncertainties in the data input to the model. The 
simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral 
densities at the vessel wall depend most strongly on the spatial distribution of the source; 
simulations with a localized neutral source yield densities within a factor of two of the baseline, 
uniform source, case. The uncertainties in the neutral densities associated with other model inputs 
and assumptions are ~50%. A new technique to handle electromagnetic effects in the XGC1 code 
has been implemented and benchmarked against the Cyclone case. This “hybrid” algorithm can 
handle tearing parity modes (i.e., microtearing). Linear electromagnetic XGC1 calculations have 
been performed to study edge physics in NSTX, and it showed the growth of Kinetic Ballooning 
Modes at a beta value of 6%, in good agreement with experimental observations of an abrupt 
change in turbulence correlation length at a beta value of 8%. Future development of XGC1 will 
include incorporation of kinetic electrons to study trapped electron modes, collisionless tearing 
and microtearing modes.   

In the area of Macroscopic Stability, the non-linear M3D-C1 code has been extended to include a 
finite thickness resistive wall. Full 3D nonlinear simulations of Vertical Displacement Events 
(VDEs) in NSTX have been performed. In addition studies of both soft- and hard-beta limits have 
started. At present, new diagnostics are being added to the code to enable more detailed 
validation with NSTX magnetics and halo current data. The formation of an elongated Sweet-
Parker current sheet and a transition to plasmoid instability has for the first time been predicted 
by simulations in a large-scale toroidal fusion plasma in the absence of any preexisting instability 
[NT-5]. Plasmoid instability is demonstrated through resistive MHD simulations of transient 
coaxial helicity injection experiments in NSTX. Motivated by the simulations, experimental 
camera images have been revisited and suggest the existence of reconnecting plasmoids in NSTX. 
Global, system-size plasmoid formation observed here should also have strong implications for 
astrophysical reconnection, such as rapid eruptive solar events. The NCC design and physics 
analysis have been continued and extended, in particular by combining the midplane coils. The 
three rows of coils can produce highly coherent perturbations at the outboard section without a 
gap between the coils, and thus better align and control the magnetic perturbations relative to the 
field lines. IPECOPT with stellarator optimizing tools and IPEC coupling matrix methods were 
utilized to find optimized configurations for NTV minimizing residual resonant fields.  
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Digital Coil Protection System – To protect NSTX-U from unintended operational conditions 
due to the power supplies delivering current combinations and consequential forces or stresses 
beyond the design-basis, a digital coil protection system (DCPS) was implemented. The DCPS is 
designed to prevent accidental (either human or equipment failure) overload beyond the design 
conditions of the structure which the power supply system could generate, even while each 
individual power supply is operating within its allowable current range.  In the initial instance of 
DCPS, the algorithms will test approximately 125 force and stress calculations against limit 
values, using both two models for the plasma shape and two models for potential post-disruption 
currents; this results in 500 total force/stress calculations in addition to 14 thermal limit 

calculations. The update rate of each type will be 200 s for both the force-based and the thermal-
based signals.  Redundant current measurements for each coil and plasma current will be 
provided as inputs.  This type of sophisticated coil protection system if fully demonstrated could 
be utilized for safe operation of future fusion devices including ITER.   The DCPS has been 
successfully tested and utilized during the power supply commissioning and integrated testing 
leading to the achievement of the first plasma and KPP target. 

Power system upgrades – The NSTX-U power systems include 68 identical rectifiers (Transrex 
AC/DC Convertors) providing a total pulsed power capability of 1650 MVA for 6 seconds every 
300 seconds.  New firing generators (FG) were installed for the precise control of thyrister firing 
angles needed for NSTX-U operations particularly critical for the 8-parallel, 130kA TF system 
configuration. The new FG delivers firing pulses with far greater resolution, precision, and 
repeatability than the previous ones in NSTX.  In addition, the NSTX-U 650 MVA / pulse motor 
generator with weld cracks was also repaired.  The motor generator repair brought the motor 
generator to its original specifications, and the repair will enable the full operation of NSTX-U.  

Neutral Beam Injection (NBI) Systems – This fiscal year, all of the NSTX Upgrade NBI final 
construction work was completed for beam line, services, power, controls, and armor. 
Additionally a concrete shield wall was installed in the North gallery to replace the block 
removed from the NTC. Rework was required on the water lines and the beam line control 
cabling but the jobs were completed in time to support the effort to perform the KPP beam shots 
into armor. The Liquid Helium refrigerator was reactivated and resumed operation in support of 
the effort to achieve the NSTXU NBI KPP. Full Beamline 2 operations began with water flow, 
vacuum, pneumatics, and cryogenics.  Power supplies were reactivated and fully tested prior to 
source installation.  Beamline 2 ion sources were then conditioned using standard operating 
procedures. Several sources experienced electrical faults and were removed and replaced with 
spares. 

2nd NBI CD-4 KPP achievement – On May 11, 2015, the NB2 neutral beam system successfully 
fired 45kV beams at 100ms pulse lengths for multiple shots, successfully completing the NSTX 
Upgrade Project CD-4 KPP for Neutral Beam injection into the in-vessel armor at > 40keV beam 
for > 50 milliseconds.  The first cryo-panel regeneration of NB2 (and for NSTX-U) was 
successfully completed.    

After completing the NSTX-U NBI KPP on Beamline 2, the Beamline 1 reactivation effort began. 
The beam line systems were restored to full service and source conditioning began. Several 
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New control computers – In FY-15, new real-time Linux computers featuring the Concurrent 
RedHawk OS replaced the Sunfire v40z hardware from FY-06.  These come complete with 
vendor support for the real-time performance of the hardware and software, including the 
interface card drivers.  These new systems use a modern serial FPDP interface instead of the 
previously employed parallel FPDP interface, providing enhanced data acquisition capabilities 
and room for future expansion.  The two new systems mirror the previous two systems in terms of 
having a dedicated “active” computer for normal operations, and a standby “development” 
computer to facilitate building and deploying new control software in-situ.  Each new system has 
64 available processing cores, upgraded from the 8 available in the v40z.  Note that these 
computers must run not only the plasma control system, but also one (of two) instances of the 
Digital Coil Protection System (DCPS).  

 
Deployment of new real-time hardware – In FY-15, additional real-time hardware has been 
deployed. A second generation of the Stand Alone Digitizer, called the SAD II, has been 
deployed to measure both magnetics signals and coil currents. These digitizers were designed by 
PPPL, and incorporate both a 32 channel digitizer and hardware to multiplex a series of digitizers. 
Three of these SAD II digitizers have been deployed. 
 
Improvements to the power supply control code – In NSTX, the transrex power supplies, 
which power the TF, OH, and PF coils, were controlled via a stand-alone program called PSRTC 
(Power Supply Real Time Control). This code was first written in FORTRAN, then converted to 
C, and as a consequence was hard to maintain and improve. During the later stages of the 
construction outage, this code was rewritten as a module within the plasma control system. This 
upgrade allows the code to be more easily maintained and upgraded, and couples it more closely 
with the physics algorithms that generate the current or voltage requests. As an example of an 
upgrade facilitated by this code rewrite, a new feature was added where the code checks the 
measured values of dIcoil/dt against that predicted by a simple model, and turns off the power 
supply in the event of a significant discrepancy as occurred during the OH fault. 
 
Additional magnetic sensors available in real-time – As part of the CS upgrade project, 
approximately 20 additional magnetic field sensors and 15 additional poloidal flux loops were 
added to the CS. These signals have been brought into the real-time system. Additionally, eight 
more magnetic field sensors in the outboard divertor have been brought into the real-time system. 
Collectively, it is anticipated that these additional sensors will better constrain the divertor 
magnetic structure in rtEFIT, thus benefiting the research program in control of advanced 
divertors (snowflake, X-divertor, etc) 
 
Preparing rtEFIT for research operations – The rtEFIT code, which resides within PCS, 
computes the full 2D magnetic equilibrium in real-time, constrained by various real-time 
measurements. This code is thus critical for all efforts in profile control and shape/position 
control. In order to bring this code up to the requirements for NSTX-U, a senior PPPL physicist 
and a PPPL post-doc visited GA in January for training on the code and to learn about future 
updates. Following this visit, an updated version of rtEFIT was placed in the NSTX-U PCS. This 
version has been tested using input data created by NSTX-U TRANSP simulations; the magnetic 
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field at the location of sensors was computed based on the TRANSP simulations, and then 
provided as constraints to rtEFIT. The updated PCS code was then used to reconstruct the 
equilibrium based on the synthetic measurements; this is described in more detail in the 
Advanced Scenarios and Control section of the report. This is a significant step toward 
commissioning the code for research operations.  
 
Shape Control Development – The convention on NSTX was to use an algorithm called day0 to 
provide simple pre-programmed current control of the PF coils during the plasma breakdown 
phase. Around 20ms, when the plasma current was about 200 kA, the PF current control would 
transition to the plasma current and control (PCC) algorithm that provided active feedback of the 
outer gap, Z position and vertical stability, as well as the option to scale the PF request with 
plasma current.  Finally, control of at least the PF3 and PF5 coils would transition to the 
ISOFLUX algorithm, with a separate vertical stability algorithm applied as a final step.  This 
capability was restored for NSTX-U within the PCS code, however an alternative scheme was 
also implemented that provides more flexibility and simplicity. 
 
In the new scheme, the PCC algorithm provides pre-programmed current control, active feedback 
of the outer gap, and the option to make the PF request proportional to Ip (for plasma 
equilibrium) and ohmic current (to account for the larger ohmic fringe field variation on NSTX-
U). Active control of the Z-position and vertical stability is handled in the separate Vertical 
Position category (VPC) that can operate in conjunction with either PCC or ISOFLUX control; 
this capability is described below.  This architecture removes a number of algorithm transitions 
that often limited flexibility in scenario development and simplifies the flow of control.  The PCC 
algorithm was also improved by removing a number of hard-coded parameters, such as the choice 
of magnetic sensors, in order to increase the code flexibility. 
 
Updates to the ISOFLUX algorithm, which provides shape control based on the results of rtEFIT 
reconstructions are also underway. The modifications are being tested using rtEFIT 
reconstructions of synthetic data from TRANSP simulations as described in the previous section. 
An additional “add-on” to ISOFLUX will allow for control of advanced divertors; see description 
below. 
 
Improved vertical control capability – The NSTX vertical control system was based on a single 
pair of poloidal flux loops, whose voltage was used to infer a quantity roughly proportional to the 
plasma vertical velocity; as noted above, those calculations were essentially an add-on following 
the ISOFLUX calculations. For NSTX-U, this code has been broken out into its own category 
(called VPC), with dedicated algorithms. This new code has been improved to include 18 flux 
loop voltages. Capability has been included to correct the observed voltage signals for variations 
in the coil current, allowing a more accurate estimate of the plasma velocity. Furthermore, an 
observer for the plasma position has been included, based on poloidal flux measurements. Finally, 
code has been added to disable vertical control algorithm is control is observed to be lost. This 
will help limit the forces on NSTX-U. 
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Neutral beam injection control from PCS – A category for PCS control of the six neutral beam 
sources has been developed. The algorithm allows the PCS operator to pre-program sources to be 
on or off at selected intervals during the discharge, or to let the algorithm determine a modulation 
pattern for the source to achieve an operator requested time-averaged power. To avoid source 
faults and limit the fatigue on neutral beam components, minimum on and off times, as well as a 
maximum number of modulations per discharge are enforced for each beam in determining. The 
power requests can be made on an individual per source basis, or the sources can be grouped 
together. For example, all of the sources could be combined into one group, enabling the operator 
to provide a single request for total beam power. The order in which sources are modulated 
within a group by the real-time code is determined by an operator specified `batting order’. 
Finally, the power for request for each group of sources can be communicated to the NBI 
category in real-time from other PCS categories, for example, those responsible for βN or rotation 
profile control, allowing the neutral beams to be used for feedback control. 
 
Progress towards β and li/qo control – A software specification has been written for a PCS 
category to post-process the results of rtEFIT, enabling the use of smoothing filters and dynamic 
observers to make the estimates of parameters like βN, li, and the q-profile more suitable for use in 
feedback control algorithms. A software specification has also been written for a flexible control 
category that will be used for simultaneous feedback control of the scalar quantities like βN, li, q0 
in the near-term, and will later be used to control spatial profiles, like q and rotation. Two 
algorithms have been specified within the category: one for PID control, and another for 
implementing more general state-space control algorithms. The algorithms will generate actuator 
requests (like beam power, plasma current, and shape descriptors) that will be distributed to the 
dedicated PCS categories for each physical actuator (e.g., the beam power request will be sent to 
the NBI category). 
 
Advanced Divertor Control – Additional capabilities are currently being added to the ISOFLUX 
algorithm which will enable real-time feedback control of snowflake divertor (SFD) magnetic 
configurations in NSTX-U. The SFD is an alternative magnetic divertor concept that is 
characterized by a second-order null formed by two x-points in close proximity. The SFD, which 
has increased flux expansion and a larger plasma-wetted area, is an attractive option for heat flux 
mitigation in NSTX-U in which unmitigated peak heat fluxes in a standard divertor configuration 
may reach 20 MW/m2 and compromise plasma-facing components. The real-time SFD control 
system at NSTX-U will be capable of simultaneous control of multiple SFD parameters, such as 
the separation between the two x-points in the divertor region and their orientation. The system is 
currently designed to use the upper and lower PF-1a, PF-1c, and PF-2 coils for control and is 
intended to work in conjunction with the other shape control functionality within ISOFLUX. The 
capabilities for SFD control that will be implemented include a non-iterative algorithm that is 
capable of approximating the locations of two x-points in real-time using input data from rtEFIT. 
The specified algorithm then calculates the PF coil currents required to minimize the errors 
between the two calculated and desired x-point locations, operates on these errors with a PID 
controller, and then outputs the appropriate voltage requests to the PF coils. The new snowflake 
algorithm in ISOFLUX will enable control of upper, lower, or combined upper-lower SFD 
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back-plate.  The HHFW system installation was completed and steady progress has been made in 
commissioning.  The HHFW system; sources 3 – 6 are ready for operation, and progress is being 
made in restoring Sources 1 and 2. Major efforts included improved weatherproofing of outdoor 
transformer-rectifiers, commissioning of PLC controls on Sources 2 and 3, and refurbishment of 
the water-cooling systems of Sources 3, 5 and 6 and the high-voltage protection systems of 
Sources 1 and 2. Vacuum tuning was successful.  Vacuum commissioning is planned to 

commence in September.  
 
Significant HHFW related diagnostic upgrades have been performed in FY 2015.  Two arrays of 
divertor Langmuir probes were installed in the NSTX-U vessel specifically for HHFW studies.  
Circuitry is being built to directly measure the RF (30 MHz) component of the collected current 
to determine the process underlying the SOL loss of HHFW power.  Recent analysis suggests that 
RF rectification is driving the heat flux to the surface.  Measuring the RF voltage at the divertor, 
along with a new wide-angle IR-camera view provided by ORNL, will test this hypothesis in 
great detail.  A SOL reflectometer, upgraded by ORNL to be compatible with the higher magnetic 
fields in NSTX-U, is being reinstalled.  A mid-plane probe shaft, situated in the middle of the 
HHFW antenna, is being fitted with two Langmuir probes and double-Langmuir probe designed 
by ORNL.  

Coaxial Helicity Injection (CHI) System – Supporting TSC simulations have identified the 
required coil currents to initiate transient CHI discharges on NSTX-U. All hardware components 
to enable Transient CHI operations are installed on NSTX-U. An important external system 
required for initiating CHI discharges is the CHI 2 kV, 40 mF Capacitor Bank. Worn out 
components were replaced, and the design for the capacitor bank current limiting resistor 
assembly was revised and improved. Discharging the charged bank at full voltage into a dummy 
load then successfully tested the re-furbished capacitor bank.  

 
Resistive Wall Mode (RWM) control system – While NSTX-U is a modification of NSTX, 
changes to the device conducting structure (e.g. new 2nd NBI port structure), mid-plane RWM 
control coils, and equilibria require re-computation of n = 1 active RWM control performance 
using proportional gain, and RWM state space control. The upgrade also adds new capability, 
such as independent control of the 6 RWM coils. This new capability, combined with the upgrade 
of the RWM state space controller will also allow simultaneous n = 1 and n = 2 active control, 
along with n = 3 dynamic error field correction. Finally, the active control performance of the 
proposed off-mid-plane non-axisymmetric control coils (NCC) also needs to be evaluated, A 

significant increase in controllable N is expected with the RWM state space control in NSTX-U, 
as was found for NSTX.  
 
Disruption Mitigation Systems – Predicting and controlling disruptions is an important and 
urgent issue for ITER. Methods to rapidly quench the discharge after an impending disruption is 
detected are also essential to protect the vessel and internal components of an ST-FNSF. In 
support of this activity, NSTX-U will employ three Massive Gas Injection (MGI) valves [OMS1] 
that are very similar to the double flyer plate design being considered for ITER. NSTX-U will be 
the first device to operate this valve design in plasma discharges. These valves have been tested 
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off-line and deliver the required amount of gas (~ 200 – 400 Torr.L) to support NSTX-U 
experiments, which will offer new insight to the MGI data base by studying gas assimilation 
efficiencies for MGI gas injection from different poloidal locations, with emphasis on injection 
into the private flux region. The valve has also been successfully operated in external magnetic 
fields of 1 T. The upper MGI valve has been installed on NSTX-U. All of the necessary piping 
connections for the lower valve have been installed. Details of the piping connections for the mid-
plane valve are in progress. 
 
Electromagnetic Particle Injector (EPI) – While the MGI system may be adequate for most 
disruptions, the warning time for the onset of some disruptions could be much less than the MGI 
system response time. To address this important issue, a novel system based on the rail-gun 
concept has been designed, and plans for an off-line experimental test are in progress. The device 
referred to as an EPI is fully electromagnetic, with no mechanical moving parts, which ensures 
high reliability after a period of long standby. In addition to responding on the required fast time 
scale, its performance substantially improves when operated in the presence of high magnetic 
fields. The system is also suitable for installation in close proximity to the reactor vessel. 

Fueling Tools – NSTX-U plasma operations will require the capability for gas injection from 
numerous locations. The gas injection systems on NSTX were not adequate to meet the physics 
program needs of NSTX-U as improvements are needed in the area of divertor heat flux 
mitigation, and increased levels of gas injection from high-field side to meet the up to 10s 
discharge pulses planned for in NSTX-U. These are briefly summarized.  

  
For normal inductive plasma operation, NSTX-U will rely on three outboard gas injectors as on 
NSTX.  However, Injectors 2 and 3 are being relocated to bays I and G as their original locations 
on the vessel were eliminated by the modifications providing the 2nd neutral beam port.  NSTX 
relied on two high-field side gas injectors, one injecting near the midplane and one injecting at 
the “shoulder” of the center stack near the PF-1aU coil.  These were used for H-mode triggering, 
and the high-field mid-plane injector was routinely used on most of the H-mode discharges. In 
NSTX-U, the system will have the capability for injection from two mid-plane locations and two 
“shoulder” locations at the top of the center stack.  At each location, these injectors will be 
toroidally displaced by 180 degrees. Furthermore, for both the midplane and shoulder locations, 
one installation will have a larger diameter tube, while the other installation will have a small 
diameter tube; this variation in tube size will provide a measure of control over the flow rates.  
The higher gas delivery capability from these injectors may be required during Li conditioned 
operation on NSTX-U as the injectors on NSTX were at some times (such as during the diffusive 
Li coating experiments) were found to be inadequate to maintain the required electron densities in 
NSTX.  
 
For CHI start-up, in addition to the existing gas injector on bay K bottom, a Tee will be added at 
Bay G bottom port, which is the location of lower divertor Penning gauge, and this too used to 
provide more control and improved toroidal gas injection symmetry.  
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The glow discharge conditioning (GDC) system will use one of the mid-plane injectors as on 
NSTX.  The boronization system, based on deuterated Tri-Methyl-Boron (dTMB) in a He carrier 
gas, is being significantly modified, by adding a new gas delivery system with improved safety 
features.  In addition to the mid-plane injection, provisions will be provided for gas injection from 
both the upper and lower divertor regions. This is based on results from DIII-D that suggest that 
spatially distributed injectors will provide more uniform coverage of the boron coatings.  

 
For divertor heat flux mitigation studies, NSTX relied on a single low-conductance gas injection 
location beneath the lower divertor plate on Bay-E.  Initial NSTX-U capabilities will replace this 
injector with two high-conductance injectors in the lower divertor, separated by 180 degrees 
toroidally. This capability can be extended to additional toroidal angles, and to the upper divertor, 
in subsequent years once experience is gained with the new system.  
 
Commissioning of the gas injection system for NSTX-U – The legacy gas injection code from 
NSTX, while functional, had reached a state where maintenance and upgrades were difficult. 
Therefore, the control algorithms were redesigned and rewritten to improve its clarity, 
consistency and the ability to introduce new capabilities (such as density or radiation feedback) 
that employ the NSTX-U gas injectors.  A number of the gas lines and vessel pressure 
measurements were changed or upgraded during the outage, and these systems were brought on-
line and calibrated in support of CD-4 operations. Note that unlike NSTX, all gas injectors will 
now be programmed from the PCS. 
 
Boronization – Boronization is a conditioning technique for reducing oxygen that will be applied 
to NSTX-U plasma-facing components after bakeout and helium glow discharge cleaning (GDC). 
The boronization process involves GDC with a mixture of 95% helium and 5% deuterated 
trimethylborane (dTMB) which is followed by another period of helium GDC. During the past 
year, a new dTMB system was installed on NSTX-U. A PLC is used to control the flow of dTMB 
through coaxial lines from a specially-designed gas cabinet inside the NSTX-U Test Cell to the 
vacuum vessel. The boronization system will be available for plasma operations in FY16. 
 
Preparations for NSTX-U Lithium Operations – The safe handling of lithium is essential for 
supporting the technologies required for lithium conditioning of plasma-facing components 
(PFCs) and ELM control. As part of the process of evaluating practices and procedures for 
lithium use at PPPL facilities including NSTX-U, a Lithium Safety Peer Review was held at 
PPPL on June 16 – 18, 2015. The review was part of a US Department of Energy “notable 
outcome” for the Laboratory for fiscal year 2015. The reviewers included representatives from 
Environmental Health and Safety group at Princeton University, Applied Research Laboratory at 
the Pennsylvania State University, Corrosion Science and Technology Group at Oak Ridge 
National Laboratory, and Sandia National Laboratories in New Mexico. The reviewers visited 
PPPL facilities that included the NSTX-U Test Cell and areas for lithium technology 
development and storage. They also examined lithium handling procedures, and interviewed 
members of the staff who work with lithium. The reviewers observed that PPPL personnel and 
their safety practices were appropriate and adequate for present lithium-related activities. 
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Granule Injector for Investigation of Multi-species Particle Injection and ELM Control – 
The mechanical assembly and testing was completed for the NSTX-U granule injector (GI). A 
new control system for remote GI operation has been designed, and its components have been 
procured. The initial motivation for the GI was to inject lithium granules for ELM control (“ELM 
pacing”). This was successfully demonstrated on EAST and DIII-D, and ELM pacing 
experiments with lithium injection are planned for NSTX-U. An outstanding question is the effect 
of other granule materials on plasmas, and this will be investigated in the upcoming NSTX-U run. 
Laboratory tests of the LG have been performed with boron and boron carbide granules. 
Boronization will precede PFC conditioning with lithium, and the ability to inject boron and 
boron carbide will permit granule injection studies without introducing lithium into NSTX-U. 

Lithium Evaporator – The NSTX lithium evaporator (LITER) system will be reused on NSTX-
U. Each LITER is a temperature controlled stainless steel container filled with liquid lithium 
(LL), with a nozzle to direct the lithium vapor for coating PFCs at desired locations. As on 
NSTX, the nozzle will be aimed on NSTX-U toward the middle of the inner divertor to maximize 
the lithium deposition on the divertor plates.  The LITER passes through a PFC gap in the upper 
divertor region. Changes to the upper umbrella structure (for NSTX-U) necessitated 
modifications to the LITER mounting brackets. The LITERs have been remounted and checked 
for interferences with the upper divertor gap. The liquid lithium filler for LITER (LIFTER) was 
also successfully tested. The station where the LIFTER is used load the LITERs has been 
reinstalled in the NSTX-U South High Bay. Two layers of stainless steel protect the concrete 
floor from accidental exposure to liquid lithium. 

Liquid lithium technology development – The implementation of a flowing liquid lithium 
divertor is a long-term goal for NSTX-U. However, the challenge of developing a system that 
requires lithium flow through the vacuum boundary from an external reservoir to an in-vessel 
divertor is daunting. Recent experiments with lithium coatings on high-Z plasma-facing 
components (PFCs) under high-flux plasma bombardment in the Magnum PSI linear plasma 
device indicated that the erosion rate of deuterium-saturated lithium was much lower than lithium 
alone. This suggests that the properties of liquid lithium PFCs could be investigated with 
significantly reduced lithium inventories. For example, tiles could be “preloaded” with internal 
reservoirs of lithium that could flow to the surface during plasma operations. Several concepts 
were developed in collaboration with the Eindhoven University of Technology in the 
Netherlands. They are the basis for a test tile under consideration for installation as part of the 
high-Z divertor tile upgrade planned in FY16. 

NSTX-U Diagnostic System Status and Plans - Diagnostic installation was an active area of 
NSTX-U operational preparation in FY2015. A list of the existing diagnostic systems expected to 
be available during the first year of operation is shown in Table FD-1. An exception is the 
poloidal FIR high-k scattering system, which will be installed during the shutdown following the 
FY2016 campaign.  Over half of those diagnostic systems are provided by collaborators, with 
installation support provided by PPPL.  The in-vessel diagnostic installation and related 
calibration tasks were completed in FY2014, so diagnostic work in FY2015 focused on 
completion of vacuum interfaces that did not require vessel entry for installation and on 
installation of diagnostic hardware outside the vessel.  Installation, calibration, and 
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SXR system was built and installed at Bay-G, currently sharing a port with the PPPL AXUV 
diode-based bolometer system.  The core system provides a total of 100 channels of soft X-ray 
detection covering the entire plasma outboard mid-plane with a spatial resolution of ~3cm. In 
addition, the edge ME-SXR adds another 100 channels at high resolution, ~ 1cm, covering the 
plasma pedestal and outer edge, r/a ~ 0.6-1.1. These channels are grouped into 5 sets of 20 
channels each viewing the plasma tangentially through a separate filtered pinhole, while a 
remotely activated shutter will protect the filters and diodes from lithium deposition during 
LITER operation. The data from the ME-SXR system is used as input to a JHU-developed Neural 
Network analysis code that will provide electron temperature profiles with high time resolution, 
of ~10kHz, on a routine between-shot basis. The NSTX-U ME-SXR array design and the Neural 
Network analysis method were implemented and tested also at the EAST tokamak, using a JHU 
built edge ME-SXR system. The EAST diagnostic tests demonstrated good agreement between 
the ME-SXR and the TS electron temperature profile, as well as stable in-vessel operation.  The 
ME-SXR system will also be a main diagnostic for the assessment of impurity transport, and will 
be used in conjunction with gas impurity injection and with the laser blow-off diagnostic to be 
built within the PPPL-LLNL collaboration. For analysis of the impurity transport, the STRAHL 
transport code was modularized and inserted into a Python user interface, to streamline data 
handling and calculation of the transport coefficients. Finally, the ME-SXR system will be also 
used for fast boundary position measurements to assess the viability of non-magnetic sensors for 
equilibrium boundary detection and feedback position control. 

The new Transmission Grating Imaging Spectrometer (TGIS) diagnostic with a direct-detection 
VUV/XUV sensor for increased sensitivity was also evaluated on LTX, where it was used to 
study the comparison between recycling of solid and liquid lithium surfaces. For NSTX-U, the 
TGIS with a direct-detection CCD will significantly reduce the complexity of the diagnostic as 
well as provide measurements with a significantly higher SNR.  The JHU group is now also 
evaluating the direct-detection TGIS for analysis of the upper divertor on NSTX-U using a new, 
state-of-the-art atomic physics modeling code.  The measurements from the divertor TGIS will 
provide spatially and spectrally resolved estimates of radiated power as well as the concentration 
and transport of impurities.  These data will be used in conjunction with the OEDGE and 
DIVIMP codes for validation of divertor models.  The JHU advanced atomic physics code was 
also used in support of a collaboration with PPPL and RFX-mod, by modeling the He-I line ratio 
emission for use as a plasma SOL/edge temperature and density diagnostic. 

Motional Stark Effect – Collisionally Induced Fluorescence (MSE-CIF) – The MSE-CIF 
system was commissioned and is ready to support the FY2015 experimental campaign. The 
beam-into-gas calibration of the system will be performed early in the FY2016 campaign. Testing 
and optimizing of the algorithms for real-time capability (rt-MSE) was completed and rt-MSE 
will be available for the FY2016 campaign. A study was performed to optimize the width of the 
light collection aperture to provide larger signals with the higher toroidal field of NSTX-U. 

Motional Stark Effect – Laser Induced Fluorescence (MSE-LIF) – The MSE-LIF will provide 
measurements of the field line pitch angle profile without requiring injection of the heating 
neutral beam needed for the present MSE-CIF system on NSTX-U.  This system was installed 
and commissioned prior to the NSTX upgrade outage and utilizes a small diagnostic neutral beam 
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Magnetics For Equilibrium Reconstruction, Boundary Control, and RWM Suppression – 
There are many more magnetic sensors in NSTX-U than NSTX, largely due to the increase in the 
number of sensors on the newly fabricated center column.  Substantial progress was made in 
commissioning the NSTX-U magnetic diagnostics, as described below. 
  
The poloidal field and flux measurements are used to constrain both off-line and realtime 
equilibrium reconstructions. The analog integrators for these systems were all checked, and 
repairs made. All sensors were then cabled to their integrators, and then to the transient and real-
time digitizers. The sensors were then calibrated using single coil discharges. Updated sensor 
gains were determined, and errant pickup of the TF and OH fringing fields was corrected in the 
data. These sensors were used to support the CS KPP activity, allowing EFIT reconstructions of 
all discharges. 

Progress was also made on other magnetic diagnostic systems. A rogowski sensor was installed 
on one the TF outer legs, allowing a measurement of the time-derivative of the TF current. This 
measurement, combined with a toroidal flux loop, will used to measure the diamagnetic flux in 
the plasma. The resistive wall mode (RWM) sensor signals were examined during these magnet 
shots, and a number of cabling errors resolved. Finally, the plasma current measurement system 
was refurbished, with some major hardware upgrades. These were successfully commissioned, 
and the data that was collected will be used to improve the vessel-current compensation in the 
plasma current measurement. 

Boundary Physics Diagnostics – The NSTX facility has been investing strongly in boundary 
physics related diagnostics in the past several years, and a major activity has been to insure that 
port space is available on NSTX-U to accommodate them.  There are over 20 boundary physics 
diagnostic systems on NSTX-U and additional ones are being readied. They include Gas-Puff 

Imaging (500kHz), a new poloidal Langmuir probe array, Edge Rotation Diagnostics (Ti, V, 

Vpol), 1-D CCD H cameras (divertor and midplane), 2-D fast visible cameras for divertor and 
overall plasma imaging, divertor bolometer, IR cameras (30Hz), fast IR camera (two color), tile 
temperature thermocouple array, divertor fast eroding thermocouples, dust detector, Quartz 
Microbalance Deposition Monitors, scrape-off layer reflectometer, edge neutral pressure gauges, 
Material Analysis and Particle Probe (MAPP) [see Milestone	 D(15‐1)	 Report], Divertor 
Imaging Spectrometer, Lyman Alpha (Lya) Diode Array, visible bremsstrahlung radiometer, 
visible and UV survey spectrometers, VUV transmission grating spectrometer, visible filterscopes 
(hydrogen & impurity lines), and wall coupon analysis.  Major upgraded boundary physics 
diagnostics are described in more detail below.  
 
SOL and divertor diagnostic development for NSTX-U – Two new diagnostics are being 
developed by LLNL to support radiative divertor feedback control. In a conceptual form, both 
spectroscopic diagnostics would provide a semi-localized electron temperature estimate in the 
divertor in real time, which can be used in the plasma control system to control the gas seeding 
rate. These diagnostics are the divertor SPRED vacuum ultraviolet spectrometer, and the divertor 
imaging Balmer line spectromer (DIBS). The divertor SPRED spectrometer will use real-time 
carbon or nitrogen spectral line intensities as proxies of radiated power, as well as boron-like, 
beryllium-like, and lithium-like line intensity ratios that are highly sensitive to electron 
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temperature in the range 1-10 eV.  The DIBS diagnostic will provide a multi-chordal coverage of 
the divertor legs.  Temperature-sensitive high-n Balmer line intensity ratios (n=6-12) will be used 
in real-time for electron temperature evaluation. Both diagnostics are being installed on NSTX-U 
for initial testing in FY2016. 

Design of Resistive and Infrared Imaging Bolometers for NSTX-U – Measurement of the 
power radiated from the plasma support a range of activates from informing day-to-day tokamak 
operations to in-depth physics studies.   Excessive power radiated from the core can have a 
negative impact on performance, while emission in the boundary plasma can be used as an 
efficient means of spreading heat exhaust, thus making spatial coverage and resolution important.  
Power can be lost over a wide range of photon energies, and specialized sensor technologies must 
be used to make accurate measurements.  Through collaboration with ORNL, key upgrades and 
improvements to NSTX-U radiated power measurements will work to enhance upcoming 
research in the areas of transport and boundary plasma physics through the use of resistive 
bolometers.  Additional efforts through ORNL and NIFS collaborations will explore using novel 
infrared imaging bolometers. 

 
Resistive bolometers are a conventional proven technology for radiated power measurement 
used on nearly all large-scale magnetically confined plasma devices.  Small thermally isolated 

metallic foils, 4 m Au, absorb radiation emitted from the plasma resulting in a rise in 
temperature which can be detected via a resistance change and used to infer the radiated power.  
Prior implementation on NSTX was challenging, and work in FY15 by ORNL and PPPL looked 
to understand and overcome the shortcomings of previous designs as well as adapt them for 
NSTX-U.  Testing of existing sensor stock is underway and conceptual design activities are 
nearing completion in an effort to develop resistive bolometer tools to be installed following the 
FY16 campaign.  Both core and lower divertor regions are being considered as priorities for 
initial diagnostic deployments, and a strategy for more comprehensive coverage beyond FY17 is 
being developed. 
 
Infrared imaging bolometers offer a novel means of measuring radiated power by observing a 
foil’s temperature via infrared emission rather than its resistance.  This technique leverages 
technological advancements in high-resolution IR imaging cameras to improve spatial coverage 
and has been demonstrated on large-scale fusion devices such as LHD and JT-60U.  On-site 
collaboration by NIFS, Japan along with colleagues from ORNL, and PPPL performed laboratory 
testing and developed a conceptual design of an infrared imaging bolometer to view the lower 
divertor of NSTX-U.  Expected for testing during FY16 operations, this will be the first imaging 
bolometer designed specifically for divertor and boundary physics research.   Results will impact 
future developments of radiated power measurements, both at NSTX-U and within the tokamak 
community, helping to complement existing resistive bolometer tools. 
 
Upper and lower divertor cameras – Full poloidal/toroidal coverage of impurity emission from 
the PFCs is achieved via a combination of bandpass-filtered fast cameras viewing upper and 
lower PFCs and line-scan cameras.  Two wide-angle fast visible cameras (Bay E and Bay J top) 
were used in NSTX for the full toroidal imaging of the lower divertor. These cameras will be re-
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previously uncovered upper divertor and central stack region. The diagnostics consist of a high-
speed ProEM-HS 512 camera, an IsoPlane SCT320 spectrometer and 32 sightlines: 16 sightlines 
on the upper divertor and 16 sightlines on the central stack. These spectroscopic views of the 
center-stack are obtained from one port at the Bay J equatorial plane for spectroscopy. A port at 
the Bay G bottom has been allocated to this project to provide views of the upper divertor.  
During the past year, a spectrometer, the Princeton instrument IsoPlane SCT320, was procured. 
This spectrometer can work with up to 3 different gratings: one low resolution grating (1200 
G/mm) to monitor wide regions of the spectrum; one high resolution grating (3600 G/mm 
optimized for UV) to measure fine spectral features of selected spectral lines (i.e. to measure 
temperature); one intermediate resolution (2400 G/mm optimized for visible light) to monitor the 
intensity of multiple impurity lines at once. A ProEM:512B camera will be coupled to this 
spectrometer. The diagnostic support and optical design for the Bay J mid-plane and Bay G are 
complete, and the machine shop is manufacturing the fiber holder and other mechanical part. The 
second fiber optic bundles will be delivered at the early of September. These new diagnostic 
capabilities of the central stack and upper divertor will enable us to address outstanding questions 
regarding the dependence of the effectiveness of lithium evaporation on the poloidal and toroidal 
asymmetries in the coating. 

Laser blow-off impurity injection system – Significant progress has been made in the laser 
blow-off (LBO) impurity injector development in FY2015. The LLNL group worked with PPPL 
on developing and installing a laser blow-off impurity injection system on NSTX-U.  The LLNL 
LBO team presented a Conceptual Design Review of the system.  The laser blow-off impurity 
injection system will be used for low- and high-Z impurity transport studies in the core, pedestal, 
and edge of NSTX-U plasmas. The system comprises of a 10-Hz, 1 J laser, beam delivery optics, 
and a target chamber that will be mounted on the NSTX-U vacuum vessel.  The laser to be 
utilized is an infrared 1064 µm Q-switched Nd:YAG laser with a 16 ns pulse duration which has 
previously been used as a laser ablation system on EBIT-I and SuperEBIT.  A preliminary beam 
path has been drawn out by LLNL and is awaiting approval and implementation.  A new laser 
room location has been chosen and will be built on the mezzanine above the South Bay entrance.  
The laser room specifications for operation have been worked out.  The target chamber has been 
designed and will be located on Bay J at 109’ elevation.  The system was designed and 
components are being fabricated. Installation is planned for early FY2016 and operational in FY 
2016. 

Pulse Burst Laser System – During FY2015, good progress was made on fabrication of the 
Pulse Burst Laser System (PBLS) being provided as an upgrade to the MPTS diagnostic under a 
DOE Early Career Research Project. Delivery of the laser to PPPL is expected in early FY2016. 
The high time resolution measurements enabled by this capability will play a key role in 
exploration of H-mode pedestal and ELM physics. The fast data acquisition system required for 
the MPTS detectors to be able to follow the rapid laser pulses from the PBLS was acquired, 
installed, and commissioned. 

Energetic Particle Diagnostics – In preparation for the upcoming NSTX-U Run, both vertical 
and tangential Fast Ion D-Alpha (FIDA) diagnostics by UCI have been reinstalled, aligned and 
calibrated. Improvements have been made in the control modules and stray-light blocking to help 
make the measurements more accurate and reliable. Both FIDA systems are ready for plasma 
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experiments on NSTX-U.  A new and innovative ssNPA system by UCI, which uses stacks arrays 
of silicon diodes with different foil thickness to get spatial profile measurements and some energy 
information, has been installed. Arrays mounted at different ports around the NSTX-U vessel 
provide both radial and tangential views to enable measurements of the fast ion distribution at 
different values of radius, energy and pitch. The electronics have been successfully tested on 
bench and they are able to measure fluctuations up to 150 kHz, which is suitable to study fast ion 
driven instabilities and transport. The final integration test of ssNPA detectors and electronics is 
currently underway. Other fast ion diagnostics that were previously available on NSTX have also 
been reinstalled and tested. This includes neutron counters and a scintillator-based lost-ion probe 
(sFLIP), which measured lost fast ions reaching the vessel wall, and a new charged fusion 
product (CFP) profile diagnostic.  

Neutron Diagnostics – Three fission chamber neutron detectors and two scintillator detectors 
were installed on NSTX in FY2015. The absolute calibration of the fission chambers was 
determined through use of a Cf-252 neutron source in the vessel. This source is one that PPPL 
obtained from ANL to replace an old TFTR-era source that had become too weak to provide in-
vessel calibrations within an operationally acceptable amount of time.  These fission chamber 
detectors were operational for the NSTX-U first plasma KPP. A transfer of the fission chamber 
calibrations to a much higher range of neutron rates will be performed early in the FY2016 
campaign. 

A scintillator-based Fast Lost Ion probe (sFLIP) contributes to the NB characterization by 
providing energy and pitch resolved spectra of lost fast ions, e.g. from prompt losses, as the NB 
tangency radius is varied. sFLIP is being upgraded with a faster CCD detector capable of frame 
rates up to 100 kHz.  A set of photo-multiplier tubes is also being installed on sFLIP for energy 
and pitch integrated measurements at rates up to 250 kHz from 6-10 sub-regions of the sFLIP 
scintillator plate.  Major modifications to the vacuum vessel and two large diagnostic ports to 
accommodate the new neutral beam lines for NSTX-U has resulted in displacement of sFLIP 
from the port it had used during NSTX operations.  A suitable alternate port for this diagnostic 
was identified, and that port was enlarged and substantially reinforced to accommodate the 
diagnostic.  The in-vessel part of this diagnostic was then installed at the new location, while at 
the same time extending its range of pitch angle acceptance.  This latter change should allow for 
additional physically valuable information to be obtained about beam ion losses in the 
forthcoming campaigns. 
 
Charged Fusion Product (CFP) Diagnostic – The fusion rate profile diagnostic (also known as 
the ‘proton detector’ or ‘PD’) has been designed by collaborators at Florida International 
University.   It provides direct measurements of the fusion reactivity profile. Because both the 3 
MeV protons and 1 MeV tritons produced by DD fusion reactions are largely unconfined for 
NSTX-U parameters, they quickly escape the plasma. When these ions are measured by the PD 
detector array, their orbits can be tracked backward into the plasma. Such orbits are equivalent to 
curved sightlines for each detector, so that multiple signals can be inverted to infer a radial profile 
of the high-energy fast ions.  A 4-channel CFP prototype has been tested in FY2013 on the 
MAST device (see the Energetic Particle Research Section).  The 3 MeV protons and 1 MeV 
tritons produced by DD fusion reactions in MAST have been clearly observed.  Given the 
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successful observations on MAST, a similar system for with 6 channels) has passed its final 
design review. Construction and installation on a probe drive on NSTX-U is anticipated in early 
FY16. The data obtained on NSTX-U will be used in a proposal for a future 16-channel system 
for NSTX-U. 

Energetic-Particle-Induced Mode Diagnostics – A recently-developed UCLA 16-channel comb 
quadrature reflectometry system has been utilized on NSTX to study the eigenmode structure of 
fast-ion driven Alfven as well as other MHD modes. This unique system has also provided a 
wealth of additional information including investigation of three-wave coupling processes and 
identification of the potential role of Compressional Alfven Eigenmodes (CAEs) in contributing 
to core anomalous transport. In order to prepare for higher density operation in NSTX-U it is 
proposed to expand operation to 100GHz through the installation of 8 additional channels. This 
upgrade to 24 channels will allow detailed eigenmode structure measurements in high 
performance NSTX-U plasmas.  Similarly to NSTX, several arrays of high-frequency Mirnov 
coils will provide routine measurements of the fluctuations spectrum on NSTX-U. Two sets of 
coils are toroidally displaced to enable the computation of the toroidal mode number of the modes 
from the phase of the complex spectrum. A reduced set of coils is displaced poloidally to provide 
information on the poloidal mode structure. The bandwidth of the magnetic fluctuation 
measurements will be extended on NSTX-U from the present 2-2.5 MHz up to 4 MHz, to account 
for the expected frequency up-shift of the modes as the toroidal field is increased.  Another 
quantity of great relevance for EP studies is the radial structure of *AE modes. Several 
complementary systems will be available to this end on NSTX-U, including beam emission 
spectroscopy (BES) arrays, reflectometers, interferometers, polarimeters, and X-ray detectors.  A 
proposal for installing a Doppler back-scattering (DBS) system will be also considered based on 
the available funds (see below). The BES system will provide low-k density fluctuation 
measurements near the mid-plane for normalized radii 0.1 < r/a < 1. The number of channels will 
be increased from 32 up to 64 to simultaneously sample a wide region of the plasma. The 
measurement region will extend poloidally to cover a ~10 cm broad strip along the mid-plane. 
Further improvements may include a toroidally-displaced set of viewing channels, possibly 
limited to the edge region, to measure background emission (in the absence of the 2nd NB source) 
or the toroidal mode number of the instabilities. Density fluctuations are also derived from a 
multi-channel reflectometer system. The 16 channels available on NSTX will be complemented 
by 8 new channels at higher frequency, which will enable fluctuation measurements up to 
densities ~1020 m-3. Line-integrated measurements of density fluctuations will also be available 
from 3-4 far-infrared interferometer with sampling frequency ~4MHz.  Beside density 
fluctuations, other quantities such as magnetic field and velocity fluctuations are important for a 
thorough identification and characterization of the different instabilities. A new radial polarimeter 
system will provide direct measurement of magnetic fluctuations along the mid-plane. Pending 
incremental funding for diagnostics development, flow fluctuations will be measured through a 
millimeter-wave Doppler back-scattering (DBS) system operating in the 80-100 GHz frequency 
range. This new measurement capability represents an alternative, substantially independent tool 
for identifying fast-ion modes that would significantly strengthen comparison with theory, 
expanding previous internal measurements of fast-ion modes previously restricted to perturbed 
density on NSTX.   Additional information on fluctuations with frequency < 100 kHz will be 



54 of 189 

provided by a multi-energy SXR array with two toroidally displaced sets of views. Spatial 
resolution varies from ~1cm at the outboard mid-plane (R > 150 cm) to ~3 cm in the core and 
inboard mid-plane region (40 < R < 140 cm). Faster measurements with up to ~500 MHz 
bandwidth will be available from a system of two poloidal SXR arrays.  Each array contains 16 
channels viewing poloidally through two variable selected filters, with 2-3 cm resolution.   

Doppler backscattering system (DBS) – UCLA collaborators will be installing a 96 GHz DBS 
before the end of the calendar year  It recently underwent and passed a design review. Fabrication 
of the antenna mounting structure is proceeding (the electronics are already finished). It will 

probe density fluctuations with k~10–15 cm-1.  It can penetrate to equilibrium densities as high 

as ~1.1x1020 m-3. (There is a tradeoff between penetration and achievable k. Penetrating to high 

equilibrium density reduces k). The system can also function as a reflectometer, in which chase it 
will reflect at 1.1x1020 m-3. A four channel 81-87 GHz system is currently being fabricated and is 
expected to replace the 96 GHz system early next year. As a reflectometer, it will extend the 
existing capability for measuring MHD or fast-ion mode amplitude in the core to higher density 
(the current reflectometer array penetrates to 7x1019 m-3).  As a DBS system, it will measure the 
Doppler shift of the turbulent fluctuations, which can be used to determine plasma equilibrium 
and fluctuation ExB velocity. That may allow direct determination of the E fluctuation associated 
with fast- ion driven modes. Currently, on the density perturbation associated fast-ion modes can 
be directly measured. 

Alfven Eigenmode Antenna for AE Stability Measurements – Simple antennae have been 
used in several machines (JET, C-Mod) to study TAE stability.  The linear damping rate can be 
measured by sweeping the antenna frequency through the mode frequency.  It will be useful to 
extend these studies to low aspect ratio tokamaks (MAST and NSTX). This would also help to 
validate ITER projections by challenging our fundamental understanding of the physics in the 
drive and stability of these modes. For low aspect ratio the antenna can also be used to study 
higher frequency Alfvén modes such as GAE and CAE.  The “MHD active spectroscopy” plan 
begins with relatively simple antenna design.  As operational experience builds up, more 
ambitious designs will be tried.  In years 1&2 several proto-type antenna designs will be 
evaluated to optimize the coupling to TAE and CAE.  The NSTX-U prototype AE antenna system 
consists of up to 4 compact modules, each of which is a single, 5-turn ‘window-frame’ coil, 
similar in principle to those used on JET, C-Mod and MAST. In parallel, the external power 
supplies for driving the antenna, the coupling networks and control hardware and software will be 
developed.  While the highest priority will be to develop the capability to study TAE, time will be 
devoted to evaluating the antenna and coupling network at frequencies up to 2MHz, as will 
eventually be needed for Global and Compressional Alfvén eigenmode studies.  A four-element 
*AE antenna was designed and installed on NSTX-U to test selectivity of the toroidal / poloidal 
mode number, as well as improving the coupling of the antenna to the modes. The low power 
(≈1kW) experiments will provide important information on antenna coupling and natural 
damping rates for each of the eigenmodes.  This information will be used to determine the 
potential benefits of higher power experiments.  If the natural eigenmode damping rates are small, 
there is the possibility of driving them to amplitudes where stochastic heating of thermal ions 
occurs.   
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NSTX-U FY2015 Year End Report:  Research Results 

 

In FY2015, the NSTX-U research team contributed experimental data and analysis in support of 
the 2015 DOE Joint milestone: “Conduct experiments and analysis to quantify the impact of 
broadened current and pressure profiles on tokamak plasma confinement and stability. 
Broadened pressure profiles generally improve global stability but can also affect transport and 
confinement, while broadened current profiles can have both beneficial and adverse impacts on 
confinement and stability. This research will examine a variety of heating and current drive 
techniques in order to validate theoretical models of both the actuator performance and the 
transport and global stability response to varied heating and current drive deposition.” 

The NSTX-U research contributions to the 2015 Joint Milestone are described in a separate 
report, and the NSTX-U contributions to “Provide leadership, coordination, and support to the 
FES joint research target with the goal of quantifying the impact of broadened current and 
pressure profiles on tokamak plasma confinement and stability” are summarized above.   

Summary descriptions of the results of research milestones are provided below.  Several of these 
milestones were originally written assuming experimental results from NSTX-U would be 
obtained in FY2015.  However, as a result of the delay in NSTX-U research operation until 
FY2016, the milestone reports below provide information on planned experiments rather than 
experimental results.  Descriptions of additional selected research highlights are also provided in 
subsequent sections. 
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FY2015 Research Milestone R(15-1): Assess H-mode energy confinement, pedestal, and scrape 
off layer characteristics with higher BT, IP and NBI heating power (Target - September 2015. 
Initiated – September 2015)  
 
Milestone Description: Future ST devices such as ST-FNSF will operate at higher toroidal field, plasma 
current and heating power than NSTX.  To establish the physics basis for future STs, which are generally 
expected to operate in lower collisionality regimes, it is important to characterize confinement, pedestal 
and scrape off layer trends over an expanded range of engineering parameters.  H-mode studies in NSTX 

have shown that the global energy confinement exhibits a more favorable scaling with collisionality (BE ~ 

1/*
e) than that from ITER98y,2.  This strong *

e scaling unifies disparate engineering scalings with 

boronization (E~Ip
0.4BT

1.0) and lithiumization (E ~ IP
0.8BT

-0.15).  In addition, the H-mode pedestal pressure 
increases with ~IP

2, while the divertor heat flux footprint width decreases faster than linearly with IP.  With 
double BT, double IP and double NBI power with beams at different tangency radii, NSTX-U provides an 
excellent opportunity to assess the core and boundary characteristics in regimes more relevant to future 
STs and to explore the accessibility to lower collisionality.  Specifically, the relation between H-mode 
energy confinement and pedestal structure with increasing IP, BT and PNBI will be determined and 
compared with previous NSTX results, including emphasis on the collisionality dependence of confinement 
and beta dependence of pedestal width. Coupled with low-k turbulence diagnostics and gyrokinetic 
simulations, the experiments will provide further evidence for the mechanisms underlying the observed 
confinement scaling and pedestal structure.  The scaling of the divertor heat flux profile with higher IP and 
PNBI will also be measured to characterize the peak heat fluxes and scrape off layer widths, and this will 
provide the basis for eventual testing of heat flux mitigation techniques. Scrape-off layer density and 
temperature profile data will also be obtained for several divertor configurations, flux expansion values, 
and strike-point locations to validate the assumptions used in the FY2012-13 physics design of the 
cryopump to inform the cryo-pump engineering design to be carried out during FY2016. 
 

Milestone R(15-1) Report:  

A number of experiments were submitted to the NSTX-U 2015 Research Forum to investigate 
how increased plasma current, field strength and heating power will influence H-mode energy 
confinement, local transport, pedestal and scrape-off layer structure, and divertor heat flux width.  
These experiments will rely upon a number of enhanced diagnostic measurements, and together 
will be coupled with modeling efforts to expand our physics understanding of core, pedestal, 
scrape-off-layer (SOL) and divertor physics at higher field, higher power, and presumably 
reduced collisionality. 

Experiment XP1520 “Ip/Bt scaling” will provide first data on the scaling of H-mode global 
energy confinement, as well as local transport and turbulence properties, as plasma current and 
toroidal field are increased beyond those achieved with NSTX.  In addition to dedicated 
engineering scans in Ip and BT (important for comparison with traditional empirical confinement 
scalings), a coupled current and field scan (at fixed q~Ip/BT) will allow us to text access to lower 

collisionality plasma (at relatively constant  and *=i/a) to determine whether the favorable 

E~1/* confinement scaling observed in NSTX remains at even lower collisionality.  As wall 
conditioning was shown to play a significant role in confinement and transport in NSTX, 
elements of this XP will be run during both the early boronized phase of NSTX-U operation, as 
well as repeated later on with lithium wall conditioning.  This XP will also allow us to assess 
differences from changes in aspect ratio by comparing to previous NSTX data over similar Ip and 
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Current scans contained in the above XPs will also provide new data on the scaling of SOL and 
divertor heat flux widths at increased plasma current.  In addition to Langmuir probes, the 
divertor measurements will exploit three infrared (IR) cameras (ORNL), including one wide-
angle, slow frame rate camera (30 Hz, viewing the lower divertor) and two dual-band fast frame 
rate cameras (1.6 kHz, viewing upper and lower divertors).  IPEC modeling will be used to 
compare to the visible and IR footprints images.  In addition, XP1514 “Heat flux and SOL width 
scaling in NSTX-U” will add to this understanding by investigating how the change in SOL and 
divertor heat flux widths is correlated with measurements of SOL turbulence.  In addition to BES 
and reflectometry, this XP will exploit gas puff imaging (GPI) to characterize changes in SOL 
turbulence, especially with the addition of lithium wall conditioning and increased beam power 
through the use of the 2nd NBI.  These results with be compared with modeling from SOLT, 
XGC1 and SOLPS to determine if changes in pedestal and SOL density gradient are related to 
changes in SOL turbulence.  An additional XP1528 “Characterize plasma near planned plenum 
entrance position” will provide additional data on the density, temperature and particle flux in the 
SOL and divertor to validate the assumptions used in the design of the planned cyropump. 
 
In NSTX-U, discharges with Ip ~2  MA and PNBI ~12  MW and up to 5 s duration are projected to 
produce steady-state peak divertor heat fluxes in excess of 10 MW/m2 , thereby challenging 
thermal limits of divertor graphite PFCs. The leading heat flux mitigation candidates for NSTX-U 
are the snowflake (SF) divertor geometry and the impurity-seeded radiative divertor technique, 
applied to the lower and upper divertors. 
 
Research is planned on NSTX-U to demonstrate steady-state SF configurations as well as 
radiative divertors with reduced heat flux, compatible with high-beta, low collisionality H-mode 
scenarios. Several XPs have been accepted at the Research Forum to initiate research in these 
areas. Initial divertor experiments planned on NSTX-U in the first year will address radiative 
divertor operational space (current, power, density), neutral and impurity compression; 
calibration of control diagnostic signals without feedback; X-point MARFE characterization and 
avoidance; and studies of toroidal asymmetries of impurity radiation due to gas injection port 
locations. Several new diagnostics have been developed to study two-dimensional divertor 
impurity radiation distribution and support radiative divertor feedback control.  
 
In preparation to experiments, modeling of the divertor transport and radiation in the standard and 
SF geometry has been performed. The modeled SF equilibria were also used in predictive edge 
transport modeling with multi-fluid code UEDGE. The model used NSTX-like transport 
coefficients, a neutral model using diffusive treatment in cross-field directions and a full Navier-
Stokes treatment in the parallel direction, a fixed fraction (3 % carbon) impurity and the ion 
recycling coefficients R = 1 at the wall, and R = 0.99 at the divertor plates. Effects of the classical 
electromagnetic particle drifts were not included. The power flowing into the SOL was equally 
split between electrons and ions. The model did not include any special transport modifiers in the 
null region of the SF configuration, hence, it mostly showed effects of the SF geometry on heat 
and impurity radiation. The geometric factors were very favorable: in the outer strike point 
region, both the connection length and the poloidal flux expansion were increased by factors of 2-
3 w.r.t. the standard divertor geometry.  
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The most challenging case with PSOL = 9 MW representative of the 12 MW, 2 MA NBI-heated 
plasma discharge was studied in detail. It was found that a highly radiative scenario occured in 
the SF configuration at a much lower density, enabling a greater power loss (w.r.t. the standard 
divertor), and a larger operating window with reduced peak divertor heat flux at lower electron 
density. In the outer divertor, high peak divertor heat flux (7 MW/m2 ) was obtained with the 
standard divertor, and a rediuced flux (3-4  MW/m2) in the SF-minus configuration. Both the flux 
expansion and the additional radiated power loss were responsible for the heat flux  reduction in 
the SF-minus model. The inner divertor region was found to be highly radiative (possibly with a 
detached strike point) in both configurations. Impurity-seeded divertors (with neon and argon) 
were also analyzed. It was found that 50% less argon was needed in the SF-minus configuration 
to achieve similar peak heat flux reduction factors (cf. standard divertor). The UEDGE modeling 
results supported the SF divertor as a leading steady-state divertor power exhaust solution for 
NSTX-U, and provided guidance for further radiative divertor development, including real-time 
feedback control. 
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FY2015 Research Milestone R(15-2):  Assess the effects of neutral beam injection parameters 
on the fast ion distribution function and neutral beam driven current profile (Target - September 
2015. Initiated – September 2015)  
 
Milestone Description:  Accurate knowledge of neutral beam (NB) ion properties is of paramount 
importance for many areas of tokamak physics. NB ions modify the power balance, provide torque to drive 
plasma rotation and affect the behavior of MHD instabilities. Moreover, they determine the non-inductive 
NB driven current, which is crucial for future devices such as ITER, FNSF and STs with no central 
solenoid. On NSTX-U, three more tangentially-aimed NB sources have been added to the existing, more 
perpendicular ones. With this addition, NSTX-U is uniquely equipped to characterize a broad parameter 
space of fast ion distribution, Fnb, and NB-driven current properties, with significant overlap with 
conventional aspect ratio tokamaks.  The two main goals of the proposed Research Milestone on NSTX-U 
are (i) to characterize the NB ion behavior and compare it with classical predictions, and (ii) to document 
the operating space of NB-driven current profile. Fnb will be characterized through the upgraded set of 
NSTX-U fast ion diagnostics (e.g. fast-ion D-alpha: FIDA, solid-state neutral particle analyzer: ssNPA, 
scintillator-based fast-lost-ion probe: sFLIP, and neutron counters) as a function of NB injection 
parameters (tangency radius, beam voltage) and magnetic field. Well controlled, single-source scenarios at 
low NB power will be initially used to compare fast ion behavior with classical models (e.g. the NUBEAM 
module of TRANSP) in the absence of fast ion driven instabilities. Diagnostics data will be interpreted 
through the “beam blip” analysis technique and other dedicated codes such as FIDASIM. Then, the NB-
driven current profile will be documented for the attainable NB parameter space by comparing 
NUBEAM/TRANSP predictions to measurements from Motional Stark Effect, complemented by the 
vertical/tangential FIDA systems and ssNPA to assess modifications of the classically expected Fnb.  As 
operational experience builds up during the first year of NSTX-U experiments, additions to the initial Fnb 
assessment will be considered for scenarios where deviations of Fnb from classical predictions can be 
expected. The latter may include scenarios with MHD instabilities, externally imposed non-axisymmetric 
3D fields, and additional High-Harmonic Fast Wave (HHFW) heating. 

 

Milestone R(15-2) Report 

In preparation for dedicated experiments on NSTX-U (see below), activities related to Milestone 
R(15-2) have focused on the development of improved modeling/analysis tools and of diagnostics 
to characterize the fast ion distribution function and its evolution as a function of NB injection 
parameters. 

Several numerical tools have been improved and validated against NSTX and DIII-D data to 
provide a more accurate description of the fast ion evolution. Those models have been developed 
to provide quantitative results also for scenarios with instabilities causing enhanced fast ion 
transport. Instabilities range from toroidal Alfvén eigenmodes (TAEs) and other Alfvénic 
instabilities to lower frequency MHD and energetic particle-driven modes such as long-lived kink 
modes, fishbones and EPMs. 
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Starting from the ORBIT code, an “hybrid” model has been developed to compute self-
consistently the evolution of instabilities and fast ion distribution [R15-2-1]. Phase and amplitude 
of each mode are evolved based on the energy exchanged with fast ions. Growth rates and relaxed 
fast ion profiles are computed dynamically, providing a quantitative estimate of the mode stability 
and saturation amplitude. A second approach relies on the notion of a “critical gradient” in the 
fast ion profile resulting from fast ion transport by instabilities [R15-2-2]. Required inputs are 
growth and damping rates, which are obtained for example from linear stability analysis through 
the NOVA-K and HINST codes (cf. Section on Energetic Particle Research highlights for more 
details). This model has been applied to several NSTX and DIII-D cases, showing reasonable 
agreement with experimental data, e.g. in terms of predicted vs. measured neutron rate deficit (cf. 
Figs. JRT-15-1 and 2 in the “JRT-15 Notable Outcome” Section). Finally, a reduced model for 
fast ion transport (“kick” model) has been implemented in TRANSP [R15-2-3] and tested against 
NSTX and DIII-D data. Initial results compare well with experimental results and with 
predictions from the “critical gradient” model. Extensive validation is ongoing, suggesting further 
improvements to the model. One key issue to resolve is to improve the model implementation in 
the NUBEAM module of TRANSP. For instance, in its first implementation the model was 
applied in between macroscopic NUBEAM time steps. This resulted in under-estimated losses for 
particles that are near a loss boundary. Work is in progress to merge the model in the “orbiting” 
section of NUBEAM, so that classical mechanisms (scattering, slowing down) and additional 
transport can be treated on similar time scales. Once validated, this model is expected to provide 
more accurate simulations of the fast ion phase space evolution, which enables more quantitative 
predictions of quantities such as NB current drive and power exchange between fast ions and 
thermal populations. 

The improved modeling capabilities are expected to be ready for validation with data from 
dedicated NSTX-U experiments. Experimental plans have been finalized to cover the most 

XP/XMP   Title  Goals 

110  FIDA/ssNPA/sFLIP 
checkout 

Commissioning of main fast ion diagnostics. Test background subtraction 
techniques for FIDA. Compare phase space response of different systems. 
Test sFLIP diagnostic. 

107  Neutron diagnostic 
calibration 

Obtain low‐NB‐power plasmas with low neutron count rate. Transfer 
calibration from pulse‐counting to current‐counting mode for fission chamber 
counter. Transfer calibration to scintillators. 

1522  Beam ion 
confinement of 2nd 
NB line 

Checkout confinement properties of fast ions from 2nd NB line in quiescent 
conditions. Investigate confinement vs. beam source, injection energy, 
plasma current, toroidal field. Compare with classical predictions from 
NUBEAM/TRANSP. 

1523  Characterization of 
2nd NB line 

Assess operating regimes achievable with combinations of 1st + 2nd NB lines. 
First characterization of NB‐CD with 2nd NB line. Dedicated discharges will 
explore pressure profile modifications vs. NB source mix. This XP 
complements the Ip/Bt scan XP by Kaye et al. 

1524  AE critical gradient  Explore applicability of "critical gradient" model for fast ion profile in the 
presence of instabilities. Validate numerical models. Characterize EP transport 
vs. NB power, fast ion pressure with unstable AE modes. 

 
Table R15-2-1:  Summary of approved XMPs and XPs to address R15-2 Milestone after the beginning of NSTX-U 
operations. 
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important aspects of NSTX-U re-commissioning, with emphasis on the new, 2nd NB injection 
line, see Table R15-2-1. The initial characterization will start with an asssessment of fast ion 
confinment and dynamic for “MHD-quiescent” scenarios for which classical fast ion physics 
applies. Data from those experiments will be compared to predictions from numerical tools such 
as the NUBEAM module in TRANSP. Experiments will then be extended to higher-performance, 
H-mode plasma cenarios with a variety of NB injection mixes. Under these conditions, with 
injected NB power exceeding 2-4MW, Alfvénic and other MHD instabilities are likely to be 
excited. This will provide the opportunity to test and validate the fast ion transport models 
described above, in order to obtain accurate modeling of the fast ion distribution function and of 
its temporal evolution. Finally, planned experiments for the coming Run include dedicated 
sessions to explore scenarios which maximize the non-inductive NB-driven current fraction, up to 
fully non-inductive scenarios, and to explore the range of validity of “critical gradient” models 
for fast ion transport and profile evolution. 

Key diagnostics for the experimental characterization of the fast ion distribution function on 
NSTX-U are fast-ion D-alpha (FIDA) systems and arrays of solid-state neutral particle analyzers 
(ssNPA). Analysis and interpretation of FIDA and ssNPA data is challenging, since the systems 
sample only a portion of the entire distribution. The FIDAsim code [R15-2-4] is used for forward-
modeling of experimental data to infer the actual distribution function based on predictions from 
the TRANSP/NUBEAM code and comparison to experimental data. Recent development of a 
FIDA analysis technique will enable accurate interpretation of data from the upgraded FIDA and 
ssNPA systems available on NSTX-U (see below for details on the diagnostics). To test the 
technique, measured fast-ion D-alpha (FIDA) data from an extensive NSTX database have been 
compared to “classical” predictions that neglect transport by instabilities [R15-2-5]. Even in the 
absence of detectable MHD, in virtually all cases, the profile peaks at smaller major radius and 
the profile is broader than the predictions. Abrupt large-amplitude MHD events flatten the FIDA 
profile, as do most toroidal Alfven eigenmode (TAE) avalanche events. Generally, the onset of a 
long-lived mode also flattens the FIDA profile. There is a shortfall of high-energy ions at large 
major radius in discharges with repetitive TAE bursts. 

To improve the interpretation of both FIDA and ssNPA data, a new 3D “halo” model previously 
implemented in TRANSP has undergone extensive verification for NSTX and projected NSTX-U 
scenarios [R15-2-6]. The 3D halo neutral code uses a “beam-in-a-box” model that envelopes both 
injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset 
of the beam energy components produces first generation halo neutrals that are tracked through 
successive generations until an ionization event occurs or the descendant halos exit the box. The 
3D halo neutral model and Neutral Particle Analyzer (NPA) simulator in the TRANSP code have 
been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code. When using the same 
atomic physics database, TRANSP and FIDAsim simulations get excellent agreement on the 
spatial profile and magnitude of beam and halo neutral densities, as well as the NPA energy 
spectrum. The simulations show that halo neutrals remain in the vicinity of the neutral beam 
footprint as expected and that halo neutral density can be comparable with beam neutral density. 
Future comparisons between measurements, FIDAsim and TRANSP modeling will benefit from 
this important improvement for NSTX-U scenarios with complex NB injection patterns. 
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In preparation for the upcoming NSTX-U Run, both vertical and tangential FIDA diagnostics 
have been reinstalled, aligned and calibrated. Improvements have been made in the control 
modules and stray-light blocking to help make the measurements more accurate and reliable. 
Both FIDA systems are ready for plasma experiments on NSTX-U. A new and innovative ssNPA 
system, which uses stacks arrays of silicon diodes with different foil thickness to get spatial 
profile measurements and some energy information, has been installed. Arrays mounted at 
different ports around the NSTX-U vessel provide both radial and tangential views to enable 
measurements of the fast ion distribution at different values of radius, energy and pitch. The 
electronics have been successfully tested on bench and they are able to measure fluctuations up to 
150 kHz, which is suitable to study fast ion driven instabilities and transport. The final integration 
test of ssNPA detectors and electronics is currently underway. Other fast ion diagnostics that 
were previously available on NSTX have also been reinstalled and tested. This includes neutron 
counters and a scintillator-based lost-ion probe (sFLIP) which measured lost fast ions reaching 
the vessel wall.  

An important addition to the NSTX-U set of fast ion diagnostics is an array of fusion product 
detectors, recently tested on MAST [R15-2-7]. Professor Werner Boeglin, of the Physics 
Department of Florida International University (FIU) in Miami, Florida, has been collaborating 
with the NSTX-U group to implement an array of surface barrier diode detectors to measure the 
emission rate and radial profile of the 3 MeV protons and 1 MeV tritons produced by DD fusion 
reactions in NSTX-U plasmas [R15-2-8]. These particles’ gyro orbits are unconfined even at 
maximum magnetic field in NSTX-U. Consequently, this diagnostic can provide details of the 
spatial extent of the NB ion population through tomographic reconstruction of the fusion reaction 
rate profile along the curved orbits that reach each detector in the array. The result aids in 
determining the profile of the neutral beam driven current. The instrument is also capable of 
measuring the effects of MHD activity on the beam ion density profile. In the past year, Prof. 
Boeglin and co-workers analyzed an extensive set of data from a prototype of this system that had 
been fielded on MAST in 2013. The data confirmed the feasibility of the measurement and 
preliminary results are similar to those of the MAST neutron camera, which measures the DD 
fusion reactivity profile by means of the neutrons emitted from the reaction. Prof. Boeglin’s 
student, Ramona Perez, successfully defended her Ph.D. dissertation, entitled “A Charged Fusion 
Product Diagnostic for a Spherical Tokamak”, on this instrument and data in April 2015 [R15-2-
9]. Another Ph.D. student has joined Prof. Boeglin’s research group and has completed the design 
of the detector array for NSTX-U, based upon the results from MAST. This design has passed its 
Final Design Review at PPPL and is under construction, for use in forthcoming NSTX-U 
campaigns. 

Finally, UCLA collaborators will be installing a 96 GHz Doppler backscattering system before 
the end of the calendar year. It recently underwent and passed a design review. Fabrication of the 
antenna mounting structure is proceeding (the electronics are already finished). It will probe 

density fluctuations with k~10–15 cm-1. It can penetrate to equilibrium densities as high as 

~1.1x1020 m-3. (There is a tradeoff between penetration and achievable k. Penetrating to high 

equilibrium density reduces k). The system can also function as a reflectometer, in which case it 
will reflect at 1.1x1020 m-3. A four channel 81-87 GHz system is currently being fabricated and is 
expected to replace the 96 GHz system early next year. As a reflectometer, it will extend the 
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existing capability for measuring MHD or fast-ion mode amplitude in the core to higher density 
(the current reflectometer array penetrates to 7x1019 m-3). As a DBS system, it will measure the 
Doppler shift of the turbulent fluctuations, which can be used to determine plasma equilibrium 
and fluctuation ExB velocity. That may allow direct determination of the E fluctuation associated 
with fast- ion driven modes. Currently, only the density perturbation associated with fast-ion 
modes can be directly measured. 

 

References 

 
[R15-2-1] R. B. White et al., to be presented at 57th APS-DPP Meeting, Savannah GA (2015) 
[R15-2-2] N. Gorelenkov et al., TH/P1-2, 25th IAEA-FEC, Saint Petersburg RU (2014) 
[R15-2-3] M. Podestà et al., Nucl. Fusion 55, 053018 (2015) 
[R15-2-4] W. W. Heidbrink et al., Commun. Comput. Phys. 10, 716 (2011) 
[R15-2-5] W. W. Heidbrink et al., in preparation (2015) 
[R15-2-6] S. Medley et al., submitted to Plasma Phys. Control. Fusion (2015) 
[R15-2-7] M. Cecconello et al., Plasma Phys. Control. Fusion 57, 014006 (2015) 
[R15-2-8] W. U. Boeglin et al., Rev. Sci. Instrum. 81, 10D301 (2010) 
[R15-2-9] R. Perez et al., Rev. Sci. Instrum. 85, 11D701 (2014) 
  



65 of 189 

FY2015 Research Milestone R(15-3):  Develop the physics and operational tools for obtaining 
high-performance discharges in NSTX-U (Target - September 2015. Initiated – September 
2015)   
 
Milestone Description:  Steady-state, high-beta conditions are required in future ST devices, such as a 
FNSF/CTF facility, for increasing the neutron wall loading while minimizing the recirculating power. 
NSTX-U is designed to provide the physics knowledge for the achievement of such conditions by 
demonstrating stationary, long pulse, high non-inductive fraction operation. The ultimate toroidal field (1.0 
T) and plasma current (2.0MA) capability of NSTX-U is twice that in NSTX. NSTX-U has a capability for 
>5 second discharges, and it has an additional beamline which doubles the available heating power and 
provides much greater flexibility in the beam current drive profile. The aim for studies during the first year 
of operation of NSTX-U is to lay the foundation for the above operational scenario goals by developing 
needed physics and operational tools, using toroidal fields up to ~0.8 T, plasma currents up to ~1.6 MA, 
improved applied 3D field capabilities from additional power supplies, a variety of plasma facing 
component (PFC) conditioning methods, and advanced fueling techniques. As an example of the latter, 
supersonic gas injection provides higher fueling efficiency, and will be used to develop reliable discharge 
formation with minimal gas loading. Differing PFC conditioning techniques, including boronization and 
lithium coatings, will be assessed to determine which are most favorable for longer pulse scenarios. 
Impurity control techniques, an example of which is ELM pacing, will be developed for the reduction of 
impurity accumulation in otherwise ELM-free lithium-conditioned H-modes. The higher aspect ratio, high 

elongation (2.8 < < 3.0) plasma shapes anticipated to result in high non-inductive fraction in NSTX-U 
will be developed, and the vertical stability of these targets will be assessed, with mitigating actions taken if 
problems arise. An initial assessment of low-n error fields will be made, along with expanding the RWM 
control and dynamic error field correction strategies using both proportional and state-space n ≥ 1 
feedback schemes, taking advantage of the spectrum flexibility provided by the 2nd SPA power supply. 
Resonant field amplification measurements, ideal MHD stability codes, and kinetic stability analysis will be 
used to evaluate the no-wall and disruptive stability limits in these higher aspect ratio and elongation 
scenarios. These physics and operational tools will be combined to make an initial assessment of the non-
inductive current drive fraction across a range of toroidal field, plasma density, boundary shaping, and 
neutral beam parameters. 

 
Milestone R(15-3) Report: 
 
Modeling, control tools and experimental planning were conducted in FY15 to prepare for the 
realization of high-performance discharges on NSTX-U in FY16.  
 
One significant accomplishment in FY15 was the commissioning of the NSTX-U magnetic field 
sensors, including the new sensors on the center-stack.  This enabled off-line equilibrium 
reconstructions during the first plasmas on NSTX-U and the ability to qualify the calibrated 
signals in the realtime plasma control system.  This activity is a critical step in actively 
controlling the plasma shape to achieve high-performance discharges. 
 
The realtime EFIT (rtEFIT) code in the plasma control system was updated to incorporate the 
latest version released by General Atomics and the new magnetic measurement locations on 
NSTX-U.  This new version was tested using input data created by NSTX-U TRANSP 
simulations where the magnetic field at the location of the magnetic sensors was a constraint to 
rtEFIT.  The reconstruction based on the synthesized magnetic sensor information was in good 
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agreement with the plasma shape from TRANSP (see Figure IS-ASC-6) providing confidence 
that an essential tool for active shape control in the PCS is ready to support operations in FY16.  
 
An ongoing effort to upgrade the hardware and software in the plasma control system (PCS) 
made significant progress in FY15.  The upgrades improve the maintainability and reliability of 
the system, and facilitate an expansion of the control tools.  A number of critical capabilities 
(such as coil current and gas control) operated within the new architecture and code organization 
during the first plasma campaign in August 2015. Additional capabilities, such as shape control, 
vertical stability control and neutral beam injection control, were extensively tested and are ready 
to support FY16 operations. 
 
A number of experimental proposals (XPs) that commission control tools necessary for high-
performance discharges on NSTX-U completed a full review in FY15.  The following 
summarizes key experiments that develop control capabilities that contribute to the FY15-3 
milestone: 
 

 XP-1501 “Optimization of vertical control algorithm” will determine the plasma 
elongation limit imposed by vertical stability as a function of the plasma inductance (li) 
and identify limitations in the active vertical control system on NSTX-U. The second half 
of the experiment will use the previous results coupled with control models to examine 
the expansion of the elongation limits as a result control model development and 
optimization. 
 

 XP-1503 “X-point control integration with shape control” will test the functionality of 
controlling the locations of the upper and lower x-point position using the upgraded set of 
poloidal field coils. Verification of acceptable x-point control is an essential first step 
toward implementing full plasma shape control capabilities such as advanced magnetic 
divertor geometries. 
 

 XP-1504 “Beam power and beta-N control” demonstrates expanded capability to control 
the timing of the neutral beam injection within the plasma control system to deliver a 
requested heating power or achieve a particular beta-N. 
 

 XP-1509 “Combined betaN and li feedback control” will gather a dataset needed to 
inform model-based control algorithms under development. Plasma current, total and 
individual beam powers, and mid-plane outer gap size will be considered as actuators. 
Results will be compared to predictions of closed loop TRANSP simulations to verify the 
predictive capability of these simulations. 
 

 “Current profile controllability scoping study” this XP will generate data to validate 
models of the current profile evolution that will be used for designing current profile 
feedback control algorithms. Actuator modulations (individual beams, outer-gap size, 
density) will be done in several shots to assess the current profile dynamic response to 
these changes and the effect of beam pulse-width modulation. Variations in actuator 
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trajectories during the ramp-up will also be done to assess controllability and the 
applicability of TRANSP and control-oriented reduced models to this phase of the 
discharge. 

Two XPs that integrate control tools and operational scenarios to develop high-performance 
plasmas on NSTX-U in FY16 are: 
 

 XP-1507 “Maximizing the non-inductive current fraction in NSTX-U H-modes” aims to 
operate with nearly 100% non-inductive current drive. Global plasma models provide 
guidance for the non-inductive plasma current expected for a given toroidal field (TF) 
and confinement assumptions. This experiment will assess those predictions against the 
available TF operating space.  

 
 “Develop long pulse H-mode for NSTX-U” will aim to make the longest possible H-

mode plasma (> 4.5 seconds). This requires scenario development within the constraints 
of coil heating and neutral beam operation, development of stable plasma shape control 
through the full swing of the ohmic fringe field, and integrating tools and scenarios that 
provide adequate MHD stability, particle control and impurity control.  

Many experiments were also submitted to the NSTX-U Research Forum to directly address MHD 
mode stabilization and control, aiming to directly exploit the new capabilities of NSTX-U in this 
role. The proposals spanned a large range of topics, all which must be addressed in the new 
NSTX-U device, and many which will examine the latest advances in mode control capabilities in 
magnetic fusion as a whole. The following summarizes some of these proposals, which span from 
error field correction to state-space control of key plasma profiles including current profile 
peaking and beta, plasma rotation, tearing mode stabilization, and passive and active control of 
unstable RWMs. 

In the area of error field corection, three relevant experiments from were proposed and accepted 
at the research forum. The corresponding experimental proposals have also been reviewed. 

 XP 1506 “Low-beta, low-density locked mode studies” the goal is to provide an  initial 
assessment of n=1 error fields in NSTX-U, obtain optimal feed-forward n=1 correction 
(compass scans), connect to the NSTX locked mode database, and possible to address 
transient error fields during startup. 

 XP 1515 has the goal of assessing the n=1,2,3 error fields at high-β, starting with the 
technique of ramping error field amplitudes and performing a so-called compass scan in 
phase space. 

 XP 1516 “Optimization of PID dynamic error field correction”, the mode ID upgrade 
(miu) algorithm corrects for static and AC pickup on the RWM/EF sensors will be tested. 
The sensors, phases, and gains in the miu-based PID feedback algorithm will be tuned, 
and the low pass filter (already available in PCS) will be utilized to isolate the effect of 
DEFC from fast RWM control. 
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In the areas of neoclassical toroidal viscosity (as applied to plasma rotation control for global 
mode stability, and resistive wall mode active control, experiments were proposed and accepted 
at the research forum. The corresponding experimental proposals for the first two experiments 
have also been reviewed. 

 XP 1517 “Neoclassical toroidal viscosity at reduced collisionality (independent coil 
control)” will test the dependence of neoclassical toroidal viscosity (NTV) on ion 
collisionality in the new NSTX-U plasma conditions to vary the plasma density and 
temperature where NTV torque is maximized in the plasma, focusing on the NTV scaling 
and comparison to theory at the lowest collisionality possible. The increase in NTV 
strength in these regimes are important to understand from a physics perspective for 
extrapolation to future devices, but it also has more near-term practical importance in 
developing more accurate simple models for the expected rotation damping to be used in 
NSTX-U state-space rotation feedback control. This rotation control capability will be 
used for global mode control in NSTX-U. To further support closed-loop rotation 
feedback, the present experiment will apply the planned n = 2 and n = 3 applied field 
configurations (as shown in Figure R15-3-1 below - and potentially their combination) 
expected for non-resonant braking, with and without n = 1 field correction. 

 

 
Figure R15-3-1: NTV torque density profiles computed for NSTX plasmas with n = 2 and n = 3 applied field 
‘configurations’ compared to experiment  using a perturbative technique to isolate the NTV torque.  

 

 XP 1518 “RWM PID control optimization based on theory and experiment”. NSTX 
experiments using n = 1 RWM control in 2010 and subsequent analysis using the 
VALEN code showed that some settings for control using Br and Bp sensors were 
optimal, while others could be improved.  In particular, the Bp feedback phase, and Br 
feedback gain presently differed the most from the experimental settings for NSTX. 
Given the changes to the device hardware (e.g. the vacuum vessel), the n = 1 RWM PID 
control system parameters such as feedback phase and gain need to be determined. The 
dual component sensor gains and feedback phases will be examined in this experiment 
for the first time in NSTX-U. 
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Another proposed XP, the RWM state space controller (RWMSC) will be applied to high 
performance plasmas (high normalized beta, low li, etc.) to examine several aspects of mode 
control physics, as a logical next step to the initial experiments of 2010. The present experiment 
moves beyond the initial experiments in the following ways: (i) eigenfunctions of different target 
plasmas will be introduced, and several target plasmas will be used (high triangularity, high 
li-low A, snowflake divertor), (ii) eigenfunctions with n > 1 will be introduced to the controller, 
(iii) independent control of the 6 RWM coils will allow control of n > 1 perturbations, (iv) a more 
careful comparison of control with/without wall states will be conducted, (v) an initial set of shots 
will test compatibility with plasma rotation reduction by NTV, (vi) proportional feedback using 
Br sensors will be added. Gains and feedback phase will be adjusted as needed. NTV magnetic 
braking will be compatible if the eigenfunction and wall states used do not conflict with the 
applied field. This has never been tested. Proportional gain using RWM Br sensors has also never 
been used with the state space controller, and will be tested in this experiment. 

Finally, in the area of assessing passive stability limits, another proposed experiment in which 
NSTX-U plasmas with various on- and off-axis neutral beam injection will be used to produce a 
variety of rotation profiles and energetic particle distribution functions (changing both the radial 
(Ψ) profile and the pitch angle dependence). Then standard techniques of determining the 
stability of the plasma will then be employed for these different EP distribution function plasmas. 
These include using n=3 non-resonant magnetic braking to slow the plasma rotation to the 
marginal stability point, or using n=1 AC fields to measure resonant field amplification (RFA) 
which indicates proximity to the marginal stability point. 
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I. Boundary Science Research Highlights 

In 2014, three topical science groups (TSGs) were organized under a new boundary science 
group. The three TSGs include (a) pedestal structure and control, (b) divertor and scrape-off 
layer, (c) and materials and plasma facing components. Each of these TSG areas is covered as a 
sub-section in the boundary science group report below. 

A. Pedestal Structure and Control TSG Research Highlights 

A major goal of the NSTX-U Pedestal Structure and Control TSG is to characterize H-mode 
access and L-H power threshold, characterize the pedestal structure, understand the turbulence in 
pedestal and identify common characteristics in phenomenology of different ELM types, and 
develop control approaches to improve the plasma performance. 

1. Collaborative studies 

a. Pedestal Saturation and the onset of the Quasi-Coherent fluctuations on DIII-D and C-Mod 

State-of-the-art measurements of the edge transport barrier 
recovery following edge-localized modes (ELMs) on C-Mod 
and DIII-D reveal new evidence that turbulent fluctuations 
play an important role in the saturation of the edge gradient 
in the inter-ELM period [BPR-PED-1, BPR-PED-2, BPR-
PED-3]. Identification of edge quasi-coherent fluctuations 
(QCFs) on multiple diagnostics is observed when the 
pressure gradient in the edge pedestal region of the plasma 
saturates following the ELM. This supports the hypothesis 
advanced in recent theoretical models that the threshold for 
the onset of kinetic ballooning modes (KBMs) sets the 
criteria for the saturation of the pressure gradient.  Figure 

BP-PED-1 shows a correlation between the onset 
of QCFs and the saturation of the edge 
temperature gradient following the ELM. The 
fluctuations are of the order of the ion gyroradius 
and are localized to the plasma edge based on 
beam emission spectroscopy (BES) measurements 
on DIII-D. Similarly on C-Mod [BPR-PED-3], the 
QCFs are determined to be edge localize based on 
the reflectometry and the gas-puff-imaging 
measurements. Magnetic measurements confirm 
the MHD nature of the fluctuations as expected for 
KBMs. The pedestal predictive EPED model 
indicates that the pedestal pressure gradient 
reaches KBM critical gradient when the 

 
 
Figure BP-PED-2: EPED1 KBM calculations in 
blue symbols. The red squares represent the 
pedestal pressure gradient evolution. The vertical 
lines indicate, respectively, the QCF onsets and 
the temperature gradient saturation. 

Figure BP-PED-1: Evolution of magnetic
signal of the QCF and the pedestal
temperature gradient. 
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gyroradius, and the dominance of the banana fraction. A newly developed global gyrokinetic 
neoclassical code XGCa, which is equipped with a fully non-linear Fokker-Planck-Landau 
collision operator [BPR-PED-25] without the local assumption, has been used to study the 
bootstrap current in realistic edge conditions and to develop a new bootstrap current formula that 
is much more accurate in the H-mode pedestal. In the local regime with weak collisionality, the 
local (NEO) and global neoclassical (XGCa) codes and the Sauter formula show excellent 
agreement.  In an H-mode pedestal, XGCa generally finds smaller bootstrap current than that 
obtained using the local approximation. This difference is particularly distinct in a spherical 
tokamak (Figure BP-PED-10, left panel).  A new bootstrap current formula has been obtained as 
a modification to the existing Sauter formula, which reproduces various XGCa results with good 
accuracy, and can be used for pedestal physics in NSTX-U with greater confidence (Figure BP-
PED-10, right panel). 
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B. Divertor and Scrape-Off-Layer TSG Research Highlights 

1. SOL turbulence and transport 
 
In collaboration with NSTX-U team members [S. Zweben, W. Davis], work at Lodestar is 
underway to analyze a 14-shot database of Ohmic and H-mode NSTX discharges with high 
quality gas-puff imaging (GPI) and edge plasma profile data. Ongoing analysis, presented at the 
TTF workshop [BPR-DSOL-1] is focused on relating recent theoretical work [BPR-DSOL-2] on 

the SOL heat flux width q with experimental observations.  The work, funded by a separate 

Lodestar theory grant, studied the scaling of q under various assumptions about the edge/SOL 

turbulence such as the drift-interchange character of the modes and the saturation mechanisms.  
Theory results [BPR-DSOL-2] projected to ITER suggests that turbulence mechanisms may 
dominate the 1/Ip scaling of q observed in present-day machines. The validation of the 

theoretical model assumptions is thus critical, and well suited to the available NSTX GPI 
database.  Preliminary results [BPR-DSOL-1] suggest that: (i) the length and time scales of the 
turbulence are consistent with drift-resistive ballooning modes, driven at least in part by 
curvature, and possibly affected by sheared flows; (ii) saturation levels are near the wave-
breaking limit for Ohmic and L-mode discharges and may be below that limit for H-mode 
discharges; (iii) H-modes occupy the theoretically expected region of parameter space in terms of 
near-separatrix scale lengths of pressure, major radius, and ion-sound radius. Ongoing work is 
verifying these conclusions and addressing their implications for theory and modeling. 
 
Finally, previous turbulence code simulation work addressing the effect of lithium on the SOL 
heat flux width in two complementary NSTX discharges has been completed, written up for 
publication [BPR-DSOL-3], and is now in the review process. 
 

2. Survey of midplane neutral density data  
 
Profiles of the neutral deuterium atom density at midplane are essential for studies of the H-mode 
pedestal, edge plasma turbulence, and power lost by charge exchange loss of neutral beam ions.  
The conventional experimental technique for determining the neutral density via the imaging of 
light emission is effective only over a limited spatial range.  Direct modeling of neutral transport 
in the scrape-off layer and edge plasma is extremely difficult, time consuming, and inadequately 
constrained.  The hybrid method described in [BPR-DSOL-4] provides a convenient alternative to 
these approaches, providing both deuterium atom and molecule density profiles over a wide range 
in radius via forward modeling of data from the Edge Neutral Density Diagnostic (ENDD) 
tangentially viewing visible camera.   The range of variation of neutral densities in the 2010 
NSTX run campaign has been determined by applying this technique to twelve time slices from 
seven discharges [BPR-DSOL-5]. The method has now been thoroughly tested and the 
uncertainties have been quantified. 
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helical n=3 structure is still seen for the upper leg of the snowflake configuration while the lower 
leg seems to be unaffected. As the connection length in the private flux region of the snowflake 
configuration is short, the effect of the RMP field on the snowflake structure requires more 
detailed analysis of the invariant manifolds. The can yield mixing of field lines from the upper to 
the lower snowflake divertor legs and could yield heat flux separation from the upper to the lower 
legs. This would be an attractive mechanism to aid heat and particle flux spreading in the 
snowflake configuration. Based on this first of its time analysis of the perturbed magnetic 
topology of a snowflake divertor, a detailed comparison of these features using EMC3-EIRENE 
for the snowflake divertor with and w/o 3D fields and for the standard divertor with and w/o 3D 
fields is being conducted. 

7. Radiative divertor experiments and feedback control development 
 
In order to mitigate steady-state divertor peak heat fluxes in excess of 10 MW/m2 impurity-
seeded radiative divertor technique is envisioned. Radiative divertors use deuterium and/or 
seeded impurities to reduce divertor particle and heat fluxes through volumetric momentum and 
energy dissipative processes - the ion-neutral elastic and inelastic collisions, recombination and 
radiative cooling. The critical issue for the radiative divertor is the steady-state feedback control 
of reduced divertor peak heat flux through the rate of impurity seeding, using some divertor 
parameter as a control quantity. The divertor detachment process is tokamak-specific with respect 
to divertor PFC material, seeding gas species, radiating impurity, onset parameters, and their 
relation to the core plasma. The radiative detachment of the divertor SOL is achieved when heat 
conduction can no longer be sustained as a result of high SOL collisionality and high volumetric 
power and momentum losses. The detachment signatures universally measured in present-day 
tokamak experiments include (1) the loss of plasma pressure Tene along the SOL (field line) from 
upstream locations to the target, increased divertor ne ≤ 1015 m−3 and decreased Te ≤ 1 − 2 eV; (2) 
the reduction of divertor heat flux and increase in Prad; and (3) reduction of ion flux density to the 
plate, accompanied by an increased volumetric recombination rate. In order to control radiative 
detachment, a diagnostic control signal should unambiguously reflect one of the detachment 
characteristics.  
 
Initial radiative divertor experiments planned on NSTX-U in the first two years include 

 Radiative divertor operational space (current, power, density), neutral and impurity 
compression 

 Calibration of control diagnostic signals without feedback 

 Combination with three-dimensional fields for ELM control  

 Double null radiative divertor studies (not attempted in NSTX to date). The upper divertor 
diagnostic complex should enable characterization of the power and particle flux fractions 
between the lower and upper divertors. 

 X-point MARFE characterization and avoidance 

 Using unique 2D divertor camera coverage, toroidal asymmetries of impurity radiation due 
to gas injection port locations can be studied 
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C. Materials and Plasma-Facing Components TSG Research Highlights 

1. Introduction 
 

The Materials and PFC (M&P) research program on the NSTX-U exists to perform the critical 
research needed to address the fundamental question of what materials are suitable to a fusion 
plasma experiment and, eventually, a fusion power plant.  In the context of the NSTX-U program, 
this practically means gaining an understanding of the existing materials and wall-conditioning 
techniques (carbon PFCs + boronization and lithiumization) in use in the machine so that 
incremental upgrades to reactor-relevant systems (e.g. high-Z tungsten/molybdenum and flowing 
liquid lithium) will provide the greatest knowledge gain and minimize the operational learning-
curves. 

The research program in M&P has been divided into three main thrust areas: surface science to 
support long-pulse operation, tokamak induced material migration, and vapor-shielding physics.  
Each of these thrusts addresses needs of both solid and liquid plasma-facing components with-
respect to future power reactors.   

In the case of surface science, it is necessary to have an accurate understanding of hydrogen and 
impurity uptake in high-Z systems with and without low-Z coatings.  The focus is on lithium 
coatings on high-Z substrates in order to assess fuel retention which is a critical question for the 
continued usage of lithium in next-step experiments such as the FNSF which is expected to make 
use of tritium fuel.  Research highlights from laboratory studies as well as tokamak studies in the 
LTX device using NSTX-U diagnostics systems are given below.   

The question of retention in a low-Z layer is as important as understanding where those layers are 
created and destroyed inside the tokamak device.  In order to address this area of tokamak-
induced material transport, state-of-the-art codes such as OEDGE and WallDYN have been 
obtained and are being modified for use with the NSTX and NSTX-U machines.  These codes 
will provide an interpretative modeling framework which can be used to build predictive 
capabilities that will be tested in the NSTX-U during this 5-year plan.  Improved diagnostic 
capabilities are also being brought online by a number of collaborators.   

Finally, the ultimate temperature limits of a lithium surface greatly impacts the technological and 
plasma-control choices associated with the use of lithium in a future power reactor.  Lower 
temperature limits (e.g. 400C) will necessitate the use of fast-flowing systems or alternative 
methods of reduced plasma power fluxes.  On the other hand, higher temperatures may provide a 
means of accessing a self-shielding regime termed continuous vapor-shielding. Already 
experiments have demonstrated operation of a linear plasma source on a 1000C target without 
contaminating the plasma source.  It is found that the results are consistent with the rapid 
formation of a deuterium-saturated lithium layer that erodes at a significantly lower rate than pure 
lithium.  The vapor-shielding science program will be enabled by an upgrade of the NSTX-U 
device from the existing graphite tiles to one composed of high-Z, metallic substrates.  The 
design for high-Z, high-heat flux components has commenced already to accomplish this 
upgrade.  As an incremental upgrade between the bulk, high-Z tiles and fully-flowing systems, a 
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prototyping design activity was accomplished to examine the possibility for pre-filled liquid 
metal targets within the NSTX-U. 

Progress in each area is continuous in the past year due in part to the capabilities present at the 
PPPL, collaborator institutes and the active collaboration with the Dutch Institute for 
Fundamental Energy Research (FOM-DIFFER).  This progress is detailed below.    

2. Fundamental surface science studies 
  
Lithium is a potent wall conditioning material as demonstrated in several tokamak devices such 
as TFTR, CDX-U, LTX, EAST, FTU, NSTX and others.  Nearly all of these experiments make 
use of physical vapor deposition of lithium as the conditioning technique.  Understanding how 
experimental results obtained with this wall conditioning will translate to a future device utilizing 
flowing lithium (and presumably improved vacuum conditions) remains an open question and 
provides major motivation for fundamental surface science studies. 

Experiments reported at the 56th Annual APS DPP meeting by A. Capece further demonstrate the 
complex picture that arises with the use of lithium [BPR-MP-2, BPR-MP-2B].  In experiments 
conducted in the Surface Science & Technology Laboratory at PPPL, controlled quantities of 
lithium were deposited on high-Z samples, exposed to precisely monitored oxygen and deuterium 
fluxes, and then examined with the use of temperature programmed desorption (TPD).  The use 
of TPD provides a means of characterizing the quantity of deuterium retained in a sample as well 
as the desorption energy associated with evolved gases, which can be related to the surface 
binding energy of the retained materials.   

It was found that increasing substrate temperature resulted in a reduction of the deuterium 
retained in 3-monolayer lithium films by a factor of four from 320 - 460K (47 - 187°C).  This is 
shown in Figure BP-MP-1 below.  Oxygen contamination was found to inhibit the formation of 
lithium deuteride (LiD).  At low temperatures (T<130°C), the oxidized lithium was able to absorb 
4-5x more deuterium than bare TZM metal (an alloy of molybdenum).  However, this retained 
lithium was found to outgas at modest temperatures of only 470K (200°C).  Pure lithium retained 
about half as much deuterium (as LiD) as the oxidized lithium, but this D remains bound to a 
significantly higher temperature of 650K (380°C). 

Similar studies performed on single-crystal molybdenum, reported by Roszell, et al., provide 
additional insight into the complexities of ultrathin lithium films [BPR-MP-3].  Namely, it was 
found that single monolayers of lithium do not form LiD.  Deuterium is retained by the 
molybdenum due to preferential bonding between the molybdenum and lithium in the first 
monolayer.  Taken together these two results indicate the importance of the chemical interactions 
occurring at the surface of the plasma-facing component.  Extrapolating ahead to a reactor 
scenario, it is possible to imagine multiple concepts that these results inform.  In the case of a low 
temperature, absorbing surface, the results on multi-layers of lithium indicate that for pure 
lithium, hydrogenic fuels will be retained up to the LiD decomposition temperature of about 380 
°C.  On the other hand, it would appear that maintaining in-vessel structures at temperatures 
above 420°C or maintaining lithium coatings on the order of a single monolayer will both result 
in substantially reduced fuel inventory.  Finally, one will need to apply some caution in 
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Oxidation of 0.3 - 1 mm thick layers of lithium was investigated by using a microbalance with 1 
μg resolution to probe mass gain of samples exposed to air for time periods of up to two weeks 
[BPR-MP-3B]. Optical microscopy monitored changes in surface morphology and color during 
the exposures and was used to estimate the Pilling–Bedworth ratio (volume change upon 
oxidation). The mass gain of lithium samples with surface area ~ 1 cm2  during exposure to 
ambient and dry synthetic air was measured. For ambient air, we found an initial mass gain of 
several mg/h declining to less than 1 mg/h after an hour and decreasing by an order of magnitude 
after 24 h. A 9 mg sample achieved a final mass gain corresponding to complete conversion to 
Li2CO3 after 5 days. Fissures and cracks open up in the surface from the strain resulting from 

volume expansion associated with the conversion of lithium to Li2CO3, and this facilitates 

oxidation. From the initial rate of mass gain we estimate a sticking coefficient of 5.7×10-7 for O2 

and 2.6×10-6 for H2O. These values are much lower than the unity sticking coefficients measured 

under UHV conditions for both O2 and H2O molecules incident on atomically pure, ultrathin (≤ 

10 nm) films of lithium.  Exposure to dry air resulted in a 30 times lower initial rate of mass gain 
corresponding to a slower Li reaction rate in dry air.  

For safe handling of lithium in NSTX-U that has been exposed to ambient laboratory air (26 °C, 
760 Torr, 45% RH), our results indicate the following rule of thumb: a Li film with a 1 µm 
thickness requires one hour for passivation, i.e., to fully convert Li to Li2CO3 and pose no further 

reactivity hazards, a 10-µm thick Li film requires one day, and a 100-µm (0.1-mm) thick Li film 
requires one month. Dry (synthetic) air could be considered as a breathable environment with 
very much reduced lithium reactivity for maintenance activities. The oxidation experiments were 
done in collaboration with C. Hart who was supported by US DOE Summer Undergraduate 
Laboratory Internship program.  
 

3. Material Analysis and Particle Probe (MAPP) 
 
The Materials Analysis and Particle Probe (MAPP) is a novel in vacuo surface science diagnostic 
that allows analysis of samples exposed to tokamak plasmas. The implementation of MAPP on 
NSTX-U is a collaborative effort including researchers and graduate students from both the 
University of Illinois at Urbana-Champaign and the Program in Plasma Physics at PPPL. Testing 
of MAPP on the Lithium Tokamak Experiment (LTX) continued during the past year. Stainless 
steel (SS) MAPP samples were exposed to direct lithium evaporation inside LTX, such that they 
served as proxies for the LTX plasma facing components (PFCs). MAPP was then used for XPS 
and thermal desorption spectroscopy (TDS) analysis of these samples. 

In one interesting set of experiments, the time evolution of lithium-coated SS samples exposed to 
LTX plasma discharges was compared against that of control samples exposed only to the LTX 
residual vacuum. XPS and TDS analysis showed no statistically significant differences between 
these samples (Figure BP-MP-2). In conjunction with other LTX diagnostics, these MAPP results 
suggested that lithium-coated SS might be retaining hydrogen in a more weakly-bound state than 
expected. This is similar to the weaker oxide-bonding observed in laboratory experiments 
described above (i.e. the hydrogen is not bound as LiH).  This information could be of importance 
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Figure MS-STA-1 shows the βN vs. li space of nearly five thousand experimental equilibria from 
350 NSTX discharges, with the color of each point indicating the DCON calculated δWno-wall. For 
clarity, we have plotted the quantity - δWno-wall so that negative is ``below" (indicated with blue 
dots) and positive is ``above" the no-wall limit (indicated with red x's).  One can see that the 
previously defined no-wall limit [MS-STA-6] shown with the solid lines, βN = 4.3 above li ≈ 0.64 
and βN/li = 6.7 from li ≈ 0.4 to 0.64, does a good job describing the location of the no-wall limit in 
this data set. The βN vs. pressure peaking space in NSTX is fairly similar to the βN vs. li space, as 
might be expected since there is an experimental correspondence between broadened pressure and 
broadened current profiles (lower li). The ideal n=1 no-wall beta limit decreases with increasing 
aspect ratio [MS-STA-7]. This property has been previously computed for NSTX [MS-STA-8], 
and is now confirmed with a much larger sample of equilibria. 
 
It is useful for purposes of disruption avoidance to have a real-time estimate of the no-wall limit, 
rather than running ideal stability codes after the discharges. This can be achieved by relying on 
quantities from real-time equilibrium reconstruction.  As an example, if we combine the 
dependencies on βN/li, βN/(p0/<p>), and A at low li and low p0/<p>, the following estimate can be 
made for the no-wall beta limit based on equilibrium quantities: βN,no-wall = 3⅓((6.7li)

-

3+(1.91p0/<p>)-3+(14(A-1-0.4))-3)-⅓. 
 
The ideal stability for projected NSTX-U [MS-STA-7] equilibria has been explored in the 
parameter space of βN vs. p0/<p> previously, where a no-wall limit of βN ≈ 3.5-4 was found [MS-
STA-9].  A somewhat smaller no-wall limit in NSTX-U would be consistent with its somewhat 
larger aspect ratio, and the scaling of βN,no-wall on aspect ratio will be further tested and refined by 
NSTX-U experiments. NSTX-U will also have new off-axis neutral beams that can potentially 
broaden the current, pressure, and plasma rotation profiles [MS-STA-9]. A broadened current 
profile tends to lower the no-wall and ideal-wall beta limits [MS-STA-10]. In contrast, a 
broadened pressure profile is beneficial in raising the ideal-wall beta limit [MS-STA-9,MS-STA-
11], but it can lower the no-wall limit, opening up a large βN range in between them. However, 
modifications to ideal stability by kinetic effects [MS-STA-12] should continue to enable 
passively stable operation in this range. 
 
Modifications to Ideal Stability by Kinetic Effects in NSTX 
 
To determine RWM marginal stability for use in experimental disruption avoidance, ideal 
stability limits like those calculated in the previous section need to be modified by kinetic effects 
in order to reproduce experimental marginal stability points. Specifically, reduced stability 
models could be developed that could employ real-time measurements (e.g. rotation) and 
actuation (rotation control via magnetic braking or neutral beam sources) to detect approaches to 
marginal stability and return the plasma to a more stable state. Here we examine the stability 
trajectories of several NSTX experimental RWM unstable discharges to further validate the 
kinetic stability calculations of the marginal point with the MISK code [MS-RWM-5].  
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(similar to the approach taken by De Vries, et al. [MS-STA-14]), plasma stability prediction and 
avoidance tools can be brought to bear on as many of the disruption chain events (DCEs) as 
possible, greatly increasing the opportunity to prevent the disruption from ever happening. During 
FY15, we developed the initial version of a computer code that automates the critical Disruption 
Event Characterization And Forecasting (DECAF) process. The code is written in Python and is 
has been designed to be both general and portable, so it can be used not only for NSTX and 
NSTX-U data, but also can be used to analyze data directly from other tokamaks for comparison 
– to maximize the applicability of results to ITER and future tokamaks. This follows the work of 
Gerhardt, et al. that examined the NSTX database and showed that a fairly simple algorithm 
processing a relatively small amount of diagnostics could predict disruptions a posteriori with 
high success, and with a low probability of false positives [MS-STA-15]. The present work adds 
the concept of, and emphasizes analysis of disruption event chains, and expands the scope of 
possible DCEs to bring in more physics models in the DPAM analysis to further improve results. 
The code will also add testing of different forecasting algorithms, and will utilize analysis results 
iteratively to quantitatively improve disruption forecasting. The new generalized and portable 
code design will make the important processing of other tokamak databases straightforward. 
Initial results from the DECAF code are shown in Figure MS-STA-5 for two NSTX plasmas. Ten 
physical disruption chain events are presently defined in the code, which will expand significantly 
as the code is developed as required. Figure MS-STA-5(a) shows the code results for a plasma in 
which the pressure profile peaking is increasing in time (a strong indicator of a potential 
disruption). The code issues warnings up to a point where a critical threshold is surpassed (a 
“PRP” event is detected, as shown in the plot). Subsequently, the code identifies three other 
disruption chain events leading up to the disruption – a vertical displacement event (VDE) is 
identified, followed by an event indicating that plasma shape control has not met expectations 
(SCL), followed by an event indicating that plasma current feedback control has not met 
expectations (IPR). Figure MS-STA-5(b) shows an example of a disruption event chain in a 
plasma in which the plasma current is being ramped down. First, an event is declared as the 
plasma fails to meet operational criteria related to the Greenwald density limit (GWL), followed 
by a VDE, and an IPR event. These early results of the DECAF code provide an essential starting 
point for which the code can be continually approved to the level of disruption forecasting 
required - to a few percent level, and below needed for ITER and future tokamaks. 
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above the n = 1 no-wall βN limit. This is highly encouraging and may indicate that KSTAR may 
be producing increased stability in part due to reduced n = 1 error field in the device along with 
the usual kinetic stabilization effects. Understanding of these results will improve through 
upcoming joint experimentation and comparison to high βN plasmas in NSTX-U. 
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Figure MS-3D-6: Plasma rotation controller with NBI and NTV as actuators: (a) evolution of NBI and NTV torque 
profiles, and ωφ toward the target profile, (b) 3D coil current, and (c) NBI power evolution. 

 
The addition of the NBI actuator allows the increased core , but the desired reduction of  in 
the outer part of the plasma requires greater TNTV not only to drive the rotation lower, but also to 
create a larger steady-state NTV torque to balance the increased momentum input from the 
increased NBI power. 
 
The strength of NTV in NSTX has been shown to be strongly dependent on ion temperature, Ti

2.5 

[MS-3D-13] consistent with the expectation of the “1/” regime scaling in NTV theory [MS-3D-
14]. The NTV model used in the control algorithm results shown in Figure MS-3D-6 does not 
include this dependence. Inclusion of this improved NTV model under closed-loop feedback 
control was examined with results summarized in Figure MS-3D-7. The first important result is 
that the closed-loop feedback algorithm generally controlled the plasma rotation profile moving 
toward the desired target profile as the ion temperature was rapidly changed in the modeling, first 
increased, then decreased by about a factor of two. These can be envisioned as fairly extreme, but 
credible changes in Ti on axis as might occur during L-H transitions, or back-transitions. The 
lowest value of Ti on axis chosen was done so to simulate plasma conditions significantly below 
those produced in a standard high performance target plasma on NSTX, therefore well outside of 
a typical bounded operational range for this parameter. Perhaps more profound is the second key 
element found in the simulation – the dynamics of the NTV actuator and control response during 
this Ti variation. The lower right panel of Figure MS-3D-7 shows the time evolution of the on-
axis Ti value, which the profile scaled self-similarly along with this variation. Three time points 
labeled t1 – t3 are shown indicating times at different Ti values with sufficient time to allow the 
plasma rotation profile to reach a steady-state. The rotation profile evolution, including the 
desired target rotation profile are shown in the upper left frame, and the response of the actuators 
is shown in the upper right frames. At t1, the desired plasma rotation is generally reached as NBI 
torque increases the core rotation and NTV reduces the rotation in the outer part of the plasma. 
Increasing Ti is not an issue for the controller, which produces nearly the same NTV torque 
profile by reducing the 3D field coils (here, an n = 3 applied field configuration is assumed). 
Most interesting is the result at reduced Ti. The NTV torque is significantly weakened and the 3D 
coil current is increased to compensate. The NTV torque also broadens significantly and the 
desired rotation profile does not match the desired profile over the majority of the profile. This 
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show the spectrogram and total integrated scattered power from one channel of the high-k 
collective microwave scattering diagnostic [TT-9].  Early in the discharge (t<0.3 s), little 
fluctuation power is measured, consistent 
with the local normalized electron 
temperature gradient (R/LTe=-R/Te⋅∇Te) 
having not surpassed the linear threshold for 
ETG instability (as given by [TT-10] and 
verified for this case using GS2, Figure TT-
5d).  However, for t > 0.32 s, density 
fluctuations grow as R/LTe exceeds the ETG 
threshold (Figure TT-5c). While the 
temperature gradient remains above the linear 
ETG threshold throughout the discharge, the 
measured fluctuation power drops 
dramatically after t > 0.42s, suggesting there 
is an additional effect (beyond linear 
threshold effects) that influences the 
measured high-k turbulence.  An increase in 
local density gradient (R/Ln, Figure TT-5d) 
throughout the later part of the discharge 
suggests it may influence the fluctuation 
amplitudes.  
 
As shown in Figure TT-6a, the high density 
gradient (at t = 565 ms) appears to shift the 
measured spectra to higher k⊥, resulting in a 
reduction of amplitude at lower k⊥.  While 
there is uncertainty in this observation due to 
possible refraction effects of the density 
gradient on the microwave scattering probe beam, the trend is qualitatively reproduced both in the 
calculated linear growth rate spectra (Figure TT-6b) and the nonlinear electron heat flux spectrum 
(Figure TT-6c).  In particular, dedicated scans show that increasing the density gradient shifts the 
most unstable linear ETG modes and the nonlinear turbulent spectra to higher-kθ (and therefore 
k⊥), similar to previous simulation results [TT-3,TT-11]. This qualitative connection supports the 
experimental observation of nonlinear density gradient stabilization of high-k turbulence.  Future 
work will strive to clarify the measurement uncertainty due to refraction effects, and to establish a 
more direct comparison of simulation and measurement through the development and use of a 
synthetic diagnostic. 

 
Figure TT-5: (a) Fluctuation spectrogram from channel 
1 of high-k scattering diagnostic. (b) Total scattered 
power from channel 1. (c) Difference in normalized 
electron temperature gradient between experimental 
measurement and ETG linear threshold gradient (R/LTe-
R/LTe,crit). (d) Components of ETG threshold gradient 
due to MHD equilibrium (green circles) and density 
gradient (blue circles), from Ref [TT-10].  ETG 
threshold calculated by GS2 shown by triangles. 
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Figure TT-7: Upper panel: total electron 
heat flux predicted by the electron-scale 
simulations as a function of a/LTe; lower 
panel: total electron heat flux predicted by 
the ion-scale simulations as a function of 
a/LTe.  

 
Non-local transport 
 

Highly non-linear electron thermal transport was 
observed in a set of RF-heated L-mode plasmas [TT-
12]. It was observed that electron-scale turbulence 
spectral power, as measured by the high-k scattering 
system at r/a~0.6, was reduced significantly following 
the cessation of RF heating. Linear stability analysis has 
shown that both ion- and electron-scale 
microinstabilities are unstable in the high-k 
measurement region, and that, linearly, the profiles are 
well above marginal stability. Three explanations are 
possible for this non-linear response. The first one is 
high profile stiffness, so that even nearly-negligible 
changes in driving gradients can lead to large changes in 
turbulence and transport. The second one is profile 
variation since the equilibrium profile changes outside 
of the high-k measurement region may affect turbulence 
and thus electron thermal transport in the high-k 
measurement region, e.g. from turbulence spreading 
[TT-13]. The third one is flux-driven transport, which 
would inherently be a non-local phenomenon. A 
decrease in local heat flux, due to changes in some other 
region of the plasma, leads to a decrease in the 
turbulence responsible for the transport [TT-14]. 
 
Nonlinear local gyrokinetic simulations using GYRO code [TT-15] have been carried out to 
address possible profile stiffness for both electron-scale and ion-scale. These nonlinear 
simulations include electromagnetic effects, electron and ion collisions and carbon impurity. The 
upper panel of Figure TT-7 shows the total electron heat flux predicted by the electron-scale 

 
Figure TT-6: (a) Experimental amplitude of electron density fluctuations from the high-k scattering diagnostic, (b) 
linear growth rates predicted by GS2 linear simulations, and (c) fractional electron heat flux spectrum predicted by 
GYRO electron scale nonlinear simulations for low R/Ln (blue) and high R/Ln (green). 
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electron-scale turbulence if we consider the possible nonlinear interaction between ion-scale and 
electrons-scale turbulence as suggested in [TT-16,TT-17]. We also note that Qe,GTS at t=465 and 
482 ms are both in good agreement with Qe,exp at t=482 ms (after the RF cessation) but not with 
Qe,exp at t=482 ms (before the RF cessation). This shows that even global nonlinear gyrokinetic 
simulations taken into account not only the temporal variation but also the spatial variation of the 
equilibrium profiles before and after the RF cessation cannot explain the observed drop in 
electron thermal transport and turbulence.  We conclude that neither local or global gradient-
driven simulations seem are able to explain the experimental observations. 
 

2. Momentum Transport 

Previous perturbation experiments in NSTX H-modes indicated the existence of a significant 
inward momentum pinch [TT-18,TT-19], which is roughly consistent with the theoretical Coriolis 
pinch mechanism for electrostatic ITG turbulence.  However, linear gyrokinetic simulations for 
those discharges predict that electromagnetic microtearing or kinetic ballooning modes (KBMs) 
dominate in these high-beta H-mode plasmas, with a corresponding small outward pinch 

(RV/) which is insensitive to parameter variations [TT-20]. A number of additional effects 
have been investigated in 2015 to clarify this apparent discrepancy.   
 
In collaboration with MAST researchers, similar 
perturbative momentum transport experiments were run 
in MAST L-modes (during their last run campaign in 
2013) to avoid the complications from theoretical 
electromagnetic effects in high beta H-mode plasmas.  
Initial analysis of this data has just recently 

commenced, assuming that the momentum flux () is 

composed of only diffusive () and convective (V) 

contributions,  ~ - + V (where  is the angular 
rotation rate).  The results shown in Figure TT-9 
indicate the existence of a momentum pinch, with a 

pinch parameter RV/  (-2) – (-12) that is 
comparable the values inferred in the NSTX H-modes.  
Gyrokinetic predictions are proceeding to determine 
whether the predicted Coriolis pinch is consistent with 
the experimental interpretation.  This work also 
provides the basis for NSTX-U L-mode experiments 
that will be performed in FY2016. 
 
In addition to the Coriolis pinch, there are a number of other effects that could be important in the 
interpretation of momentum transport [TT-21].  More generally, the momentum flux can be 

decomposed into additional contributions, including those due to a residual stress (RS), such as 

those resulting from profile shearing effects at finite-*, and centrifugal effects that can become 
important as the Mach number approaches unity: 
 

Figure TT-9: Inferred pinch parameter 
(RV/) from perturbative momentum 
experiments in MAST L-mode plasma, using 
two different analysis methods. 
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     RS
2

cf 2/uCu/RVu~    

 

The residual stress effects can occur independent of rotation (u=R/cs) or rotation gradient (u=-

R2/cs).  Indeed, nonlinear global simulations for an NSTX L-mode plasma indicated that there 
can be a non-negligible residual stress contribution when both rotation and rotation gradient are 

set to zero (u=u=0) [TT-22].  The influence of centrifugal effects depends on the gradient of the 

rotation energy, (u2/2).  This complicates the experimental interpretation as this is equivalent to 

the product of rotation and rotation gradient, uu, and the resulting decomposition of momentum 

flux is no longer simply linear in u or u.  Linear gyrokinetic simulations using the GKW code 

(collaboration with U-Bayreuth) were run with many combinations of u and u to infer Ccf 
specifically for NSTX H-mode plasmas [TT-23].  In those case, the resulting centrifugal 

coefficient Ccf ~ (-0.5) was found to be stronger than the predicted pinch coefficient RV/~ (-
0.1) – (-0.2), suggesting it may play a non-negligible role in the momentum transport.  Future 
work will further investigate this prediction of centrifugal effects on momentum transport and its 
parametric dependencies. 
 
Finally, recent work (in collaboration with an Indiana University summer undergraduate student, 
as part of the DOE SULI 2015 program) has focused on revisiting the interpretation of the 
momentum transport experiments.  This work has focused on implementing a more sophisticated 
analysis method, which relies upon integrating the momentum transport equation for assumed 

[,, V]fit profiles, and then using this function within a nonlinear least-squares fitting algorithm 
to determine the best fit transport parameters.  This method was established and was tested 

comprehensively by generating synthetic data over a broad range of assumed [,V]synthetic.  This 
forward-modeling approach will be used in FY16 to further test the experimental interpretation of 
momentum transport, specifically to determine if centrifugal and/or residual stress contributions 
can be inferred from the experimental data. 
 

3. Particle and Impurity Transport 

Impurity transport with triggered ELMs 
 
The consistency between experimental impurity transport levels and neoclassical estimates was 
studied in NSTX discharges with triggered ELMs in otherwise naturally ELM-free H-mode 
discharges. In NSTX H-mode discharges, ion thermal transport was typically close to the 
neoclassical levels. Intrinsic carbon transport was found to be consistent with neoclassical 
estimates in ELMy discharges with boronized PFCs. Changes in main ion profiles due to the 
application of lithium led to changes in carbon neoclassical convection (NCLASS, NEO). 
However, a deviation of carbon transport from neoclassical estimates was observed at the top of 
the pedestal, where a predicted inward pinch was not observed experimentally [TT-24]. The 
application of 3D-field triggered ELMs (up to 60 Hz) [TT-25] to naturally ELM-free lithium-
conditioned discharges led to changes in ne, nC, Ti, vϕ for normalized volumetric radii RVOL ≥0.5. 
In particular, nC was reduced by up to 50% while the Ti and vϕ normalized gradients increased by 
up to a factor of 3 at RVOL ~0.6. The changes in Ti and main ion density profiles due to triggered 
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Figure TT-11 shows the calculated density gradient length, R/Ln,c, needed for zero carbon particle 
flux from the hybrid ITG-KBM mode for various values of rotation and rotation shear. The zero 
flux state reflects a steady-state condition with no local carbon source. In the absence of a rotation 

gradient (u=0, top panel) the simulations predict a peaked carbon profile (R/Ln,c>0), regardless of 
rotation and centrifugal effects.  The picture changes significantly if also the rotation gradient is 
included (bottom panel). In this case, roto-diffusion (impurity flux driven by rotation gradient) 
provides a strong outward particle flux. Therefore, a locally hollow profile (R/Ln,c < 0) is needed 
to obtain zero particle flux. If centrifugal effects are neglected (Coriolis only), the predicted 

gradient is R/Ln,c ≈ −0.85 and is largely independent of rotation (u). Including centrifugal effects 

leads to an enhancement in the hollowing that increases with toroidal rotation. For the 

experimental rotation u=0.14, the predicted R/Ln,c ≈ −2.8 is nearly three times bigger, which is 

notably similar to the experimental value R/Ln,c,exp = −3.5. If this effect is manifested in nonlinear 

simulations, it suggests that the locally inverted carbon profile (in this source-free region) is a due 
to a balance between diffusive effects and the strong outward transport from both roto-diffusion 
and centrifugal effects for the ITG-KBM instability. 
 
Interpretative modeling of impurity transport diagnostics 
 
In order to quantify transport quantities from the newly built and installed edge/core Multi-
Energy Soft X-ray (ME-SXR) system, the JHU group has developed a new python-based 
interface to the STRAHL impurity transport code. This code is used to model neo-
classical/anomalous transport, in order to determine ion fractional abundances of plasma 
impurities. Using this transport code in combination with atomic data from the ADAS database, 
ME-SXR synthetic emission is obtained for different X-ray thin-metal filters and a bolometric 
channel. These synthetic calculations will be compared and fitted to ME-SXR measurements at 
the edge/core of NSTX-U in order to determine transport coefficients. 
 
The Johns Hopkins group has also prepared models to quantify impurity densities from the beam 
plasma charge-exchange and the background Bremsstrahlung emission, measured in the XUV 
spectral range (50-700 Å) using the upgraded Transmission Grating Imaging Spectrometer 
(TGIS).  Impurity densities are estimated by fitting the modeled synthetic spectra to TGIS 
measurements. 
 
The JHU group has also contributed to collaborative work with RFX-mod by modeling helium 
line emission and line ratio, towards the determination of electron temperatures and densities in 
the edge of NSTX-U. The RFX-mod line ratio system measures helium emission from thermal 
beam into plasma for three different wavelengths (667.8, 706.5, and 728.1 nm). The system is 
schedule to be installed and operated on NSTX-U, where it will enable to extend fast Te 
measurements with the JHU ME-SXR diagnostic, to the far edge plasma.  
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have been carried out. The simulation results show strong interaction between TAEs and fishbone 
that either enhances or reduces saturation level of individual modes depending on mode number 
and other parameters. As beam ion beta increases beyond a threshold, mode saturation levels are 
found to increases sharply. Correspondingly, the locally flattening regions merge together 
resulting in global particle transport and substantial particle loss. These results are similar to the 
TAE avalanche observed in NSTX. 

Using a different approach, a combination of analytic models and the particle-following 
numerical simulation code ORBIT is being developed to find the saturation levels of unstable 
Alfvén modes and the resulting effect on beam and alpha particle distributions [EP-7]. The initial 
unstable mode spectrum and eigenvalues are supplied by the NOVA code, then time evolution of 
these modes to saturation is performed with the guiding center code ORBIT. Solving the drift 
kinetic equation with a guiding center code in the presence of Alfvén modes driven unstable by a 

distribution of high energy particles requires the use of a f formalism. The initial distribution, f0, 
is assumed to be a steady state high energy particle distribution in the absence of the modes, and 

f=f0+f describes the particle distribution in the presence of the modes. The Hamiltonian is 
written as H=H0+H1 with H0 giving the unperturbed motion, conserving particle energy E, 

toroidal canonical momentum P, and magnetic moment . By writing the initial particle 
distribution in terms of these variables, a simple means of calculating mode-particle energy and 

momentum transfer results, providing a very accurate f formalism. The numerical beam 
deposition code NUBEAM in TRANSP produces a list of particles, giving energy, pitch, and 

location, which can be used to find the unperturbed distribution f0(E,P,). The effect of unstable 
Alfvén modes on high-energy particle distributions is being examined for NSTX [EP-7], and will 
then be extended to DIII-D and ITER scenarios. 

 

3. Suppression of energetic particle driven instabilities via HHFW heating 

In beam-heated plasmas in the National Spherical Torus Experiment (NSTX) heated with neutral 
beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and 
Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can 
redistribute the energetic beam ions, altering the beam driven current profile and the plasma 
heating profile, or they may affect electron thermal transport or cause losses of the beam ions.  
Analysis of NSTX data has found cases where multiple instabilities driven by the super-thermal 
beam ions, are seen to be suppressed with the application of High Harmonic Fast Wave heating 
[EP-8]. Toroidal Alfvén Eigenmodes, Global Alfvén Eigenmodes and fishbones  were all 
suppressed, even though the resonant drive mechanisms for these classes of modes are very 
different.  The experiments were at relatively low plasma current (300 kA), relatively low density 
and with neutral beam power of 2 MW. In these experiments, the modes were reproducibly 
stabilized for long periods of time. A threshold power of about 1.5 MW was found for 
stabilization to occur, but that may scale with density and beam power. The abrupt return of mode 
activity following HHFW heating suggests that the modifications to the fast ion distribution were 
relatively small, or that the HHFW more directly interferes with the resonant drive of the modes.  
These results strongly motivate future experiments to determine whether this stabilization 
mechanism can be extended to more typical operational conditions, that is, higher currents, higher 
densities and more beam power. 
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compared to “classical” predictions that neglect transport by instabilities [R15-2-5]. Even in the 
absence of detectable MHD, in virtually all cases, the profile peaks at smaller major radius and 
the profile is broader than the predictions. Abrupt large-amplitude MHD events flatten the FIDA 
profile, as do most toroidal Alfven eigenmode (TAE) avalanche events. Generally, the onset of a 
long-lived mode also flattens the FIDA profile. There is a shortfall of high-energy ions at large 
major radius in discharges with repetitive TAE bursts. 

To improve the interpretation of both FIDA and ssNPA data, a new 3D “halo” model previously 
implemented in TRANSP has undergone extensive verification for NSTX and projected NSTX-U 
scenarios [R15-2-6]. The 3D halo neutral code uses a “beam-in-a-box” model that envelopes both 
injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset 
of the beam energy components produces first generation halo neutrals that are tracked through 
successive generations until an ionization event occurs or the descendant halos exit the box. The 
3D halo neutral model and Neutral Particle Analyzer (NPA) simulator in the TRANSP code have 
been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code. When using the same 
atomic physics database, TRANSP and FIDAsim simulations get excellent agreement on the 
spatial profile and magnitude of beam and halo neutral densities, as well as the NPA energy 
spectrum. The simulations show that halo neutrals remain in the vicinity of the neutral beam 
footprint as expected and that halo neutral density can be comparable with beam neutral density. 
Future comparisons between measurements, FIDAsim and TRANSP modeling will benefit from 
this important improvement for NSTX-U scenarios with complex NB injection patterns. 
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III. Integrated Scenarios Research Highlights 
 
The integrated scenarios group is tasked with understand the following elements within the 
NSTX-U program: 

 ST startup & ramp-up 

 HHFW heating and current drive 

 neutral beam current drive 

 axisymmetric plasma control 

 fully non-inductive plasma scenarios 

 Integration of the above elements amongst themselves, and with the scientific 
understanding achieved in the other science groups. 

 
The science group is led by Stefan Gerhardt (PPPL), with Roger Raman (U. of Washington) as 
the deputy.  The science group is divided into three topical science groups (TSGs), as follows: 
 
A. The Solenoid Free Plasma Startup (SFPS) TSG is tasked with understanding solenoid free 

startup-up and ramp-up. The TSG leader is Dennis Mueller (PPPL) with Roger Raman as the 
deputy. Fatima Ebrahimi (Princeton University) acts as the theory and modeling 
representative. 
 

B. The Wave Heating and Current Drive (RF) TSG is tasked with understanding the physics 
and technology of HHFW, ECH, and potentially EBW, in the unique plasma conditions and 
geometry of the ST. The group is lead by Rory Perkins (PPPL), with Joel Hosea (PPPL) as 
the deputy. Nicola Berteli (PPPL) is the theory and modeling representative, and Paul Benoli 
(MIT) is the university representative. 
 

C. The Advanced Scenarios and Control (ASC) TSG is tasked with understanding 
axisymmetric plasma control, scenarios with very high non-inductive current fraction or very 
long pulse, and discharge scenario development in general. The TSG leader is Devon 
Battaglia (PPPL), with Stefan Gerhardt as the deputy. Francesca Poli (PPPL) is the 
theory/modeling representative, and Egemen Kolemen (Princeton University) is the 
University representative. 

A. Solenoid-Free Start-up and Ramp-up TSG Research Highlights 

1. SFPS and Ramp-up experiments planned FY16 operation on NSTX-U 
 

The Solenoid-Free Start-up and Ramp-up (SFPS) group has 3 primary objectives for FY16: 
 

1. Establish the capability for generating closed flux plasma currents without reliance on the 
central solenoid. During FY2016, the method of Transient Coaxial Helicity (CHI) injection 
will be employed to establish this capability. Eventually closed flux plasma currents of about 
400 kA are required to enable non-inductive current ramp-up using neutral beams, ECH, and 
HHFW. For FY2016, the goal is to achieve currents in the range of about 200 kA. Supporting 
experiments will also study the flux closure mechanisms using the NIMROD code, and 
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improved diagnosing of the CHI injector region to support the simulations. Results related to 
this are described at the end of this section. 
 

2. Demonstrate coupling of the CHI produced current to inductive operation. An important 
objective of this goal is to assess the quality of the CHI produced target, and to compare to 
the quality of similar discharges obtained on NSTX. 
 

3. Study non-inductive current fraction in low current inductively produced discharges. In these 
experiments the requirements for NBI and HHFW parameters to enable current overdrive will 
be studied so that these methods could be applied to a CHI target during later years. 

 
The following experimental proposals have SFPS Priority-1 run time planned for the FY16 run. 
Unlike experiments in other groups that could be run very early after start of NSTX-U operations, 
experiments from the SFPS group will take place towards the second half of the NSTX-U run 
campaign in order to benefit from good vessel conditions that are essential for CHI plasma start-
up, and to benefit from some understanding of the coupling capability of the new tangential 
neutral beams to NSTX-U high current inductively generated targets. 
 
Transient CHI Plasma Start-up on NSTX-U  
XP # not assigned 
Run time: 1.5 day during second half of NSTX-U run. Priority 1a 
Milestone: R18-3 
Status: Not reviewed 
 
TSC simulations have identified the required coil currents to initiate transient CHI discharges on 
NSTX-U. All hardware components to enable Transient CHI operations are installed on NSTX-
U. An important external system required for initiating CHI discharges is the CHI 2 kV, 40 mF 
Capacitor Bank. Old components were replaced and the design for the capacitor bank current 
limiting resistor assembly was revised and improved. Discharging the charged bank at full 
voltage into a dummy load then successfully tested the re-furbished capacitor bank. These tests 
also verified that the fairly involved Control System for the bank worked as required. These tests 
were conducted by operating the system from a local computer that is located near the capacitor 
bank system. An upgrade of the control software from the present Windows XP to Windows 7 is 
needed to allow it to be operated remotely from the NSTX-U Control Room. This work is in 
progress. Immediately following this computer upgrade, the capacitor bank will be used to 
generate plasmas in a condition referred to as “Stuffed Mode”, a procedure during which the 
elongation of the CHI plasma is severely controlled and restricted to the region near the injector. 
This is part of the commissioning procedure, and is used to establish and test conditions that are 
required to support the primary XP for transient CHI start-up. These tests will be conducted 
during the first half of the NSTX-U run, and will be necessary to formulate the detailed Transient 
CHI XP. 
 
Non-inductive Flux Savings of Inductively Driven Targets  
XP # not Assigned 
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Run time: 0.5 day during second half of NSTX-U run. Priority 1b 
Milestone: R18-3  
Status: Not reviewed 
 
A necessary step after establishing transient CHI start-up is to see if it is compatible with 
conventional inductive operation. This is a measure of the quality of the target discharge and is a 
step that is required for any new plasma start-up method. The procedure for this will largely 
follow the procedure developed for a similar XP on NSTX. Measuring the inductive flux savings 
will assess the quality of the CHI plasma, and this will be compared to the flux savings obtained 
on NSTX. 
 
Low Plasma Current, Fully Non-Inductive, HHFW H-Mode Plasmas  
XP # not assigned 
Run time: 0.5 day during second half of NSTX-U run. Priority 1b 
Milestones: R18-3 
Status: Not reviewed 
 
This experiment benefits from very successful studies on NSTX in which HHFW at a power of 
much less than 1 MW was able to heat a 300 kA inductive plasma from about 200 eV to over 1 
keV in 20 ms. This aspect of HHFW is very desirable to increase the temperature of ECH heated 
CHI discharges to the temperatures needed for efficiently coupling NBI power to achieve current 
overdrive. Recent TRANSP-TORIC simulations predict that 4-6 MW of RF power may ramp low 
current inductive plasma to over 400 kA, and that it can heat these plasma as on NSTX. RF power 
of the appropriate phasing will be applied to a 250 kA inductively generated target in which the 
central solenoid current is clamped. 
 
NBI Overdrive Without RF  
XP # not assigned 
Run time: 0.5 day during second half of NSTX-U run. Priority 1c 
Milestones: R17-4 
Status: Not reviewed 
 
Eventually, NBI is anticipated to be the primary system to provide non-inductive current ramp-up 
from about 400 kA to 1 MA, where it will be sustained using NBI and Bootstrap current drive. In 
support of this, we plan to begin initial tests to study the coupling of NBI to low current 
inductively generated targets. Because non inductive current sustainment of high current 
discharges is easier and much more important for the early phase of NSTX-U operations, and 
because these studies will provide helpful information related to NBI coupling to low current 
discharges, these studies will begin after a reasonable data set is obtained from several early XPs 
on NSTX-U that will use NBI. 
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One of the novel characteristics of the global NIMROD simulations of CHI in NSTX is that they 
have been performed in a realistic experimental geometry that includes currents driven in the 
external toroidal and poloidal field coils. These simulations showed that large-scale system-sized 
plasmoids are formed and cause fast reconnection in a fusion plasma. Consistent with the theory, 
fundamental characteristics of the plasmoid instability including 1) the break up the elongated 
current sheet, 2) the increasing number of plasmoids with Lundquist number, and 3) the 
reconnection rate, as it becomes nearly independent of S, have been observed in these 
simulations. We have also performed MHD simulations in the NSTX-U configuration. The coil 
currents in these simulations are optimized to give a very narrow injector flux footprint width. 
Plasmoid instability with continued injection of plasmoids (up to eight) are observed during the 
injection phase as shown in Figure IS-SFPS-2. 
 
These results along with future experiments with high-resolution diagnostics could improve our 
understanding of guide field reconnection with strong implications for astrophysical plasmas. The 
direct detection of plasmoids in large fusion devices during magnetic reconnection would have a 
significant impact as these large-scale plasmoids are similar to the plasmoids on the surface of the 
sun. To detect and measure all the signatures of reconnection (such as plasma flows and current 
sheets) high resolution cameras (full spatial and temporal diagnostics) are required. In NSTX- U, 
transient CHI may have the potential to vary the electron temperature, density and the local 
reconnecting magnetic field strength over a very wide range, thus providing a well-diagnosed test 
bed for basic reconnection studies, which may not be possible on any of the smaller devices in 
existence at this time. At every stage advanced nonlinear 3-D single and two fluid global MHD 
simulations are required to provide support for understanding the physics and to predict the 
experimental observation. 
 
In short, through experimental measurements, along with the numerical simulations, we may find 
out how reconnection, in particular plasmoids, would affect the maximum flux closure and CHI- 
generated current for optimal startup. Understanding reconnection physics may be necessary to 
predict how transient CHI scales as it is extrapolated to future (larger) devices, such as the ST- 
FNSF. 
 
This second section summarizes the work of by E.B. Hooper, which are results from resistive 
MHD simulations using NIMROD, the primary goal of which is to obtain a better match of the 
experimental results and improving the physics understanding for future experiments in NSTX-U. 
When impurity radiation used to match the measured electron temperatures is greatly reduced, a 
high-poloidal number mode which was observed in previous simulations [IS-5] is much stronger 
and affects flux-surface closure unlike the previous results.  
 
The work reported here is directed to understanding the mode physics and its consequences. 
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B. Wave Heating and Current Drive TSG Research Highlights 

1. Experimental Proposals for the FY-16 Run 
 
Four experimental proposals and one machine proposal were allocated runtime for the first 
NSTX-U campaign.  The Wave Heating and Current Drive Topical Science Group will initially 
focus on characterizing the scrape-off layer (SOL) losses of high harmonic fast wave (HHFW) 
power in H-mode plasmas [IS-9, IS-10] and verifying the predicted decreases of these losses at 
larger magnetic fields. Subsequent experiments will study the absorption of HHFW power by fast 
and thermal ions and generating low-current fully non-inductive plasmas powered with HHFW. 
A novel technique for obtaining two-dimensional images of the HHFW wavefield has also been 
proposed and allocated runtime.   
 
HHFW antenna conditioning and performance evaluation 
XMP-026 
Runtime Allocation: 2.25 days Weeks 5-8, 0.75 days Weeks 9-16 
Status: Submitted for review 
 
In addition to its usual function of checking HHFW system performance (especially relative to 
wall conditioning) and conditioning the antenna to maximum voltage, this XMP will evaluate the 
heat load from the second neutral beam onto the HHFW antenna limiter and also improvements 
gained from the new electrical ground added between the back of each antenna-strap box and the 
vessel.  
 
Characterizing SOL Losses of Fast Wave Power in H-Mode Plasmas 
XP-1510 
Runtime Allocation: 0.875 days Weeks 5-8; 0.875 days Weeks 9-16 
Milestone: IR(17-1)  
Status: Completed Group Review, Team Review scheduled 
 
This experiment seeks to maximize the HHFW heating efficiency in H-mode plasmas by 
minimizing the amount of power lost to the SOL.  Three diagnostic upgrades, a wide-angle 
infrared (IR) camera view, RF-frequency divertor Langmuir probes, and a SOL reflectometer, 
will allow for a quantitative assessment of the assertion that the SOL losses are intimately tied to 
the position of the right-hand cutoff in the SOL and will point to the conditions of optimal 
coupling for NSTX-U. This XP has undergone Group Review and is scheduled for Team Review 
in September. 
 
Using 2D BES measurements to resolve the in-situ HHFW wavefield 
XP # not assigned  
Runtime Allocation: 0.25 days Weeks 5-8 
Milestone: IR(17-1) 
Status: Not reviewed 
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We seek to demonstrate 2D imaging of the HHFW density field on NSTX-U with BES 
measurements, as was demonstrated on the Phaedrus-T tokamak by running two ICRF antennae 
at slightly different frequencies, resulting in a local density perturbation within the BES detection 
range. The NSTX-U 2D BES system requires tuning the RF sources with a ~10 kHz offset to 
enable observations at the beat frequency.  If successful, this technique will facilitate a new 
experimental campaign for HHFW model validation. 
 
HHFW absorption in Neutral-Beam heated plasmas 
XP # not assigned  
Runtime Allocation: 1.0 days Weeks 9-16 
Milestone: R(16-1), R(16-2), IR(17-1) 
Status: Not reviewed 
 
HHFW absorption by fast and thermal ions is especially relevant for NSTX-U because (i) for 
spherical tokamak geometry, ion acceleration to loss orbits constitutes a loss of FW and fast-ion 
power, and (ii) the increased magnetic field reduces the harmonic number of the FW system, 
potentially enhancing ion absorption. RF simulations show significant absorption by fast ions in 
many cases and large thermal-ion absorption when Ti ≥ Te. Quantifying the absorption is 
important to (a) benchmark RF codes, (b) determine the detriment to HHFW performance in 
beam-heated discharges due to fast-ion absorption, and (c) determine the physics setting the outer 
gap limit. This experiment will characterize the HHFW absorption as a function of HHFW 
antenna phases, magnetic field strength, neutral beam mix, and, to the extent possible, the Te/Ti 
ratio.  
 
Low Plasma Current, Fully Non-Inductive, HHFW H-Mode Plasmas  
XP # not assigned 
Lead: Gary Taylor 
Milestone: R(18-3) 
Runtime Allocation: 1.0 days Weeks 9-16 (0.5 days of SFSU runtime) 
Status: Not reviewed 
 
An initial approach to achieving fully non-inductive plasma current (IP) ramp-up is to heat low IP 
(250-350 kA) inductive plasmas with HHFW power. Previous experiments generated and 
sustained an H-mode discharge with a non-inductive fraction, fNI ~ 0.65 but were limited by poor 
antenna conditioning to a maximum arc-free HHFW power of only ~ 1.4 MW. This experiment 
aims to achieve fNI ≥ 1 by coupling 3-4 MW of RF power into an IP ~ 300 kA plasma through 
expected improved coupling due to the higher BT(0) and from recent modifications to the HHFW 
antenna grounding.  
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3. Advanced RF Modeling 

HHFW NSTX-U simulations and a comparison with “conventional” tokamaks with higher 
aspect ratios in both HHFW and minority heating regimes 

 
We have examined HHFW power loss in the SOL by using the numerical full wave simulation 
code AORSA [IS-18], in which the edge plasma beyond the last closed flux surface (LCFS) is 
included in the solution domain [IS-19]. A collisional damping parameter is used as a proxy to 
represent the real, and most likely nonlinear, damping processes in order to predict the effects, 
and possible causes, of this power loss. 2D, single dominant toroidal mode, full wave simulations 
demonstrated for the first time a direct correlation between the location of the fast wave cut-off 
layer, the large amplitude RF fields in the SOL, and the observed power losses in the SOL driven 
by the RF field in the NSTX experiment [IS-15]. In particular, a significant transition to higher 
SOL power losses was found when the FW cut-off is moved away from in front of the antenna by 
increasing the edge density in the antenna region (nant), consistent with the experimental 
observations [IS-20]. In order to further verify these previous results we have carried out 3D 
AORSA simulations using several toroidal modes to reconstruct the full antenna spectrum. 
Figures IS-WHCD-2(a) and (b) show a comparison between the 2D AORSA results (dashed 
curves) obtained for a single dominant mode corresponding of the antenna phasing of −150◦ and 
−90◦ and the 3D AORSA results (solid curves) where the NSTX antenna spectrum has been 

reconstructed by using 81 toroidal mode (−40 ≤ n ≤ 40). The 3D AORSA results exhibit similar 
behavior to that of the dominant mode (2D) runs and, in particular they reproduce a similar 
transition in SOL power losses as a function of the density in front of the antenna, although it is 
less pronounced due to the contribution of the several toroidal modes. Larger SOL power losses 
in 3D runs with respect to the 2D runs are found for low and high nant and for both antenna phases 
[IS-21]. These results provide a clear verification of the previous results shown in [IS-15] and 
allowed us to extend our 2D AORSA simulations to tokamaks with “conventional” geometry and 
also different heating regime. Therefore, 2D AORSA full wave numerical analysis has been 
performed for “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-
Mod, and EAST devices, in order to estimate the behavior of the RF power losses in “standard” 
geometry experiments, similar or different heating regime and compare them with NSTX/NSTX-
U results. DIII-D results are found to be in agreement with the results obtained for NSTX/NSTX-
U and they are also in agreement with previous experimental observations [IS-22]. In contrast, 
numerical simulations for Alcator C-Mod and EAST, which operate with ICRH in the hydrogen 
minority regime in deuterium majority plasma, differ from the simulations results for 
NSTX/NSTX-U and DIII-D, which operate in the mid/high ICRH harmonic regime [IS-23]. 
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4. Collaborations Relevant to RF Research on NSTX-U 

Long-Pulse ICRH Heating for KSTAR and EAST 

 
Studies of FW power loss to the SOL are being extended to KSTAR and EAST for the minority-
heating regime due to their implications for high-power long-pulse operation in ITER.  In an 
ICRF experiment on KSTAR [IS-36], significant core heating was observed with a coupling 
efficiency of ~67% at a 600 kW ICRF power level; a follow-on XP is planned for September 
2015 to increase the power level. For EAST, stored energy analysis indicates that only ~20% of 
the ICRH power is heating the core plasma. Proposals for increasing the coupled power include 
improving RF feedthrough design and slotting the antenna sidewalls and septa, both of which 
have been explored at PPPL using the QuickField and Microwave Studio codes respectively.  
Also, two experimental proposals for the EAST ICRF system, “Partition of ICRH power 
absorption as a function of Te / Ti” and “Interactions of Fast Waves with the SOL Plasma,” have 
been drafted and will be submitted for the upcoming physics campaign and would complement 
experiments planned on NSTX-U. 

Long-Pulse ECRH Heating and Current-Drive for KSTAR 

 
In an experiment conducted on KSTAR [IS-37], initial ECH beam steering results were obtained 
to begin the development of feedback tracking and stabilization of NTMs. N. Bertelli 
implemented the TORBEAM code for placing the ECH beam deposition at the NTM surface.  
This effort was reported on at the KSTAR Conference in February 2015 [IS-38], and a follow-on 
XP will be performed in September 2015.  Also, PPPL engineering has designed and fabricated a 
fixed water-cooled steady-state mirror for the existing ECH launcher and has undertaken the 
conceptual design of an advanced steady-state water-cooled two-channel 2 MW ECH launcher to 
support the increase of ECH power delivered to KSTAR for NTM stabilization [IS-39]. 

Other Collaborations 

 
Data processing for the C-Mod Chromex spectrometer for Mo I lines in the spectral window 375 
– 395 nm has been done to produce the time-dependence of the Mo I line brightness, which could 
be a convenient tool for erosion studies. This type of analysis might be important for NSTX-U in 
understanding erosion of antenna components at higher NBI power.   
 
R. J. Perkins attended the UCLA Basic Plasma Science User Group Meeting and presented a brief 
talk on the potential impact of RF rectification on SOL losses NSTX (see Ongoing Analysis 
section above).  A white paper is being drafting to propose an experiment on the UCLA Large 
Plasma Device (LAPD) to study the heat flux to a divertor-like surface in the presence of RF 
fields. 
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C. Advanced Scenarios and Control TSG Research Highlights 

1. Developing the Plasma Scenarios for the Center-Stack Upgrade KPP 

Inductive startup scenario development for NSTX-U 

 
The process for inductive startup of 
the plasma discharge on NSTX-U 
required development beyond the 
startup scenarios used in NSTX due 
to the fact that the flux and vertical 
fringe field from the ohmic solenoid 
is about three times larger, the initial 
plasma must form at larger major 
radius and the induced currents in the 
vessel structures are different. In 
FY15, a time-dependent magnetic 
field model (LRDFIT) was employed 
to develop initial scenarios for plasma 
startup on NSTX-U and one of the 
scenarios was successfully used to 
produce the test plasma that satisfied 
the CD-4 construction milestone.  

 
On NSTX and NSTX-U the ohmic solenoid is “pre-charged” with positive current that produces a 
fringe field inside the vacuum vessel.  The PF3U and PF3L are also initially pre-charged with 
positive current in order to cancel (i.e. null) the vertical field near the centerstack inside the 
vacuum vessel. At the desired breakdown time, an ionized gas is introduced to the vessel by 
filling the vessel with gas and pulsing a radio frequency antenna.  Concurrently, the ohmic 
solenoid and PF3 coil currents are ramped toward negative current in order to provide a loop 
voltage across the ionized gas within the magnetic field null. This loop voltage also induces 
currents in the vessel structure that contribute to the poloidal magnetic field. After a plasma is 
formed, the confining vertical field is increased by energizing the PF5 coils and continuing to 
ramp the PF3 coils. The solenoid current continues to ramp toward negative current to provide the 
loop voltage necessary to increase the plasma current. 
 
LRDFIT is a time-dependent calculation that includes a vessel circuit model and can be used to 
compute the vacuum magnetic fields.  LRDFIT modeling of a typical NSTX startup scenario 
confirmed that the largest values of the Lloyd parameter (where EtBt/|Bp| is a metric for tokamak 
startup) did correspond to the observed timing and location of the initial breakdown. The 
calculations also confirmed that the evolution of the fields after breakdown satisfied intrinsic 
vertical and radial equilibrium and stability for a typical range of plasma currents and boundaries. 
This result provided confidence that LRDFIT calculations are a suitable tool for developing 
NSTX-U startup scenarios. 

Figure IS-ASC-1: Lloyd parameter calculated using LRDFIT 
at +2 ms. NSTX on left, NSTX-U with 0.5T and OH precharge
of 8.1 kA and Vloop = 4.2V on right. 
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The first scenario developed used the same TF, PF3 and PF5 coil currents from NSTX and 
modified only the ohmic solenoid current.  This required the solenoid precharge current be 
reduced from 24 kA to 8.1 kA. The modeling suggested that about twice the loop voltage (4.2 V) 
would be needed at breakdown to match the magnitude of the Lloyd parameter on NSTX due to 
the increase in the major radius of the breakdown location.  Figure IS-ASC-1 compares the Lloyd 
parameter for the NSTX and NSTX-U scenario at +2 ms, which is the time when the volume-
averaged Lloyd parameter is a maximum.   
 
The second scenario investigated using LRDFIT examined the field evolution when starting with 
a 24 kA precharge in the ohmic solenoid at half toroidal field (Bt = 0.5T).  This scenario is 
required to take advantage of the available volt-seconds required for long pulse discharges on 
NSTX-U.  The calculations identified a viable scenario and some potential challenges with larger 
fringe field from the ohmic solenoid.  The first challenge is that the field null will have a smaller 
vertical and radial extent, possibly increasing the loop voltage requirements at breakdown.  The 
second challenge is that the relative contribution of the PF3 and PF5 coils compared to the fringe 
field is small for the initial plasma current ramp to about 100 kA.  Consequently, the intrinsic 
vertical and radial stability is largely determined by the details of the solenoid fringe field and 
fields due to induced currents in the conducting vessel structures.  These fields are significantly 
more difficult to independently control and optimize than the PF coil currents.  These results 
motivated the development of an XMP for determining the free parameters of a model that could 
be used to design a startup scenario at arbitrary ohmic pre-charge.  

XMP-100 and XMP-131: Initial plasma operation on NSTX-U 

 
Completion of NSTX-Upgrade construction required two operational milestones in order to 
demonstrate critical components were 
operational: firing the new neutral beam 
systems into the vessel armor and 
forming a test plasma with a plasma 
current (IP) exceeding 50kA with a 
toroidal magnetic field greater than 0.1T. 
XMP-100 (“Demonstration plasma for 
CD-4”) was completed on August 10, 
2015 and satisfied the test plasma 
milestone by producing a plasma 
exceeding 100kA with a toroidal field 
exceeding 0.45T after eleven plasma 
attempts. XMP-131 (“Increasing the CD-
4 IP”) was executed in the two days 
following XMP-100 and achieved modest 
improvements in the maximum IP and 
duration of the discharge over sixteen 
plasma discharges.  

Figure IS-ASC-1: Plasma current for three discharges
during XMP-100 and XMP-131 on NSTX-U. A typical Ip

rise in NSTX with well-conditioned walls is shown in gray. 
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bake-out and boronization, meaning the plasma impurity content (especially oxygen) and wall 
outgassing was larger than normal operations.  As expected, this increased the required loop 
voltage to achieve the desired Ip ramp rate by about a factor of two (4.5 – 5 V).  
 
The large loop voltage after breakdown drove significant currents in the NSTX-U vessel structure 
that made intrinsic vertical stability a challenge when the plasma currents exceed 100 kA. This is 
illustrated in figure IS-ASC-4, showing the magnetic reconstructions of two discharges near the 
time of maximum Ip. The large eddy currents in the centerstack “crowns” (green blocks) cause the 
plasmas to contact the crowns instead of limiting on the centerstack.  The PF3U current is 3% 
larger (more negative) for the discharge in the right panel compared to the left, which leads to the 
plasma being slightly centered below the midplane and contacting the lower crown.  
 
The goal of XMP-131 was to increase Ip above 100 kA by improving the intrinsic vertical 
stability and/or reducing the required loop voltage. The intrinsic vertical stability was improved 
through changes in the balance between the PF3U and PF3L currents, and by reducing the current 
in PF5.  The plasma became more centered in the vessel when the current request for PF3L was 
larger than PF3U due to sutble differences in the current feedback control of the two coils. The 
reduction in PF5 increased the plasma volume and the vacuum field index. These changes lead to 
modest improvements in the maximum Ip and lengthed the discharge (see 201102 in figure IS-
ASC-2). The prefill gas fueling was reduced for the last few shots of XMP-131 and the Ip ramp 
increased, presenting a path forward for reducing Vloop (see 201131 in figure IS-ASC-2), although 
this step was not attempted before the brief startup period ended. These efforts will resume 
following bake-out and boronization when it is expected that the loop voltage requirements will 
be significantly reduced with better wall conditions. 

2. Experimental Proposals for the FY-16 Run 
 
The Advanced Scenarios and Control topical science group will dedicate a significant amount of 
run time in the inaugural FY16 campaign to commission control tools that were altered or 
improved from the NSTX control system due to the new configuration and capabilities of NSTX-
U (for example, new PF coils and a 2nd neutral beam). A number of the planned experiments have 
experimental machine proposals (XMPs) that precede the experiment in order to test the 
functionality of the control software. Some dedicated time will be spent this run campaign toward 
experiments that enable new control capabilities for future years, such as current profile control, 
disruption avoidance and automated plasma ramp down.  In addition to control development, 
significant resources will be dedicated to the TSG mission of demonstrating fully non-inductive 
operation and stationary long-pulse inductive discharge scenarios.  The TSG has emphasized that 
each experiment proposal develop and demonstrate a connection to testable theories and 
modeling. 
 
The following experimental proposals have ASC Priority-1 run time planned for the FY16 run, 
with a number of the proposals approved for operation having completed group and team 
reviews. 
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Optimization of vertical control algorithm 
XP-1501 
Run time: 1 day during first four run weeks 
Milestone: R16-3 
Status: Completed team and group review 
 
This experiment will determine the plasma elongation limit imposed by vertical stability as a 
function of the plasma inductance (li) and identify limitations in the active vertical control system 
on NSTX-U. The second half of the experiment will use the previous results coupled with control 
models to examine the expansion of the elongation limits as a result control model development 
and optimization.  
 
Tuning of the Automated Rampdown Software 
XP-1502 
Run time: 0.5 day during first four run weeks 
Milestone: JRT2016 
Status: Not reviewed 
 
This experiment will make progress in optimizing the free parameters in the disruption detection 
and automated plasma rampdown software in the plasma control system.  Disruption avoidance 
will be critical in future years as NSTX-U increases its operating envelope. 
 
X-point control integration with shape control 
XP-1503 
Run time: 1 day during first four run weeks 
Milestones: R16-1, R16-3 
Status: Completed team and group review 
 
This experiment will test the functionality of controlling the locations of the upper and lower x-
point position using the upgraded set of poloidal field coils. Verification of acceptable x-point 
control is an essential first step toward implementing full plasma shape control capabilities such 
as advanced magnetic divertor geometries. 
 
Beam power and beta-N control 
XP-1504  
Run time: 0.5 day during first eight run weeks 
Milestones: R16-1, R16-2, R16-3 
Status: Completed team and group review 
 
This experiment demonstrates expanded capability to control the timing of the neutral beam 
injection within the plasma control system to deliver a requested heating power or achieve a 
particular beta-N.  
 
  



168 of 189 

Maximizing the non-inductive current fraction in NSTX-U H-modes 
XP-1507 
Run time: 2 days throughout FY16 run 
Milestones: R16-2, R16-3, R17-4 
Status: Completed team and group review 
 
A primary justification for the upgrade is to operate with 100% non-inductive current drive. 
Global plasma models provide guidance for the non-inductive plasma current expected for a 
given toroidal field (TF) and confinement assumptions. This experiment will assess those 
predictions against the available TF operating space. 
 
Controlled Snowflake Studies 
XP-1508 
Run time: 2 days throughout FY16 run 
Milestones: R16-3, R17-1 
Status: Completed team and group review 
 
This experiment will test the functionality of the control of a second x-point near the primary x-
point (ie the snowflake divertor) in both the upper and lower-single null configuration. This 
control capability includes the distance and relative angle separating the x-points, as well as the 
position of the primary x-point. The goal is to optimize the free parameters of the control 
algorithm, however the experiment will also contribute the documentation of the impact of the 
snowflake configuration on the plasma boundary and divertor conditions. 
 
Combined betaN and li feedback control 
XP-1509 
Run time: 0.75 – 1.25 days throughout FY16 run 
Milestones: R16-2, R16-3 
Status: Completed team and group review 
 
Simultaneous control of beta-N and li enables safe operation near stability boundaries and 
experiments where other parameters are varied at fixed betaN and/or li. This experiment will 
gather a dataset needed to inform model-based control algorithms under development. Plasma 
current, total and individual beam powers, and mid-plane outer gap size will be considered as 
actuators. Results will be compared to predictions of closed loop TRANSP simulations to verify 
the predictive capability of these simulations. 
 
Develop long pulse H-mode for NSTX-U 
XP # not assigned 
Run time: 1 day near the end of FY16 run 
Milestones: R16-1, R16-3 
Status: Not reviewed 
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The goal of the experiment is to make the longest possible H-mode plasma (> 4.5 seconds).  This 
requires scenario development within the constraints of coil heating and neutral beam operation, 
development of stable plasma shape control through the full swing of the ohmic fringe field, and 
integrating tools and scenarios that provide adequate MHD stability, particle control, and 
impurity control. 
 
NB sustainment 
XP # not assigned 
Run time: 0.5 day near the end of FY16 run 
Milestones: R16-2, R17-4 
Status: Not reviewed 
 
Following the demonstration of a nearly non-inductive scenario, the time when the flux from the 
ohmic solenoid is near zero will be moved earlier during the plasma current ramp-up. Neutral 
beam injection will be varied during the plasma current ramp to compare to model predictions of 
fully non-inductive operation on NSTX-U. 
 
Current profile controllability scoping study 
XP # not assigned 
Run time: 0.75 day near the end of FY16 run 
Milestones: R16-2, R16-3, R17-4, R18-2 
Status: Not reviewed 
 
The goal of this XP is generate data to validate models of the current profile evolution that will be 
used for designing current profile feedback control algorithms. Actuator modulations (individual 
beams, outer-gap size, density) will be done in several shots to assess the current profile dynamic 
response to these changes and the effect of beam pulse-width modulation. Variations in actuator 
trajectories during the ramp-up will also be done to assess controllability and the applicability of 
TRANSP and control-oriented reduced models to this phase of the discharge. 
 
Second priority experiments for the FY16 runs are “Closed Loop Density Feedback” aimed at 
developing active feedback on the plasma density, “Rotation Control” aimed at using neutral 
beam and 3D fields as actuators to actively control the plasma rotation and, “Reversed Shear 
Plasma with Relaxed Profiles” that aims to increase the period of reversed shear profiles in 
NSTX-U via scenario development and control tools. 
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IS-ASC-6) and ISOFLUX (the real-time shape control algorithm in the PCS). In addition, a set of 
scripts have been developed that use the ISOLVER equilibrium solver to generate control-
oriented models of the evolution of the plasma equilibrium, based around the results of a 
predictive TRANSP run. These models have been used for shape and vertical stability control 
designs, simplified (faster than TRANSP) simulations, and are planned for use in studying how 
system parameters (e.g., vertical growth rates) evolve during a discharge to assess controller 
robustness.  

 
Lehigh University Control Development 

 
New actuators and diagnostics capabilities planned for NSTX-U will enable the control and 
optimization of the current profile in a way that was not possible with NSTX. In order to make 
use of these new capabilities to their fullest, new control algorithms are needed to manipulate not 
only the bulk plasma properties but also the plasma profiles by synergistically combining 
diagnostics and actuators. The objective of the work currently carried out by members of the 
Lehigh University Plasma Control Group is to understand the current profile dynamics in NSTX-
U and to develop current-profile control algorithms that enable the efficient and optimal use of 
actuators and diagnostics by using modern model-based control approaches. 
 
Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the 
first step towards current-profile control design has been the development of a physics-based, 
control-oriented model for the current profile evolution in response to non-inductive current 
drives and heating systems. For this purpose, the nonlinear magnetic-diffusion equation has been 
coupled with empirical models for the electron density, electron temperature, and non-inductive 
current drives (neutral beams). The resulting first-principles-driven, control-oriented model has 
been tailored to NSTX-U based on TRANSP predictive simulations [IS-40]. As NSTX-U starts 
operation, further refinement of this model is expected based on TRANSP analysis simulations.  
 
A feedforward + feedback control scheme for the regulation of the current profile has been 
constructed by embedding the proposed nonlinear, physics-based model into the control design 
process. Firstly, nonlinear optimization techniques have been used to design feedforward actuator 
trajectories that steer the plasma to a desired operating state with the objective of supporting the 
traditional trial-and-error experimental process of advanced scenario planning. Experimental 
testing of these optimal feedforward control laws has been proposed at the 2016 NSTX-U 
Research Forum. The experiment will allow not only to evaluate the performance of the proposed 
feedforward controllers but also to validate the control-oriented models for current, temperature 
and density profile evolution used for control synthesis. The evaluation of control feasibility 
through use of feedforward trajectories and the validation of the control-oriented models are both 
key prerequisites for the next step, which is to implement a feedback controller to regulate the 
safety factor profile around a desired target. Moreover, the experiment will assess the potential of 
model-based optimal feedforward profile control as a systematic approach for scenario planning 
in NSTX-U. Secondly, a time-variant, linear-quadratic-integral, optimal, feedback controller 
capable of regulating the safety factor profile around a desired target profile while rejecting 
disturbances [IS-41] has been developed with the goal of adding robustness to the overall control 
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(PPPL) 
4. “Effects of MHD Instabilities on Neutral Beam Current Drive”, M. Podesta (PPPL) 
5. “Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D”, V. 
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Components”, M. Jaworski (PPPL) 
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Invited presentations at 21st Topical Conference on RF Power in Plasmas held at Lake 
Arrowhead, California on April 27- 29, 2015 

 
17. “Effect of the Scrape-Off Layer in AORSA Full Wave Simulations of Fast Wave Minority, 

Mid/High Harmonic, and Helicon Heating Regimes”, N. Bertelli (PPPL) 

Oral presentations at 26th IEEE Symposium on Fusion Engineering (SOFE), 5/31-6/4, 
2015 in Austin, TX 
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20. “Prospects for Power and Particle Exhaust with High-Temperature Liquid Lithium 

Divertors” by M. A. Jaworski (PPPL) 
21. “NSTX-U Digital Coil Protection System Integration with Existing Plasma Control System” 
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Invited oral presentations at IEA Workshop on the Theory and Simulation of Disruptions 
hosted by PPPL July 13-15, 2015 

  
30. “Tearing Mode Control for ITER” by E. Kolemen (Princeton University) 
31. “M3D-C1 Simulation of a NSTX Disruption Induced by Rapid Current Ramp-down” by S. 

Jardin (PPPL) 
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38. “Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U 

contributions” by M. Ono (PPPL) 
39. “Incremental upgrades toward high-heat flux, liquid lithium PFCs in the NSTX-U” by M.A. 

Jaworski (PPPL) 
40.  “Lithium granule ablation and penetration during ELM pacing experiments at DIII-D” by 

R. Lunsford (PPPL) 

41. “The effect of progressively increasing lithium conditioning on edge transport and stability 
in high triangularity NSTX H-mode discharges” by R. Maingi (PPPL) 

 
Seminars and Colloquia 

 
1. Y. Ren (PPPL) gave a seminar entitled “Recent Progress in Studying High-k Turbulence in 

NSTX” at ASIPP, Hefei, China on August 5, 2014. 
 
2. M. Ono (PPPL) gave a seminar entitled “NSTX Upgrade for Establishing Physics and 

Technology Basis for FNSF” at UCLA on November 14, 2014. 
 
3. J. Menard (PPPL) presented “Scientific Opportunities and Challenges in the Upgraded 

National Spherical Torus Experiment" by at the PPPL Science on Saturday series on March 
14, 2015 

 
4. R. Kaita (PPPL) gave a colloquium lecture on fusion energy to science and engineering 

faculty and STEM (Science, Technology, Engineering, and Mathematics) students at Union 
University in Jackson, TN on March 19, 2015. 

 
5. R. Maingi (PPPL) presented a guest lecture at Cornell University on the “Principles of 

Magnetic Fusion and the Plasma-Material Interface” on 4/20/15. The trip was supported by 
the APS Distinguished Lectures in Plasma Physics program. 
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6. R. Kaita (PPPL) gave a colloquium lecture on magnetic fusion that included a description of 
NSTX-U research at Messiah College in Mechanicsburg, PA on April 23.  

 
7. Charles Skinner (PPPL) visited the Yale Climate and Energy Institute, New Haven, CT on 

April 24th to attend the Conference on Climate Change and the Future of Nuclear Energy 
and gave a special invited talk on 'Fusion: Energy for the Future’.  

 
8. J. Menard (PPPL) gave a seminar presentation to NFRI/KSTAR scientists entitled “NSTX-

U Research Highlights and Program Status and Plans” following the KSTAR PAC meeting 
held April 27-29, 2015 at the National Fusion Research Institute (NFRI) in Daejeon, South 
Korea. 

 
9. J. Menard (PPPL) presented “Confinement And Stability Discoveries From High-Beta 

Spherical Tori,” at the Norman Rostoker Memorial Symposium on August 24, 2015 in 
Newport Beach, CA 

 
10. R. Maingi (PPPL) presented a colloquium at the Dept. of Physics and Astronomy, West 

Virginia University on September 3, 2015: "The Benefit of Coating the Plasma Facing 
Surfaces of Fusion Research Chambers with Low-Atomic-Number Materials in Keeping 
Plasma Hot, Confined, and Fusing." 

 
11. Devon Battaglia (PPPL) presented “The Mission of NSTX-U Toward the Development of 

Fusion Energy” at the University of Rochester’s Laboratory for Laser Energetics on 
September 4. 

 
Major Awards by NSTX-U Researchers 

 

● L. Delgado-Aparicio, Early Career Research Award, DOE Office of Science.  

 
Hosted Meetings and Workshops 

 
1. An international TRANSP User’s Group meeting organized by S. Kaye was hosted by PPPL 

on March 23-24, 2015. 
 
2. PPPL hosted the 21st meeting of the ITPA Divertor and Scrape-off Layer Topical Group on 

June 9-12th, and the meeting was organized by C. Skinner (PPPL) 
 
3. IEA Workshop on the Theory and Simulation of Disruptions hosted by PPPL July 13-15, 

2015.  
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NSTX-U PPPL Employee Leadership in Venues Outside of PPPL 

 
1. Bell, R., Expert, ITPA Diagnostics Topical Group 
2. Darrow, D., Chair, ITPA Diagnostics, Fusion Products Working Group 
3. Darrow, D., Expert, ITPA Diagnostics Topical Group 
4. Diallo, A., Expert, ITPA Pedestal and Edge Physics Topical Group 
5. Ferraro, N, Expert, ITPA Pedestal and Edge Physics Topical Group 
6. Fredrickson, E., Member, ITPA Energetic Particle Physics Topical Group 
7. Gerhardt, S. Member, APS DPP Rosenbluth Award Committee 2015 
8. Gerhardt, S., Member, Alcator C- Mod/Magnetic Fusion Experiments Program Advisory 

Committee 
9. Gerhardt, S., Member, ITPA Integrated Operating Scenarios Group 
10. Gorelenkov, N., Deputy Leader, USBPO Energetic Particles Topical Group 
11. Gorelenkov, N., Expert, ITPA Energetic Particle Physics Topical Group 
12. Guttenfelder, W., Expert, ITPA Transport and Confinement Topical Group 
13. Hosea, J., Co-chair, US-Japan RF Physics Workshop 
14. Hosea, J., Member, ORNL ICH COV Review for DOE 
15. Jaworski, M., Member, ITPA scrape-Off-Layer and Divertor Topical Group 
16. Kaye, S., Expert, ITPA Pedestal and Edge Topical Group 
17. Kaye, S., Member, ITPA Transport and Confinement Topical Group 
18. Kolemen, E., Assistant Professor, Princeton University 
19. Kolemen, E., Group Leader, USBPO Operations and Control  
20. Kolemen, E., Local Organizer MHD Control Workshop at Princeton 
21. Maingi, R., Chair, ITPA Pedestal and Edge Physics Topical Group 
22. Maingi, R., Expert, ITPA DiagnosticsTopical Group 
23. Maingi, R., Group Leader, USBPO Pedestal, SOL and Divertor Physics 
24. Maingi, R., Leader, FES-sponsored community-led PMI strategic workshop activity 
25. Maingi, R., Member, Alcator C- Mod/Magnetic Fusion Experiments Program Advisory 

Committee 
26. Maingi, R., Member, APS/DPP Distinguished Lecturers in Plasma Physics 
27. Maingi, R., Member, ITPA Coordinating Committee 
28. Maingi, R., Member, of the MIT PSFC Program Advisory Committee 
29. Maingi, R., Technical Program Co-chair, TOFE 2014 Meeting 
30. Maingi, R., Technical Program Committee Member, of the H-mode Workshop 
31. Maingi, R., Technical Program Committee Member, SOFE 2015 Meeting 
32. Menard, J., Chair of Local Organizing Committee for 18th International Spherical Torus 

Workshop 
33. Menard, J., Co-chair of International Advisory Committee for China Fusion Engineering Test 

Reactor (CFETR) 
34. Menard, J., Chair of Executive Committee of IEA Implementing Agreement for Cooperation 

on Spherical Tori 
35. Menard, J., Member, Culham Centre for Fusion Energy Advisory Committee 
36. Menard, J., Member, Alcator C-Mod Magnetic Fusion Experiments Program Advisory 

Committee 
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37. Menard, J., Member, USBPO Council 
38. Menard, J., Expert, ITPA MHD, Disruptions and Control Topical Group 
39. Menard, J., Member, Princeton University C7 Committee 
40. Menard, J., Member, Program Advisory Committee, KSTAR Program 
41. Menard, J., Member, Research Council UK Fusion Advisory Board 
42. Ono, M., Member, APS DPP Program Committee 2015 
43. Ono, M., Member, ISLA Program Committee 2015 
44. Ono, M., Member, ISTW Program Committee 2015 
45. Ono, M., Member, ICPP Program Committee 2015 
46. Park, J-K., 2015 Co-chair, MHD Control Workshop at PPPL, 2015 
47. Park, J-K., Committee Member, MHD Control Workshop, 2014 
48. Park, J-K., Expert, ITPA MHD, Disruptions and Control Topical Group 
49. Park, J-K., Panel Member, FES Transient Workshop: 3D-MPs 
50. Park, J.K., Lecturer, Princeton University 
51. Perkins, R., Committee Member, 21st Topical Conference on Radiofrequency Power in 

Plasmas 2015 
52. Podesta, M., Expert, ITPA Energetic Particle Physics Topical Group 
53. Podesta, M., Member, TTF Executive Committee 2015 
54. Podesta, M., Member of the Editorial Advisory Board of Review of Scientific Instruments  
55. Poli, F., Deputy Leader, BPO Topical Group on Integrated Scenarios 
56. Poli, F., Member, US ITPA-IOS 
57. Poli, F., Panel Member, FES Integrated Modeling Workshop 
58. Ren, Y., Expert, ITPA Transport and Confinement Topical Group 
59. Skinner, C., Expert, ITPA Diagnostics Topical Group 
60. Stratton, B., Chair, PDR for ITER UV Spectroscopy Systems at ITER  
61. Stratton, B., Member, ITPA Diagnostics Topical Group 
62. Stratton, B., Deputy Group Leader, USBPO Diagnostics 
63. Taylor, G., Expert, ITPA Diagnostics Topical Group 
64. Zweben, S., Resident Associate Editor, Physics of Plasmas 
 




